
Genetic and Evolutionary Computation

Rick Riolo
W.P. Worzel
Mark Kotanchek
Arthur Kordon Editors

Genetic
Programming
Theory and
Practice XIII

Genetic and Evolutionary Computation

Series Editors:
David E. Goldberg
John R. Koza

More information about this series at http://www.springer.com/series/7373

http://www.springer.com/series/7373

Rick Riolo • W.P. Worzel • Mark Kotanchek
Arthur Kordon
Editors

Genetic Programming
Theory and Practice XIII

123

Editors
Rick Riolo
Center for the Study of Complex Systems
University of Michigan
Ann Arbor, MI, USA

Mark Kotanchek
Evolved Analytics
Midland, MI, USA

W.P. Worzel
Evolution Enterprises
Ann Arbor, MI, USA

Arthur Kordon (Retired)

ISSN 1932-0167
Genetic and Evolutionary Computation
ISBN 978-3-319-34221-4 ISBN 978-3-319-34223-8 (eBook)
DOI 10.1007/978-3-319-34223-8

Library of Congress Control Number: 2016947783

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Dedication

This book is dedicated to John Henry Holland, whose work and
kindness touched his students, his colleagues, his friends, and
many others who knew him only from his writings.

PREQUEL
Before the blank–full of fresh

grain scent and flecked
like oatmeal woven flat–

canvas, before the blank canvas
is stretched or strained

tight as an egg, before then–
sketch. It doesn’t catch

commencement: it won’t hook
the scene like a rug,

or strategize too far ahead.
It isn’t chess. It doesn’t expect
the homestretch or the check.

Each line braves rejection
of the every, edits restless

all into a space that’s still
the space of least commitment, distilling

latitudes in draft.
It would domesticate the feral

dusk and stockpile dawn.
It would be commensurate, but settles

for less, settles
prairies in its channels. Great plains

roar and waterfall, yawn and frost

v

vi Dedication

between the lines.
From hunger, from blank

and black, it models erotic
stopped tornadoes, the high relief

of trees. In advance or retreat, in terraced
dynamics–its bets are hedged–with no dead-

bolt perspective. Its point of view? One
with the twister in vista glide,

and the cricket in the ditch,
with riverrain, and turbines’ trace.

Inside the flux of
flesh and trunk and cloudy come,

within the latent
marrow of the egg, the amber

traveling waves is where
its vantage lies.

Entering the tornado’s core,
entering the cricket waltzed by storm–

to confiscate the shifting give
and represent the with-

out which.

—Alice Fulton

Foreword

In 2003, Carl Simon asked Rick Riolo and me to organize a workshop on genetic
programming (GP). We decided to bring together people interested in the theory
of GP with people whose main focus was applying GP to “real-world” problems
and seeing what happens. We also included daily keynote speakers who were in
general not familiar with GP but who had challenging ideas in the areas of computer
science, commercial applications, and biological sciences. It was originally planned
as a one-off workshop, but after the first workshop, there was a lot of enthusiasm to
continue it, and so the Genetic Programming Theory and Practice (GPTP) workshop
became an annual event at the University of Michigan in Ann Arbor. This book is
the 13th such book written by the attendees of GPTP. Over the years, we have had
an amazing series of participants working in a wide range of fields who have refined
and expanded the understanding and application of GP.

It was entirely fitting then that the first keynote speaker at GPTP was John
Holland. For those who may not be familiar with John and his work, he is widely
credited with being one of the originators of genetic algorithms and was a founder of
the Santa Fe Institute, the Center for the Study of Complex Systems at the University
of Michigan, and other key research centers focused on interdisciplinary studies. He
received what may have been the first PhD in computer science (from the U of
M) in 1959, and his work in complexity theory was central to the development of
complexity as an area of serious study.

John was a polymath who came of age in the heady times of computer science
when everything is not only seemed possible but inevitable. John never lost the
enthusiasm of those days and passed it along to his students, shared it with his
colleagues, and brought it to GPTP. As the chain of GPTP workshops unrolled,
John would stop in occasionally if there was a speaker he wanted to hear or a topic
that intrigued him. Though he never worked with GP himself, he had a knack for
going to the heart of a problem and suggesting new ideas and questions that opened
new vistas for exploration.

Perhaps more importantly, GPTP is infused with the spirit of the Center for the
Study of Complex Systems (CSCS) and the BACH group in particular. As such, it
is multidisciplinary and mathematically inclined and looks to find grand patterns

vii

viii Foreword

from simple principles. This is really no surprise as many of the attendees at GPTP
have been students or colleagues of John’s. I believe that this world view is also
the reason for the longevity of the workshop as its focus is not about this or that
technique per se but is about the deeper workings of GP and how to manage it in the
application to different problems.

At the memorial held for John at the University of Michigan in October of this
year, Stephanie Forrest spoke about what it was like to be John’s graduate student,
and she described his approach to advising as being the practice of “benign neglect.”
As a student, she often found this difficult but said she had come to appreciate its
virtues and had adopted it with her own students.

I believe that GPTP has benefited from the same quality of benign neglect as
CSCS has given us time, space, and support to pursue a complex but fascinating
subject for over a decade without bothering about how the workshop was structured,
who we invited or how, or even if we published the results. This freedom has become
one of the hallmarks of GPTP, and every year, the participants comment on how
much they enjoy the workshop as a result.

For more on John’s amazing career, the reader is encouraged to read the
Santa Fe Institute’s obituary at http://www.santafe.edu/news/item/in-memoriam-
john-holland/ and, more importantly, to read his numerous, seminal papers and
books as he was truly one of the leading founders of our discipline.

Ann Arbor, MI, USA W.P. Worzel
November 2015

http://www.santafe.edu/news/item/in-memoriam-john-holland/
http://www.santafe.edu/news/item/in-memoriam-john-holland/

Preface

This book is about the Thirteenth Workshop on Genetic Programming Theory and
Practice, a workshop held this year from May 14 to 16, 2015, at the University
of Michigan under the auspices of the Center for the Study of Complex Systems.
The workshop is a forum for theorists and users of genetic programming to come
together and share ideas, insights, and observations. It is designed to be speculative
in nature by encouraging participants to discuss ideas or results that are not
necessarily ready for peer-reviewed publication.

To facilitate these goals, the time allotted for presentations is longer than is
typical at most conferences, and there is also more time devoted for discussion. For
example, presenters usually have 40 min to present their ideas and take questions,
and then, before each break, there is open discussion on the ideas presented in a
session. Additionally, at the end of each day, there is a review of the entire day
and the ideas and themes that have emerged during the sessions. Looking back
at the schedule, in a typical day, there was 240 min of presentation and 55 min of
discussion or fully 19 % of the time spent in open discussion.

In addition to the regular sessions, each day starts with a keynote speaker who
gets a full hour of presentation and 10 min of Q&A. By design, the keynotes
are generally not about genetic programming but come from a related field or an
application area that may be fertile ground for GP. This year, the first keynote
speaker was Dave Ackley from the University of New Mexico who delivered
and addressed the topic titled “A Requiem for Determinism.” This provocative
presentation argued that from the beginning of modern computing, people such as
John von Neumann argued that hardware could not be relied on to work perfectly
in all cases—just because of the nature of electronics in that they will fail some
number of times. These days, the growth of complexity of software has added to
this problem. Modern software depends on the user’s ability to reboot the system
when things get out of sync or when hardware fail. Ackley argues that the correct
response (as foreseen by von Neumann) is to make systems that continue to function
even when the system nominally fails. Dave went on to suggest that given that GP
takes its cues from nature, we should consider incorporating methods that survive
“mistakes” in execution.

ix

x Preface

The second keynote speaker was Larry Burns, who had been an executive at
General Motors and is now a consultant with Google on their autonomous vehicle
project. Larry’s talk was about the development of autonomous vehicles and the
likely arc of adoption of autonomous vehicles, but he went on to discuss the fact
that technology cannot be thought of in isolation and in particular that it exists in a
cultural context and is co-dependent on the infrastructure. As engineers, we tend to
think only of the technology we are developing, but Larry made a strong case for
thinking about work in a larger context.

The third keynote was Julian Togelius on “Games Playing Themselves: Chal-
lenges and Opportunities for AI Research in Digital Games.” Games have been at the
center of AI development since the beginning of modern computers. Turing mused
on chess-playing computers. Samuel’s checker playing system could be argued to be
the beginning of neural nets, at least on an engineering level. Deep Thought attracted
worldwide attention when it beat Garry Kasparov, the then-reigning world chess
champion. Julian posed a number of interesting questions relating to AI, particularly
about the human traits of curiosity and what it means to “like” something. He turned
the usual dynamic of interaction around by asking the questions whether games
could be “curious” about people and later asked whether computers could “like”
games or even “like” making good games. It was an interesting reversal on the usual
questions about AI work and was an interesting discussion in the context of GP.

While the keynotes at the workshop were provocative and interesting, the
chapters in this book are the core of GPTP. The first chapter by Kommenda et
al. is titled “Evolving Simple Symbolic Regression Models by Multi-objective
Genetic Programming.” This interesting chapter revisits the question of evaluating
the complexity of GP expressions as part of the fitness measure for evolution. Most
previous efforts focused either on the structural complexity of the expression or
an expensive calculation of subtrees and their components. This chapter proposes
a lightweight semantic metric which lends itself to efficient multi-modal fitness
calculations without using input data.

The second chapter, by Elyasaf et al., titled “Learning Heuristics for Mining
RNA Sequence-Structure Motifs” explores the difficult problem correlating RNA
sequences to biological functionality. This is a critical problem to finding and
understanding biological mechanisms derived from specific RNA sequences. The
authors use GP to create hyper-heuristics that find cliques within the graphs of RNA.
Though the chapter only describes the approach and does not show concrete results,
it is a clever approach to a complex problem, and we look forward to seeing results
in a future GPTP.

The next chapter, by de Melo and Banzhaf, “Kaizen Programming for Feature
Construction for Classification” adopts the Japanese practice of Kaizen (roughly,
continuous improvement) to GP in the domain of classification problems. In this
case, they use GP to generate new ideas in the Kaizen algorithm where in this case
“ideas” mean classifier rules that are recursively improved, removed, or refined. It
is an interesting idea that takes advantage of GP’s ability to generate novel partial
solutions and then refine them using the Kaizen approach.

Preface xi

In chapter “GP As If You Mean It: An Exercise for Mindful Practice” by William
Tozier, Bill argues that pathologies of result in GP sometimes inform us as to the
nature of the problem we are trying to solve and that our (learned) instinct of
changing GP parameters or even mechanisms to produce a “better” result may be
misguided. He goes from there to a practice of learning adapted for GP that can
improve how we use GP by being mindful of how it behaves as we change single
features in the problem. He borrows from Pickering’s Mangle to create consistent
ways to use GP to learn from the problem rather than to adjust the GP until you get
a result you expected.

In chapter “nPool: Massively Distributed Simultaneous Evolution and Cross
Validation in EC-Star,” Hodjat and Shahrzad continue work on EC-Star, a GP system
designed to be massively parallel using the Cloud. This chapter focuses on evolving
classifiers by using local populations with k-fold cross-validation that is later tested
across different segments of the samples. Additionally, they are developing these
classifiers using time series data, which adds an additional challenge to the problem
by requiring a lag as part of the operator set. It is a challenging project that has
elements of standard cross-validation with island populations but where learning
is not permitted between islands and testing is done entirely on different islands
with different samples. This creates a danger of premature convergence/overfitting
since populations only have one set of samples to learn on, but they control this as
compensated for by extensive validation using the other islands. While this is clearly
an interesting approach with some good results, the authors suggest that more work
needs to be done before it’s ready for commercial use.

In chapter “Highly Accurate Symbolic Regression with Noisy Training Data”,
Michael Korns continues his pursuit of improving an almost plug-and-play approach
to solving symbolic regression problems that verge on the pathologic from a GP
perspective. Here he introduces an improved algorithm and adds noise to the input
data and is able to show that he can still produce excellent results for out-of-sample
data. He also makes this system available for further testing by other researchers,
inviting them to test it on different symbolic regression problems.

The seventh chapter, by Gustafson et al., is titled “Using Genetic Programming
for Data Science: Lessons Learned.” The authors are well versed in industrial
applications of computational systems and survey the strengths and weaknesses of
GP in such applications. They identify a number of areas where GP offers significant
value to Data Scientists but also observe some of the faults of GP in such a context.
For those seeking to make GP a more accessible technology in the “real world,” this
chapter should be carefully considered.

The eight chapter is a highly speculative effort by Bill Worzel titled “The
Evolution of Everything (EvE) and Genetic Programming.” This chapter sets out
to explore more open-ended uses of GP. In particular, he focuses on the coming
impact of the Internet of Things (sometimes called the Internet of Everything)
on the computing world and speculates that with a constant stream of real-world
data, GP could break the mold of generational limits and could constantly evolve
solutions that change as the world changes. The effort proposes combining GP,

xii Preface

functional programming, particulate genes, and neural nets and (most speculatively)
suggests that if the singularity is reachable, it probably will be evolved rather than
autonomously springing into being.

The ninth chapter, titled “Lexicase Selection for Program Synthesis: A Diversity
Analysis,” by Spector and Helmuth, is an exploration of the hypothesis that
lexicase selection improves diversity in a population. Lexicase selection is compared
with tournament selection and implicit fitness sharing. Lexicase showed improved
error diversity, which suggests improved population diversity, thus supporting the
hypothesis and the expected mechanism for lexicase selection.

In the next chapter, “Behavioral Program Synthesis: Insights and Prospects,”
by Krawiec et al., the authors argued at the workshop that a single-valued fitness
function “abuses” program evolution by forcing it to evolve a lump sum of what is
often a complex set of samples. Instead, they propose using an interaction matrix
as a more useful metric as it gives information on specific tests.They argue that
not only is information being “left on the table” with single-valued metrics but that
the overall behavioral characteristic of an evolved solution is lost and a great deal
of nuance and understanding goes missing. They then go on to propose what they
call behavioral synthesis which focuses on the behavior of evolved solutions as the
dominant factor in evolution. This paper suggests that we need a more nuanced
notion of fitness.

The eleventh chapter, “Using Graph Databases to Explore the Dynamics of
Genetic Programming Runs,” McPhee et al. continues the search for understanding
diversity in GP populations, a long-standing focus for research in the GP commu-
nity. However, in this case, the authors are more interested in looking for “critical
moments in the dynamics of a run.” To do this, they use a graph database to
manage the data and then query the database to search for these crucial inflection
points. They focus on the question of whether lexicase selection is truly better than
tournament selection and why this might be. Though a work still in progress, this
chapter suggests that this method of analyzing GP populations is a valuable addition
to the GP toolset and re-raises some of the issues explored in chapter “GP As If You
Meant It: An Exercise for Mindful Practice” by Tozier about looking at the process
and not just the outcome and chapter “Behavioral Program Synthesis: Insights and
Prospects” about the study of behavioral synthesis suggesting that this is an area
where we will see more study in the near future.

The twelfth chapter is titled “Product Choice with Symbolic Regression and
Classification,” by Truscott and Korns. This is one of the first, if not the first use
of GP in market research. Huge amounts of money are spent surveying customers,
and this data is used to predict brand popularity. The authors describe a survey of
cell phones and the analysis produced using the ARC symbolic regression system
adapted to classification. The results show well compared to existing methods and
suggest that more work in this field may be productive.

The thirteenth chapter by Silva et al., is titled “Multiclass Classification Through
Multidimensional Clustering” and revisits the difficult problem of multiclass clas-
sifications using GP. This builds from their earlier work which mapped values into
higher-dimensional space during the training phase and then collected samples into

Preface xiii

the closest cluster in the higher-order space. This chapter extends this idea by adding
a pool of groups of possible GP trees and combining them selectively (via evolution)
to create an ensemble of high-dimensional mapping functions. In some ways, this
suggests a more transparent version of SVM, and the results presented suggest that
this extension produces improved results with less overfitting.

The final chapter was written by Stijven et al. and is titled “Prime-Time Symbolic
Regression Takes Its Place in the Real World.” With over 25 years of experience in
applying symbolic regression to real-world problems, the authors make a strong
case for GP to take its place in the frontlines of business. They give examples of
how symbolic regression can be applied to business forecasting, commercial process
optimization, and policy decision making in addition to their previous demonstration
of applications in commercial R&D. Because many business applications are
proprietary, they give an example of their methodology, which critically includes
careful attention to the design of experiment (DOE) in a model of infectious disease
epidemics that can inform policy decisions. All told, it is hard to find a group of
people who have done more to advance the acceptance of GP in the real world.

Acknowledgments

We would like to thank all of the participants for again making GP Theory and
Practice a successful workshop. As always, it produced a lot of high energy and
interesting and topical discussions, debates, and speculations. The keynote speakers
added a lot of food for thought and raised some interesting questions about GP’s
place in the world. We would also like the thank our financial supporters for making
the continued existence of GP Theory and Practice possible. These include:

• The Center for the Study of Complex Systems (CSCS)
• John Koza, Third Millenium Venture Capital Limited
• Michael Korns and Gilda Cabral
• Jason Moore, Computational Genetics Laboratory at Dartmouth College
• Mark Kotanchek and Evolved Analytics
• Babak Hodjat at Sentient
• Steve Everist and Everist Life Sciences
• Heuristic and Evolutionary Algorithms Laboratory, Upper Austria University of

Applied Science
• Kordon Consulting

A number of people made key contributions to running the workshop and
assisting the attendees while they were in Ann Arbor. Foremost among them was
Linda Wood and Susan Carpenter, who made this GPTP workshop run smoothly
with their diligent efforts before, during, and after the workshop itself. After the
workshop, many people provided invaluable assistance in producing this book.
Special thanks go to Kala Groscurth who did a wonderful job working with the
authors, editors, and publishers and providing editorial and other assistance to

xiv Preface

get the book completed. Jennifer Malat and Melissa Fearon provided invaluable
editorial efforts, from the initial plans for the book through its final publication.
Thanks also to Springer for helping with various technical publishing issues.

Ann Arbor, MI, USA Rick Riolo
Ann Arbor, MI, USA W.P. Worzel

Arthur Kordon
Midland, MI, USA Mark Kotanchek
November 2015

Contents

Evolving Simple Symbolic Regression Models
by Multi-Objective Genetic Programming . 1
Michael Kommenda, Gabriel Kronberger, Michael Affenzeller,
Stephan M. Winkler, and Bogdan Burlacu

Learning Heuristics for Mining RNA Sequence-Structure Motifs 21
Achiya Elyasaf, Pavel Vaks, Nimrod Milo, Moshe Sipper,
and Michal Ziv-Ukelson

Kaizen Programming for Feature Construction for Classification 39
Vinícius Veloso de Melo and Wolfgang Banzhaf

GP As If You Meant It: An Exercise for Mindful Practice 59
William A. Tozier

nPool: Massively Distributed Simultaneous Evolution and
Cross-Validation in EC-Star . 79
Babak Hodjat and Hormoz Shahrzad

Highly Accurate Symbolic Regression with Noisy Training Data 91
Michael F. Korns

Using Genetic Programming for Data Science: Lessons Learned 117
Steven Gustafson, Ram Narasimhan, Ravi Palla, and Aisha Yousuf

The Evolution of Everything (EvE) and Genetic Programming 137
W.P. Worzel

Lexicase Selection for Program Synthesis: A Diversity Analysis 151
Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector

Behavioral Program Synthesis: Insights and Prospects . 169
Krzysztof Krawiec, Jerry Swan, and Una-May O’Reilly

xv

xvi Contents

Using Graph Databases to Explore the Dynamics of Genetic
Programming Runs . 185
Nicholas Freitag McPhee, David Donatucci, and Thomas Helmuth

Predicting Product Choice with Symbolic Regression
and Classification . 203
Philip Truscott and Michael F. Korns

Multiclass Classification Through Multidimensional Clustering 219
Sara Silva, Luis Muñoz, Leonardo Trujillo,
Vijay Ingalalli, Mauro Castelli, and Leonardo Vanneschi

Prime-Time: Symbolic Regression Takes Its Place in the Real World 241
Sean Stijven, Ekaterina Vladislavleva, Arthur Kordon,
Lander Willem, and Mark E. Kotanchek

Index . 261

Contributors

Michael Affenzeller is at the Heuristic and Evolutionary Algorithms Laboratory,
University of Applied Sciences Upper Austria, Hagenberg, Austria, and Institute for
Formal Models and Verification, Johannes Kepler University, Linz, Austria

Wolfgang Banzhaf is at the Department of Computer Science, Memorial Univer-
sity of Newfoundland, St. John’s, NL, Canada,

Bogdan Burlacu is at the Heuristic and Evolutionary Algorithms Laboratory,
University of Applied Sciences Upper Austria, Hagenberg, Austria

Institute for Formal Models and Verification, Johannes Kepler University, Linz,
Austria

Mauro Castelli is at NOVA IMS, Universidade Nova de Lisboa, Lisbon, Portugal

David Donatucci Division of Science and Mathematics, University of Minnesota,
Morris, Morris, MN, USA

Achiya Elyasaf is at the Department of Computer Science, Ben-Gurion University,
Beer-Sheva, Israel

Steven Gustafson is at Knowledge Discovery Lab, GE Global Research,
Niskayuna, NY, USA

Thomas Helmuth is a PhD candidate in the School of Computer Science at the
University of Massachusetts, Amherst, MA, USA

Babak Hodjat is chief scientist and cofounder of Genetic Finance, responsible
for the core technology behind the world’s largest distributed evolutionary system.
Babak is an entrepreneur having started a number of Silicon Valley companies as
main inventor and technologist. He was also senior director of engineering at Sybase
Anywhere from 2004 to 2008, where he led Mobile Solutions Engineering including
the AvantGo Platform and the mBusiness Anywhere and Answers Anywhere
product suites. Previously, Babak was the cofounder of CTO and board member
of Dejima Inc. acquired by Sybase in April 2004. Babak is the primary inventor

xvii

xviii Contributors

of Dejima’s patented agent-oriented technology applied to intelligent interfaces for
mobile and enterprise computing—the technology behind Apple’s Siri. Dejima was
one of only four private firms enrolled in the DARPA (Defense Advanced Research
Projects Agency)-funded Cognitive Assistant that Learns and Observes (CALO)
Project, managed by SRI International and one of the largest AI projects ever
funded. Babak served as the acting CEO of Dejima for 9 months from October
2000. In his past experience, he led several large computer networking and machine
learning projects at Neda, Inc. Babak received his PhD in machine intelligence from
Kyushu University, in Fukuoka, Japan

Vijay Ingalalli is at LIRMM, Montpellier, France

Michael Kommenda is at the Heuristic and Evolutionary Algorithms Laboratory,
University of Applied Sciences Upper Austria, Hagenberg, Austria

Institute for Formal Models and Verification, Johannes Kepler University, Linz,
Austria

Arthur Kordon (retired) is CEO of Kordon Consulting, Fort Lauderdale, FL,
USA

Michael F. Korns is chief technology officer at Analytic Research Foundation,
Henderson, NV, USA

Mark E. Kotanchek is chief technology officer of Evolved Analytics, a data
modeling consulting and systems company

Krzysztof Krawiec is with the Computational Intelligence Group, Institute of
Computing Science, Poznan University of Technology, Poznan, Poland

Gabriel Kronberger is at the Heuristic and Evolutionary Algorithms Laboratory,
University of Applied Sciences Upper Austria, Hagenberg, Austria

Nicholas Freitag McPhee is at the Division of Science and Mathematics, Univer-
sity of Minnesota, Morris, MN, USA

Vinícius Veloso de Melo is at the Department of Computer Science, Memorial
University of Newfoundland, St. John’s, NL, Canada, and Institute of Science and
Technology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil

Nimrod Milo is at the Department of Computer Science, Ben-Gurion University,
Beer-Sheva, Israel

Luis Muñoz is Tree-Lab, Posgrado en Ciencias de la Ingeniería, Instituto Tec-
nológico de Tijuana, Tijuana B.C., México

Ram Narasimhan is at GE Digital, San Ramon, CA, USA

Una-May O’Reilly is at ALFA, Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

Ravi Palla is at GE Global Research, Niskayuna, NY, USA

Contributors xix

Hormoz Shahrzad is principal scientist of Genetic Finance LLC, responsible
for the core technology of a massively distributed evolutionary system applied to
various domains, including stock trading. Hormoz has been active in the artificial
life and artificial intelligence field for more than 20 years

Moshe Sipper is a professor of computer science at Ben-Gurion University, Beer-
Sheva, Israel

Lee Spector is a professor of computer science at Hampshire College and an
adjunct professor of computer science at the University of Massachusetts, Amherst.
He received a B.A. in philosophy from Oberlin College in 1984 and a PhD in
computer science from the University of Maryland in 1992. He is the editor-in-chief
of the journal Genetic Programming and Evolvable Machines and a member of the
editorial board of Evolutionary Computation. He is also a member of the SIGEVO
executive committee, and he was named a fellow of the International Society for
Genetic and Evolutionary Computation

Sean Stijven is at the University of Antwerp, Department of Mathematics –
Computer Sciences, Antwerpen, Belgium

Jerry Swan is at the York Centre for Complex Systems Analysis, Department of
Computer Science, University of York, York, UK

William A. Tozier is at Ann Arbor, MI, USA

Leonardo Trujillo is Tree-Lab, Posgrado en Ciencias de la Ingeniería, Instituto
Tecnológico de Tijuana, Tijuana B.C., México

Philip Truscott is at Southwest Baptist University, Bolivar, MO, USA

Pavel Vaks is at the Department of Computer Science, Ben-Gurion University,
Beer-Sheva, Israel

Leonardo Vanneschi is at NOVA IMS, Universidade Nova de Lisboa, Lisbon,
Portugal

Ekaterina Vladislavleva is at Evolved Analytics, a data modeling consulting and
systems company

Lander Willem is at the University of Antwerp, Faculty of Medicine and Health
Sciences

Stephan M. Winkler is at the Heuristic and Evolutionary Algorithms Laboratory,
University of Applied Sciences Upper Austria, Hagenberg, Austria

W.P. Worzel is one of the original organizers of the first GP Theory and Practice
workshop along with Rick Riolo. He is an entrepreneur and a consultant, whose
fundamental interest is in understanding the evolutionary mechanisms of GP (and
nature) in order to create better GP systems and apply them to new problems

xx Contributors

Aisha Yousuf is at GE Global Research, Niskayuna, NY, USA

Michal Ziv-Ukelson is at the Department of Computer Science, Ben-Gurion
University, Beer-Sheva, Israel

Evolving Simple Symbolic Regression Models
by Multi-Objective Genetic Programming

Michael Kommenda, Gabriel Kronberger, Michael Affenzeller,
Stephan M. Winkler, and Bogdan Burlacu

Abstract In this chapter we examine how multi-objective genetic programming
can be used to perform symbolic regression and compare its performance to single-
objective genetic programming. Multi-objective optimization is implemented by
using a slightly adapted version of NSGA-II, where the optimization objectives
are the model’s prediction accuracy and its complexity. As the model complexity
is explicitly defined as an objective, the evolved symbolic regression models are
simpler and more parsimonious when compared to models generated by a single-
objective algorithm. Furthermore, we define a new complexity measure that includes
syntactical and semantic information about the model, while still being efficiently
computed, and demonstrate its performance on several benchmark problems. As a
result of the multi-objective approach the appropriate model length and the functions
included in the models are automatically determined without the necessity to specify
them a-priori.

Keywords Symbolic regression • Complexity measures • Multi-objective
optimization • Genetic programming • NSGA-II

1 Introduction

Symbolic regression is the task of finding mathematical formulas that model the
relationship between several independent and one dependent variable. A distin-
guishing feature of symbolic regression is that no assumption about the model
structure needs to be made a-priori, because the algorithm automatically determines

M. Kommenda (�) • M. Affenzeller • B. Burlacu
Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper
Austria, Softwarepark 11, 4232 Hagenberg, Austria

Institute for Formal Models and Verification, Johannes Kepler University,
Altenberger Straße 69, 4040 Linz, Austria
e-mail: michael.kommenda@fh-hagenberg.at

G. Kronberger • S.M. Winkler
Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper
Austria, Softwarepark 11, 4232 Hagenberg, Austria

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_1

1

mailto:michael.kommenda@fh-hagenberg.at

2 M. Kommenda et al.

the necessary model structure to describe the data implicitly. Another benefit due
to the model being described as a mathematical formula is that these formulas can
be easily interpreted, validated, and incorporated in other programs (Affenzeller
et al. 2014). However, the interpretability of symbolic regression models is often
hampered by overly complex and large formulas, bloating and introns, and the
excessive usage of variables. Furthermore, complex models tend to be overfit and
memorize the training data, which results in poor prediction performance on unseen
data. Hence, simpler models with similar training accuracy are generally preferred
to complex ones.

Symbolic regression problems are commonly solved by genetic programming,
where the formulas are generated during the optimization process and internally
represented as symbolic expression trees. An approach to avoid overly complex
formulas and to limit the growth of the symbolic expression trees is to specify
static tree size and depth limits (Koza 1992; Poli et al. 2008). Appropriate values
of these two parameters, so that the trees can grow large enough to model the data
accurately while avoiding unnecessary complexity, cannot be known a-priori and
must be adapted to the concrete problem. Other methods of controlling the tree size
include dynamic size limits (Silva and Costa 2009), parsimony pressure methods
(Luke and Panait 2002; Poli 2010) and controlling the distribution of tree sizes
through so-called Tarpeian bloat control (Dignum and Poli 2008).

In this work, we follow another approach for evolving simple symbolic regres-
sion models: we change the problem formulation from single-objective to multi-
objective (Smits and Kotanchek 2005), where the prediction errors and the model
complexities are simultaneously minimized. Hence, no complexity related parame-
ters values such as the maximum size of the evolved trees and the allowed function
symbols have to be predefined, because the multi-objective algorithm implicitly
optimizes those as well. Furthermore, no additional methods for bloat or size control
have to be incorporated in the algorithm to evolve simple and parsimonious models.
The result of such a multi-objective algorithm execution is not a single solution, but
a complete Pareto set of models of varying complexity and prediction accuracy. The
question remains how to measure the complexity of symbolic regression models
and what effects the selected complexity measure has on the overall algorithm
performance and to which extent the evolved models differ syntactically.

2 Complexity Measures for Symbolic Regression

Several measures for calculating the complexity of symbolic regression models have
been previously proposed. The simplest ones are based only on the characteristics
of the symbolic expression tree representing the regression model such as the tree
length (Eq. (1)) or the total visitation length (Eq. (2), also denoted as expressional
complexity by Smits and Kotanchek (2005)). The visitation length (Keijzer and
Foster 2007) has the advantage that it not only includes the size of the trees, but
also incorporates information about the skewness of the tree and favors balanced

Evolving Simple Symbolic Regression Models 3

trees. Another proposed complexity measure is the number of variable symbols
(either the number of unique variables in the expression, or the total number of
leaf nodes representing variables, Eq. (3)). A benefit of those complexity measures
is that they can be calculated efficiently within a single tree iteration with the use
of caching strategies for already calculated subtree lengths and thus the runtime
of the optimization algorithm is hardly affected. A drawback of those complexity
measures is that semantic information about the regression models is not included
and only the tree shape is taken into account.

This drawback is overcome by the order of nonlinearity metric defined by
Vladislavleva et al. (2009). The order of nonlinearity is recursively calculated by
aggregating the complexity of the subtrees (e.g., comp.a C b/ D max.comp.a/,
comp.b//) and includes the minimal degree of a Chebyshev polynomial approxi-
mating the response of individual subtrees sufficiently well. This gives an accurate
and intuitive definition of the complexity of a regression model, but Chebyshev
polynomial approximation can be computationally expensive, although simplifica-
tions to reduce the computation time have been proposed, and depends on the range
and number of the presented data points.

Another interesting complexity measure is the functional complexity (Vanneschi
et al. 2010), which is based on the curvature of the model’s response. It basically
expresses how many times the slope of the model’s response changes in each
dimension and can be calculated in polynomial time with the number of presented
data points. However, the functional complexity includes no information about the
tree length or shape and on its own does not prefer smaller models as the other
complexity measures do, which is desired when performing multi-objective genetic
programming for symbolic regression.

Based on the characteristics of the previously suggested complexity measures,
we have derived a new complexity measure that provides an intuitive definition,
is independent of the actual data points, and can be calculated efficiently. The
goal of this measure is to be used in multi-objective genetic programming to steer
the algorithm towards simple symbolic regression models and to strengthen its
ability to identify the necessary function symbols to build highly accurate models.
The complexity measure is recursively defined by assigning a complexity of 1

to constants and 2 to variable symbols and aggregating the complexity values of
those leaf nodes according to specified rules (Eq. (4)). Most of the aggregation
rules originate from the mathematical semantics of the encountered symbol. Due
to its recursive definition the complexity measure can be calculated with a single
iteration of the symbolic expression tree without evaluating the model itself.
Another reason for defining the complexity measure in that way, has been that
while the complexity of sin.x/ D 22 D 4 is still rather small, the complexity
increases exponentially with the size of the subtree beneath the symbol. Therefore,
the total complexity of a symbolic regression model is heavily dependent on the
level in which more complicated function symbols occur and when performing
multi-objective optimization these are pushed towards the leaf nodes of a tree.

An alternative definition could be to reduce the complexity values of constants
and variables to 0 and 1 respectively, but this would not penalize large models

4 M. Kommenda et al.

containing lots of constants. As a result the constant symbol could gain prevalence
in the trees of the population and the algorithm would primarily build constant
expressions of varying size. The same reasoning applies to the C1 term (Eq. (4)
line 4) in the case of multiplication and division. 1 is the neutral element to
multiplication and therefore the algorithm would build deeply nested tree containing
lots of multiplications/divisions with constants and the learning abilities of the
algorithm are worsened.

Definitions of complexity measures for symbolic regression:

Length.T/ D
X

s2sT

1 (1)

VisitationLength.T/ D
X

s2sT

Length.s/ (2)

Variables.T/ D
X

s2sT

(
1 if sym.s/ D variable

0 otherwise
(3)

s 2s T defines the subtree relation and returns all subtrees s of tree T

sym.s/ returns the symbol of the root node of tree s

Complexity.n/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

1 if sym.n/ D constant

2 if sym.n/ D variable
P

c2cn Complexity.c/ if sym.n/ 2 .C; �/
Q

c2cn Complexity.c/ C 1 if sym.n/ 2 .�; =/

Complexity.n1/2 if sym.n/ D square

Complexity.n1/3 if sym.n/ D squareroot

2Complexity.n1/ if sym.n/ 2 .sin; cos; tan/

2Complexity.n1/ if sym.n/ 2 .exp; log/

(4)

c 2c n defines the child relation and returns all direct child nodes c of node n

indexing is used to refer to the i-th child of a node, i.e. n1 refers to the first child node of node n

sym.n/ returns the symbol of node n

3 NSGA-II for Symbolic Regression

Multi-objective symbolic regression has previously been studied by Smits and
Kotanchek (2005) and Vladislavleva et al. (2009), where a novel algorithm called
ParetoGP has been used. ParetoGP optimizes the accuracy of the models (in terms of

Evolving Simple Symbolic Regression Models 5

the Pearson’s correlation coefficient R2), but in addition to the population a separate
archive containing the Pareto front of the best identified models (complexity vs.
accuracy) is maintained. New individuals are created by breeding members of
the Pareto front with the most accurate models of the population and after each
generation the Pareto front is updated. Instead of developing a new algorithm for
multi-objective genetic programming, we have used a well-studied multi-objective
optimization algorithm that has been adapted to the specific needs when performing
symbolic regression.

The nondominated sorting genetic algorithm (NSGA) was proposed by Srinivas
and Deb (1994) for solving multi-objective optimization problems. However,
its runtime complexity for nondominated sorting is rather high, no elitism is
included in the original NSGA formulation and additionally, a sharing parameter
for maintaining diversity has to be specified. These points of criticism have been
addressed and an improved, faster version called NSGA-II (Deb et al. 2002) has
been presented. The major extensions to standard genetic algorithms of NSGA-II
are the use of a nondomination rank and crowding distance for guiding the selection
towards a uniformly spread Pareto-optimal front. Furthermore, elitism is ensured by
combining the parent population and the generated offspring and selecting the best
individuals of this set until the new population is filled. The published version of the
NSGA-II has been reimplemented in C# based on the published source code1 and
has been integrated in HeuristicLab (Wagner 2009).

3.1 Domination of Solutions with Equal Qualities

To use NSGA-II efficiently for solving multi-objective symbolic regression it has to
be adapted to the specifics of multi-objective symbolic regression problems. In the
original version of the algorithm solutions with exactly equal objective values are
treated as nondominated. This poses a problem when solving symbolic regression
problems, because a single-node individual (either a constant value or a variable)
will always have a constant quality and complexity value. Furthermore, individuals
with only one node are the simplest individuals that can be built and are always
included in the Pareto front. Within a few generations of the algorithm, those one-
node individuals account for a huge portion of the Pareto front and the algorithm
is not able to evolve larger or more complex individuals with a better fit to the
presented data. Hence, the domination criterion of NSGA-II has been modified
in order to treat solutions with equal objective values as dominated by the first
individual with those objective values. This has the effect that only the first one-node
solution is included in the Pareto front and results in a better algorithm performance.

The effects of the algorithm adaptations with respect to the domination criterion
are displayed in Fig. 1, where the minimum, average and maximum symbolic

1http://www.iitk.ac.in/kangal/codes.shtml

http://www.iitk.ac.in/kangal/codes.shtml

6 M. Kommenda et al.

a b

Fig. 1 Comparison of the development of symbolic expression tree length over generations for
standard and adapted NSGA-II. The population quickly converges to extremely small trees in the
case of the standard implementation of NSGA-II which renders this variant ineffective for symbolic
regression. (a) Standard NSGA-II. (b) Adapted NSGA-II

expression tree length is visualized over generations of the algorithm. On the left
side, the behavior of the standard NSGA-II is displayed and it can be seen that
the whole population collapses to a few different solutions within the first ten
generations. On the right side, the behavior of the adapted NSGA-II is displayed
and although the trees get smaller, more diversity is preserved and the algorithm is
able to learn from the presented data.

3.2 Discrete Objective Functions

Another aspect when performing symbolic regression is that one of the objective
functions describes the fit of the model’s output to the presented data, which is
in general more important than the simplicity of the models. Frequently, the mean
squared error (or a variation thereof) or another correlation criterion such as the
Pearson’s R2 correlation are used as an objective function. An issue determined by
the floating-point representation of fitness values can arise when many individuals
of similar quality (up to many decimal places) and varying complexity artificially
enlarge the Pareto front.

A possibility to avoid this issue is to discretize the objective function by rounding
the objective value to a fixed number of decimal places. The objective function we
used to describe the model accuracy is the Pearson’s R2 correlation of the observed
y and the predicted values y0. We round the Pearson’s R2 to three decimal places

Evolving Simple Symbolic Regression Models 7

Standard Discrete
0

20

40

60

80

N
um

be
r

of
 M

od
el

s
in

 th
e

P
ar

et
o

fr
on

t

Fig. 2 Number of models in the final Pareto front of 50 repetitions for problem F1 of NSGA-II
with standard and discretized objective functions

resulting in more models having the same prediction accuracy and therefore, a
higher selection pressure is applied to build simple models.

Furthermore, the generated Pareto fronts contain fewer models as minor improve-
ments in prediction accuracy are neglected. The differences between a discrete
objective function and the standard definition of the Pearson’s R2 are shown in
Fig. 2, where the number of models in the final Pareto front of 50 algorithm
repetitions on problem F1 (see Sect. 4.1) are displayed as box plots. By using
discrete objective values the size of the Pareto front is almost halved compared to
using the exact numeric value.

Illustrative examples of two Pareto fronts extracted from the performed algorithm
repetitions are displayed in Fig. 3. The Pareto fronts are shown as the models’
normalized mean squared error NMSE (Eq. (5)) and their tree lengths. The NMSE
has been used for describing the results, while the Pearson’s R2 is used as an
objective during optimization. The reason therefore is that the NMSE is not invariant
to translation and scaling (contrary to the R2) and allows an unbiased comparison
on different data partitions such as training and test.

NMSE.y; y0/ D 1=n
P

.yi � y0i/2

var.y/
(5)

While the Pareto front generated with a discretized objective function (Fig. 3)
contains only 11 models, the standard one includes 33 models. The most accurate
prediction models have a length of 24 or 91 tree nodes respectively. Another aspect
is that the accuracy in the Pareto front without discretized objective values for
models larger than 40 nodes increases only by 3:5 10�5 and can be regarded as
irrelevant.

8 M. Kommenda et al.

Fig. 3 Exemplary Pareto fronts generate either by an NSGA-II using the standard or the
discretized objective function. The Pareto front generated by the discrete objective contains fewer
and simpler models that describe the data equally well

4 Experiments

The effectiveness of the new complexity measure is demonstrated by solving five
benchmark problems (Sect. 4.1) and compared to single-objective optimization
using standard genetic programming as well as using the NSGA-II with other
complexity measures. All algorithm variants have been identically configured with
the exception that three different maximum tree length values for standard genetic
programming and four different objective functions for the NSGA-II (including
all previously discussed adaptations) have been tested. Parameters such as the
population size, the termination criterion and the allowed terminal or function
symbols are listed in Table 1.

The initial population has been created with the probabilistic tree creator
(PTC2, Luke 2000), which produces uniformly distributed tree lengths between
the specified minimum and maximum length. The individuals for reproduction are
selected using a tournament with a group size of four on the prediction accuracy
in the case of standard genetic programming, while NSGA-II uses tournament
selection with a group size of two on the rank and crowding distance of individuals.
A standard subtree swapping crossover, which respects the maximum tree length,
has been used as crossover operator and single point, remove branch and replace
branch mutation have been applied after crossover with a probability of 25 %. After
the reproduction operations the whole previous population gets replaced by the new
individuals with the exception of one elite individual when performing standard
genetic programming. NSGA-II merges the new and already existing individuals,
performs fast non-dominated sorting and keeps the best 1000 individuals which
form the new population. The sketched procedure of selection, reproduction and

Evolving Simple Symbolic Regression Models 9

Table 1 Algorithm settings for the performed experiments (multiple values indicate
alternatives)

Standard GP NSGA-II

Population size 1000 1000

Maximum generations 500 500

Maximum evaluations 500,000 500,000

Objective function(s) max R2 max R2, min length

R2, min visitation length

R2, min variables count

R2, min complexity

Maximum tree length 20 100

50

100

Terminal symbols constant, weight � variable

Function symbols C;�;�; =; sin; cos; tan; exp; log; x2;
p

x

replacement is repeated until a specified number of generations are reached. We
choose 500 generations as termination which in combination with a population
size of 1000 results in 500;000 model evaluations. For every algorithm variant and
every problem 50 independent algorithm executions have been conducted to take
the stochasticity of the algorithms into account.

4.1 Problems

We have used a wide variety of benchmark problems to test the suitability and the
effects of the presented approach. The first experiments were conducted on newly
defined benchmark problems (Table 2, Problem F1 � F5) that have been designed
to include polynomial terms and more complex ones containing trigonometric or
exponential functions. All input variables xi were sampled uniformly from UŒ�5; 5�.
Due to the fact that these problems do not contain any noise, a model representing
the data generating formula can be found and the effects of multi-objective symbolic
regression and the new complexity measures can be studied.

In addition, more complex, well known problems, which have been recom-
mended as benchmark symbolic regression problems (White et al. 2013) have been
used for testing. The first two problems, Breiman et al. (1984) and Friedman (1991),
contain superficial features and have noise added to the dependent variable. The
remaining three problems consist of real-world data available at the HeuristicLab
website.2 Hence, these problems cannot be solved exactly and simulate a more
practically relevant setting.

2http://dev.heuristiclab.com/AdditionalMaterial#Real-worlddatasets

http://dev.heuristiclab.com/AdditionalMaterial#Real-worlddatasets

10 M. Kommenda et al.

Table 2 Description of artificial and real-world problems and the training and test ranges

Name Function
Training
points

Test
points

F1 F1.x1; : : :; x5/ D x1 C x2 C .x3 � 2/2 C x4x5 100 400

F2 F2.x1; : : :; x5/ D 10 sin.x1/C x2 C x3x4 C x4x5 100 400

F3 F3.x1; : : :; x5/ D exp.0:7x1/C .0:5x2 C 2/2 C x3
2 C x4x5 100 400

F4 F4.x1; : : :; x4/ D log..x1 C x2/2/ 100 400

F5 F5.x1; : : :; x4/ D .x1 C x2/.x1 C x2/.x3 C x4/ 100 400

Breiman F6.x1; : : :; x10/ D
(

3C 3x2 C 2x3 C x4 if x1 D 1

�3C 3x5 C 2x6 C x7 otherwise
5000 5000

Friedman F7.x1; : : :; x10/ D 0:1e4x1 C 4=Œ1C e�20x2C10�C 3x3 C 2x4 C x5 C � 5000 5000

Housing F8.x1; : : :; x13/ D ‹ 337 169

Chemical F9.x1; : : :; x57/ D ‹ 711 355

Tower F10.x1; : : :; x25/ D ‹ 3136 1863

F1–F5 are newly defined problems to demonstrate the effects of different complexity measures,
whereas the lower problems have previously been published and used as benchmark problems

4.2 Results

We performed 50 repetitions of each algorithm variant, single-objective with vary-
ing maximum tree length and multi-objective with varying complexity measures,
on each defined benchmark problem. The results show that multi-objective genetic
programming does not worsen the prediction accuracies, while generating simpler
models.

Table 3 shows the aggregated information in terms of the median and interquar-
tile range of the prediction accuracy on the training and test partition of the
best models obtained in an algorithm run. In the case of multi-objective genetic
programming using the NSGA-II the best model is automatically the most complex
one (the last model in the Pareto front). Furthermore, the length of the best models is
shown to give an indication of their complexity and next to the problem the minimal
expression tree length to solve the problem optimally is given.

When comparing the training errors almost all algorithm variants perform
equally well, with the exception of standard GP with a length of 100 and the NSGA-
II with variable complexity. Among the standard GP algorithms the one with the
smallest length constraint performs best, both on the training and test partition. The
reason for this is that especially when complex function symbols are allowed to
be included in the models, the limitation of the search space helps the algorithm
to generate more accurate prediction models, as long as the length constraint is
sufficiently high to model the data.

The differences among the NSGA-II algorithms with the new complexity
measure, the tree size and the visitation length can be neglected both in terms of
the median as well as the interquartile range on the last problems. Only on the first
problem the new complexity measure performs better, especially when comparing
the interquartile ranges.

Evolving Simple Symbolic Regression Models 11

Table 3 Performance of the best models of each algorithm variant in terms of the
NMSE on the training and test partition and the model length as well as the minimal
model length to solve the problem optimally (bold font)

Training Test Length

Median IQR Median IQR Median IQR

Problem F1 18:00
GP Length 20 0.001 0.027 0.002 0.031 23:50 1:00

GP Length 50 0.002 0.207 0.002 0.323 51:00 6:00

GP Length 100 0.023 0.209 0.092 0.533 100:50 11:50

NSGA-II Complexity 0.000 0.001 0.001 0.001 27:00 18:50

NSGA-II Visitation Length 0.029 0.246 0.034 0.336 27:00 38:00

NSGA-II Tree Size 0.043 0.199 0.050 0.357 33:00 45:25

NSGA-II Variables 0.165 0.171 0.418 0.504 102:00 8:25

Problem F2 18:00
GP Length 20 0.000 0.000 0.000 0.000 23:00 1:00

GP Length 50 0.000 0.007 0.000 0.006 52:00 2:00

GP Length 100 0.039 0.418 0.053 0.951 100:00 6:50

NSGA-II Complexity 0.001 0.093 0.001 0.114 32:50 28:25

NSGA-II Visitation Length 0.001 0.001 0.001 0.001 29:50 14:75

NSGA-II Tree Size 0.001 0.001 0.001 0.001 24:00 10:75

NSGA-II Variables 0.001 0.004 0.001 0.006 70:00 45:50

Problem F3 20:00
GP Length 20 0.005 0.008 0.008 0.016 24:00 1:00

GP Length 50 0.002 0.006 0.006 0.015 52:00 7:75

GP Length 100 0.003 0.101 0.009 0.483 101:50 8:00

NSGA-II Complexity 0.004 0.011 0.006 0.021 31:50 24:50

NSGA-II Visitation Length 0.005 0.019 0.008 0.047 31:00 18:25

NSGA-II Tree Size 0.003 0.011 0.006 0.025 30:50 18:75

NSGA-II Variables 0.051 0.141 0.188 0.557 99:00 27:00

Problem F4 11:00
GP Length 20 0.000 0.000 0.000 0.052 23:00 2:00

GP Length 50 0.000 0.210 0.042 0.452 51:00 7:00

GP Length 100 0.076 0.354 0.225 0.632 99:00 10:00

NSGA-II Complexity 0.000 0.000 0.010 0.040 11:00 3:00

NSGA-II Visitation Length 0.000 0.000 0.009 0.011 11:00 0:00

NSGA-II Tree Size 0.000 0.000 0.009 0.013 11:00 0:00

NSGA-II Variables 0.000 0.000 0.014 0.014 22:00 19:50

Problem F5 12:00
GP Length 20 0.025 0.033 0.041 0.045 23:50 2:00

GP Length 50 0.029 0.032 0.046 0.279 52:00 3:00

GP Length 100 0.055 0.112 0.846 8.233 98:00 10:00

NSGA-II Complexity 0.021 0.033 0.042 0.044 22:00 15:25

NSGA-II Visitation Length 0.025 0.033 0.041 0.045 21:00 8:00

NSGA-II Tree Size 0.029 0.033 0.041 0.044 18:50 8:00

NSGA-II Variables 0.034 0.071 0.154 1.065 80:00 60:25

12 M. Kommenda et al.

The length of the evolved symbolic regression models for all single-objective
genetic programming configurations reaches or slightly exceeds the predefined
limit. The length constraint can be exceeded due to the additive and multiplicative
linear scaling terms which are added to the models to account for the scaling
invariance of the Pearson’s R2. All multi-objective algorithms perform similarly
with respect to the model length with the exception of the variable complexity that
has almost no selection pressure towards smaller models. Noteworthy is that multi-
objective genetic programming finds exactly the data generating formula for the
fourth problem F4 (small predictions errors on the test partition result from slightly
inaccurate numerical constants).

Next to the accuracy and length of the final models, we are interested in the
functions used in the obtained models. Therefore, we analyzed how often and
where trigonometric, exponential and power symbols occur in those models. This
is calculated by summing over the size of the affected subtrees whose symbols fall
into defined categories (trigonometric: sin; cos; tan—exponential: exp; log—power:
x2;

p
x). If a symbol occurs multiple times all occurrences are counted and the

affected subtree size can exceed the model length.
The results of this analysis are displayed in Table 4. The interpretation is eased

by comparing the values with the affected subtree size of the shortest model solving
the problem exactly (shown next to the problem name). The calculated subtree size
can fall below the optimal value for power symbols, because x2 can be reformulated
as x � x, yielding a slightly larger model. This happens for example on problem F1

and F3.
The standard genetic programming algorithms with a length constraint of 50 and

100 include all available symbols rather often. Standard genetic programming with
the smallest length constraint 20 works quite well due to the strict limitation of the
search space. NSGA-II with the newly defined complexity measure overall achieves
the best results in terms of the affected subtree size of the investigated symbols,
which indicates that the combination of syntactical information and the semantics of
the symbols, improves the algorithm’s ability to determine the necessary complexity
to evolve simple yet accurate models. Comparing our complexity measure with the
tree size and the visitation length, the last two algorithms generate models with
a slightly more complex structure as more nodes are affected by the investigated
functions. However, the optimization towards more parsimonious models also
helps the algorithm to produce models using fewer trigonometric, exponential or
power functions compared to single-objective algorithms using the same length
constraints.

4.2.1 Exemplary Models

The advantages of multi-objective symbolic regression are illustrated by the best
models (Eqs. (6)–(9)) generated for problem F2. The best training model out of
the 50 repetitions for every algorithm variant has been extracted and after constant
folding and numeric optimization all models obtained a test NMSE of at most 10�10.

Evolving Simple Symbolic Regression Models 13

Table 4 Analysis of the used functions in the best models in terms of the subtree
size affected by the symbol grouped into three categories (trigonometric: sin; cos; tan—
exponential: exp; log power: x2;

p
x)

Trigonometric Exponential Power

Median IQR Median IQR Median IQR

Problem F1 0:00 0:00 4:00
GP Length 20 0:00 2:00 0:00 0:00 0:00 4:00

GP Length 50 19:00 31:00 6:00 36:00 8:00 23:00

GP Length 100 56:50 102:00 23:50 93:50 30:00 75:25

NSGA-II Complexity 0:00 0:00 0:00 0:00 2:00 4:00

NSGA-II Visitation Length 2:00 18:75 0:00 4:00 2:00 4:00

NSGA-II Tree Size 0:00 12:00 0:00 8:75 4:00 12:75

NSGA-II Variables 264:00 295:00 144:50 211:50 80:00 126:75

Problem F2 2:00 0:00 0:00
GP Length 20 4:00 2:00 0:00 0:00 0:00 0:00

GP Length 50 32:50 40:00 0:00 14:00 0:00 5:75

GP Length 100 150:00 223:75 45:50 129:00 36:50 75:75

NSGA-II Complexity 2:00 9:50 0:00 0:00 0:00 0:00

NSGA-II Visitation Length 6:00 8:75 0:00 0:00 0:00 0:00

NSGA-II Tree Size 6:00 8:00 0:00 0:00 0:00 0:00

NSGA-II Variables 64:50 140:25 22:00 59:25 23:00 67:75

Problem F3 0:00 2:00 6:00
GP Length 20 0:00 0:00 4:00 4:00 4:00 2:00

GP Length 50 11:00 21:75 5:50 9:75 9:00 8:75

GP Length 100 84:50 127:25 28:00 52:50 34:00 56:00

NSGA-II Complexity 0:00 0:00 2:00 5:00 5:00 6:25

NSGA-II Visitation Length 0:00 0:00 4:00 4:00 6:00 6:00

NSGA-II Tree Size 0:00 0:00 4:00 4:00 6:00 5:50

NSGA-II Variables 77:00 115:00 28:00 95:00 74:00 127:00

Problem F4 0:00 5:00 4:00
GP Length 20 0:00 0:00 17:00 2:00 10:00 17:00

GP Length 50 25:00 32:00 36:00 33:00 21:00 34:50

GP Length 100 144:00 198:00 80:00 120:00 69:00 155:00

NSGA-II Complexity 0:00 0:00 5:00 0:00 4:00 0:00

NSGA-II Visitation Length 0:00 0:00 5:00 0:00 4:00 0:00

NSGA-II Tree Size 0:00 0:00 5:00 0:00 4:00 0:00

NSGA-II Variables 7:00 29:75 16:50 32:00 14:50 25:75

Problem F5 0:00 0:00 4:00
GP Length 20 0:00 0:00 0:00 4:00 6:00 8:00

GP Length 50 18:50 32:50 0:00 17:75 12:50 21:00

GP Length 100 72:00 170:00 65:00 83:25 33:50 49:50

NSGA-II Complexity 0:00 0:00 0:00 4:00 0:00 0:00

NSGA-II Visitation Length 0:00 0:00 0:00 0:00 4:00 4:00

NSGA-II Tree Size 0:00 0:00 0:00 4:00 4:00 4:00

NSGA-II Variables 77:50 162:00 62:00 113:25 45:00 82:25

For each problem the minimal subtree size is given for the shortest model solving the
problem exactly

14 M. Kommenda et al.

Table 5 Size statistics of the best models for Problem-2 per algorithm variant

Original model Simplified model

Problem-2 Length Depth Length Depth Equation

GP Length 20 18 7 10 4 Eq. (6)

GP Length 50 39 11 20 6 Eq. (8)

GP Length 100 64 21 54 15 Eq. (9)

NSGA-II Complexity 16 7 10 4 Eq. (6)

NSGA-II Visitation Length 14 6 10 4 Eq. (7)

NSGA-II Tree Size 16 7 10 4 Eq. (6)

NSGA-II Variables 25 9 10 4 Eq. (6)

The length and depth of the symbolic expression trees are displayed for their
original and simplified version stated in Eqs. (6)–(9)

Therefore, all extracted models explain the relation between the input and output
data accurately and there is no difference between the models in terms of prediction
quality. GP with a length limit of 20 and NSGA-II with the complexity, tree size
and variable measure found exactly the data generating formula f1 (Eq. (6)), whereas
NSGA-II with the visitation length found an alternative formulation f2 (Eq. (7)). On
the contrary, GP with higher length limits of 50 (f3, Eq. (8)) and 100 (f4, Eq. (9))
respectively, found models that include additional terms which cannot be removed
by constant folding although their impact on the evaluation is minimal.

f1.x/ D x2 C x3x4 C x4x5 C sin.x1/ (6)

f2.x/ D x2 C x4.x3 C x5/ C sin.x1/ (7)

f3.x/ D x2 C x3x4 C x4x5 C sin.x1/Œ5:11 10�10x5=x1 C 1� (8)

f4.x/ D x2 C x3x4 C x4x5 C sin.x1/ C 8:7 10�7 cos.cos.sin.0:99x1/ C esin.x1///

(9)

C 8:85 10�7 cos.sin.0:79 sin.x1/ C sin.ecos.1:61Cesin.x1///

cos.cos.sin2.cos.cos.tan.sin.0:99x1// C cos.sin.0:99x1/////////

The size statistics of the extracted models in their original and simplified version
are displayed in Table 5. All models get significantly smaller during the constant
folding and simplification operations performed. The models created by GP with a
length limit of 20 and NSGA-II found the data generating formula directly (except
NSGA-II with the variables complexity measure) and the size reduction during
simplification is caused by the transformation of binary trees to n-ary trees. The best
model created by NSGA-II variables contained in its original form one additional
subtree expressing a constant numerical value that is removed by constant folding.
The two GP variants with larger length limits failed to find the data generating
formula due to the inclusion of complex subtrees with almost no evaluation effect.

Evolving Simple Symbolic Regression Models 15

4.2.2 Noisy Data

The same algorithm settings as in the previous experiments have been used for
evaluating the performance of the algorithm variants on the five noisy problems.
Again 50 repetitions have been performed and the most accurate models with the
best performance on the training partition, have been extracted and analyzed. The
aggregated information regarding training and test accuracy as well as the model
lengths are shown in Table 6.

Contrary to the previously tested artificial problems, GP with a length limit of
20 performs worse compared to the other single-objective algorithms. The reason
might be that the smaller length limitation, which gave an advantage on the artificial
problems, restricts the search space too much to be able to evolve accurate prediction
models.

Due to the noise on the data the training performance can differ significantly
the test performance, which is especially apparent on the Housing and Chemical
problem. The Breiman, Friedman and Tower problems contain enough data that
the effect of the noise is reduced and the difference between the training and
test evaluation is minimal. With the exception of the Friedman problem multi-
objective symbolic regression with the new complexity measure performs best on all
problems. Especially on the Housing and Chemical problems the difference between
training and test accuracy is smaller, which might by the preference of less complex
functions during model building.

The single-objective algorithms always hit the predefined length limit as it was
the case with the results obtained on the artificial problems. The selection pressure
towards small models is highest when using the visitation length or tree size as
complexity measure for NSGA-II. Hence, these two algorithm variants produced
the smallest models, whereas NSGA-II with variable count exhibits no parsimony
pressure at all. NSGA-II with the new complexity measure produces models of
similar or slightly larger size compared to NSGA-II executions which the size for
complexity calculation.

The analysis of the functions in the evolved models, displayed in Table 7, shows
a similar picture as the results on the artificial problems. The simplest models, using
the fewest trigonometric, exponential and power symbols, have been generated
by NSGA-II complexity and GP Length 20 with the difference that the models
generated by NSGA-II are more accurate. The largest values in this analysis that
indicate more complex models, have been obtained by the other single-objective
GP variants and NSGA-II Variables.

5 Conclusion

In this chapter we have investigated the effects of using different complexity
measures for multi-objective genetic programming to solve symbolic regression
problems and compared the results to standard genetic programming. Multi-

16 M. Kommenda et al.

Table 6 Performance of the best models of each algorithm variant in terms of the
NMSE on the training and test partition and the model length

Training Test Length

Median IQR Median IQR Median IQR

Breiman
GP Length 20 0.263 0.154 0.262 0.158 24:00 1:00

GP Length 50 0.185 0.219 0.185 0.211 53:00 2:75

GP Length 100 0.560 0.430 0.548 0.452 99:50 7:00

NSGA-II Complexity 0.108 0.009 0.109 0.009 70:00 31:25

NSGA-II Visitation Length 0.109 0.017 0.111 0.016 63:00 35:00

NSGA-II Tree Size 0.110 0.013 0.106 0.014 67:00 21:00

NSGA-II Variables 0.134 0.037 0.138 0.038 96:00 20:50

Friedman
GP Length 20 0.193 0.021 0.190 0.022 24:00 1:00

GP Length 50 0.140 0.006 0.142 0.005 52:00 2:00

GP Length 100 0.141 0.006 0.147 0.007 100:00 7:75

NSGA-II Complexity 0.196 0.042 0.195 0.042 36:50 30:50

NSGA-II Visitation Length 0.160 0.024 0.158 0.024 34:00 20:00

NSGA-II Tree Size 0.154 0.048 0.157 0.051 32:50 21:25

NSGA-II Variables 0.139 0.003 0.141 0.003 86:00 28:00

Housing
GP Length 20 0.192 0.014 0.198 0.017 24:00 1:00

GP Length 50 0.153 0.017 0.211 0.055 53:00 3:00

GP Length 100 0.132 0.022 0.202 0.090 102:00 6:75

NSGA-II Complexity 0.146 0.037 0.183 0.043 82:50 45:75

NSGA-II Visitation Length 0.157 0.064 0.198 0.033 48:50 52:25

NSGA-II Tree Size 0.152 0.060 0.192 0.036 60:50 42:00

NSGA-II Variables 0.139 0.028 0.197 0.064 102:00 8:00

Chemical
GP Length 20 0.272 0.020 0.432 0.112 24:00 1:00

GP Length 50 0.214 0.025 0.329 0.197 54:00 2:00

GP Length 100 0.195 0.025 0.343 0.281 102:00 7:00

NSGA-II Complexity 0.209 0.025 0.270 0.094 82:00 39:75

NSGA-II Visitation Length 0.221 0.029 0.360 0.179 59:50 34:00

NSGA-II Tree Size 0.237 0.035 0.373 0.188 44:00 34:25

NSGA-II Variables 0.211 0.030 0.312 0.207 102:00 4:00

Tower
GP Length 20 0.158 0.029 0.159 0.033 24:00 1:00

GP Length 50 0.138 0.026 0.141 0.034 53:00 3:00

GP Length 100 0.124 0.021 0.131 0.028 101:50 7:75

NSGA-II Complexity 0.127 0.017 0.128 0.022 58:00 42:75

NSGA-II Visitation Length 0.132 0.015 0.131 0.019 41:50 52:25

NSGA-II Tree Size 0.141 0.019 0.138 0.020 32:00 42:00

NSGA-II Variables 0.134 0.039 0.141 0.041 100:50 8:00

Evolving Simple Symbolic Regression Models 17

Table 7 Analysis of the functions in the best models in terms of the subtree size
affected by the symbol grouped into three categories (trigonometric: sin; cos; tan—
exponential: exp; log—power: x2;

p
x)

Trigonometric Exponential Power

Median IQR Median IQR Median IQR

Breiman
GP Length 20 0:00 2:00 2:00 6:00 0:00 2:75

GP Length 50 21:00 39:25 15:00 23:50 9:50 35:75

GP Length 100 123:00 139:50 87:50 70:50 38:00 82:75

NSGA-II Complexity 0:00 0:00 0:00 0:00 0:00 0:00

NSGA-II Visitation Length 0:00 5:50 10:00 10:00 0:00 0:00

NSGA-II Tree Size 0:00 1:50 8:00 11:00 0:00 4:75

NSGA-II Variables 151:50 182:00 96:50 130:50 79:50 113:00

Friedman
GP Length 20 4:50 5:50 0:00 2:75 3:00 7:00

GP Length 50 44:00 41:25 8:50 20:50 9:00 30:00

GP Length 100 127:00 106:25 42:50 69:00 38:50 71:25

NSGA-II Complexity 2:00 8:25 0:00 0:00 2:50 7:75

NSGA-II Visitation Length 12:00 29:50 0:00 2:00 2:50 4:00

NSGA-II Tree Size 10:50 19:75 0:00 4:00 2:00 6:75

NSGA-II Variables 214:50 203:75 51:50 81:50 79:00 68:50

Housing
GP Length 20 4:00 4:75 4:00 15:75 0:00 6:00

GP Length 50 19:50 20:50 31:50 53:75 26:00 33:75

GP Length 100 127:00 94:50 111:50 139:75 99:00 148:50

NSGA-II Complexity 2:00 17:50 6:00 12:75 0:00 2:00

NSGA-II Visitation Length 14:50 48:25 16:00 35:75 6:50 14:00

NSGA-II Tree Size 16:50 33:50 29:50 56:00 7:00 36:50

NSGA-II Variables 203:00 179:00 120:00 126:75 109:50 145:00

Chemical
GP Length 20 0:00 2:00 0:00 0:00 0:00 6:00

GP Length 50 12:00 23:25 1:00 8:75 8:00 21:25

GP Length 100 58:00 91:50 24:00 65:75 57:00 68:75

NSGA-II Complexity 0:00 1:50 0:00 0:00 0:00 4:00

NSGA-II Visitation Length 0:00 22:50 0:00 0:00 5:00 51:75

NSGA-II Tree Size 0:00 1:50 0:00 0:00 12:50 36:75

NSGA-II Variables 252:50 256:25 84:00 101:75 149:50 140:00

Tower
GP Length 20 0:00 3:50 0:00 0:00 0:00 2:00

GP Length 50 14:00 27:00 7:50 20:00 7:50 14:00

GP Length 100 61:50 112:75 42:00 78:25 38:50 92:50

NSGA-II Complexity 0:00 0:00 0:00 0:00 0:00 0:00

NSGA-II Visitation Length 6:00 19:00 2:00 12:50 0:00 4:00

NSGA-II Tree Size 6:00 27:75 3:00 24:50 0:00 7:75

NSGA-II Variables 513:00 442:25 122:50 146:00 109:50 156:75

18 M. Kommenda et al.

objective genetic programming has been performed by utilizing NSGA-II with
slight adaptations to make it suitable for symbolic regression. Furthermore, we
defined a new complexity measure that combines syntactical information about the
evolved trees and the semantics of the occurring symbols.

Among the standard genetic programming algorithms the one with the strictest
size constraints worked best on the artificial problems, both in terms of the accuracy
and simplicity of the models. However, this is only the case if the length constraint
is large enough to generate models that could explain the data reasonably well. This
picture changes when comparing the results obtained on noisy problems, where
standard GP with larger size constraints works better. This indicates that the optimal
length constraint is problem dependent and cannot be known a-priori, thus multiple
values have to be tested during modeling.

Switching from single-objective to multi-objective genetic programming
removes the necessity for specifying a length constraint, because the complexity is
implicitly optimized during the algorithm execution. Additionally, we demonstrated
that by including semantics of the function symbols contained in the models, the
algorithm’s ability to determine the necessary complexity to model the data is
strengthened without worsening the accuracy of the evolved models.

Acknowledgements The work described in this paper was done within the COMET Project
Heuristic Optimization in Production and Logistics (HOPL), #843532 funded by the Austrian
Research Promotion Agency (FFG).

References

Affenzeller M, Winkler S, Kronberger G, Kommenda M, Burlacu B, Wagner S (2014) Gain-
ing deeper insights in symbolic regression. In: Riolo R, Moore JH, Kotanchek M (eds)
Genetic programming theory and practice XI. Genetic and evolutionary computation. Springer,
New York

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC
Press, Boca Raton

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans Evolut Comput 6(2):182–197

Dignum S, Poli R (2008) Operator equalisation and bloat free gp. In: Genetic programming.
Springer, Berlin, pp 110–121

Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19(1):1–67. https://
projecteuclid.org/euclid.aos/1176347963

Keijzer M, Foster J (2007) Crossover bias in genetic programming. In: Genetic programming.
Springer, Berlin, pp 33–44

Koza JR (1992) Genetic programming: on the programming of computers by means of natural
selection. MIT Press, Cambridge, MA

Luke S (2000) Two fast tree-creation algorithms for genetic programming. IEEE Trans Evolut
Comput 4(3):274–283

https://projecteuclid.org/euclid.aos/1176347963
https://projecteuclid.org/euclid.aos/1176347963

Evolving Simple Symbolic Regression Models 19

Luke S, Panait L (2002) Lexicographic Parsimony Pressure. In: Langdon WB, Cantú-Paz E,
Mathias K, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull
L, Potter MA, Schultz AC, Miller JF, Burke E, Jonoska N (eds) Proceedings of the genetic
and evolutionary computation conference (GECCO’2002). Morgan Kaufmann Publishers, San
Francisco, CA, pp 829–836

Poli R (2010) Covariant Tarpeian method for bloat control in genetic programming. Genet Program
Theory Pract VIII 8:71–90

Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. Published via
http://lulu.com and freely available at http://www.gp-field-guide.org.uk

Silva S, Costa E (2009) Dynamic limits for bloat control in genetic programming and a review of
past and current bloat theories. Genet Program Evolvable Mach 10(2):141–179

Smits GF, Kotanchek M (2005) Pareto-front exploitation in symbolic regression. In: Genetic
programming theory and practice II. Springer, Berlin, pp 283–299

Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic
algorithms. Evol Comput 2(3):221–248

Vanneschi L, Castelli M, Silva S (2010) Measuring bloat, overfitting and functional complexity
in genetic programming. In: Proceedings of the 12th annual conference on genetic and
evolutionary computation. ACM, New York, pp 877–884

Vladislavleva EJ, Smits GF, Den Hertog D (2009) Order of nonlinearity as a complexity measure
for models generated by symbolic regression via Pareto genetic programming. IEEE Trans Evol
Comput 13(2):333–349

Wagner S (2009) Heuristic optimization software systems - modeling of heuristic optimization
algorithms in the heuristiclab software environment. Ph.D. thesis, Institute for Formal Models
and Verification, Johannes Kepler University, Linz

White DR, McDermott J, Castelli M, Manzoni L, Goldman BW, Kronberger G, Jaskowski W,
O’Reilly UM, Luke S (2013) Better GP benchmarks: community survey results and proposals.
Genet Program Evol Mach 14(1):3–29. doi: 10.1007/s10710-012-9177-2

http://lulu.com
http://www.gp-field-guide.org.uk
http://dx.doi.org/10.1007/s10710-012-9177-2

Learning Heuristics for Mining RNA
Sequence-Structure Motifs

Achiya Elyasaf, Pavel Vaks, Nimrod Milo, Moshe Sipper,
and Michal Ziv-Ukelson

Abstract The computational identification of conserved motifs in RNA molecules
is a major—yet largely unsolved—problem. Structural conservation serves as strong
evidence for important RNA functionality. Thus, comparative structure analysis is
the gold standard for the discovery and interpretation of functional RNAs.

In this paper we focus on one of the functional RNA motif types, sequence-
structure motifs in RNA molecules, which marks the molecule as targets to be
recognized by other molecules.

We present a new approach for the detection of RNA structure (including pseudo-
knots), which is conserved among a set of unaligned RNA sequences. Our method
extends previous approaches for this problem, which were based on first identifying
conserved stems and then assembling them into complex structural motifs. The
novelty of our approach is in simultaneously preforming both the identification and
the assembly of these stems. We believe this novel unified approach offers a more
informative model for deciphering the evolution of functional RNAs, where the sets
of stems comprising a conserved motif co-evolve as a correlated functional unit.

Since the task of mining RNA sequence-structure motifs can be addressed by
solving the maximum weighted clique problem in an n-partite graph, we translate
the maximum weighted clique problem into a state graph. Then, we gather and
define domain knowledge and low-level heuristics for this domain. Finally, we learn
hyper-heuristics for this domain, which can be used with heuristic search algorithms
(e.g., A*, IDA*) for the mining task.

The hyper-heuristics are evolved using HH-Evolver, a tool for domain-specific,
hyper-heuristic evolution. Our approach is designed to overcome the computational
limitations of current algorithms, and to remove the necessity of previous assump-
tions that were used for sparsifying the graph.

This is still work in progress and as yet we have no results to report. However,
given the interest in the methodology and its previous success in other domains we
are hopeful that these shall be forthcoming soon.

A. Elyasaf (�) • P. Vaks • N. Milo • M. Sipper • M. Ziv-Ukelson
Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
e-mail: achiya.e@gmail.com; pavel.vaks@gmail.com; milo.nimrod@gmail.com;
sipper@cs.bgu.ac.il; michaluz@cs.bgu.ac.il

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_2

21

mailto:achiya.e@gmail.com
mailto:pavel.vaks@gmail.com
mailto:milo.nimrod@gmail.com
mailto:sipper@cs.bgu.ac.il
mailto:michaluz@cs.bgu.ac.il

22 A. Elyasaf et al.

Keywords Genetic algorithms • Genetic programming • Hyper heuristic

1 Introduction

1.1 RNA Structural Motif Discovery

RNA is a biological macromolecule which, like DNA, is constructed of four letter
alphabet (A, C, G and U). RNA has many roles in biological mechanisms, some of
which we describe below.

Over the last few years non-coding RNAs (ncRNAs) have been recognized as a
highly abundant class of RNAs that do not code for proteins but nevertheless are
functional in many biological processes, including localization, replication, transla-
tion, degradation, regulation, and stabilization of biological macromolecules (Man-
dal and Breaker 2004).

1.2 Biological Preliminaries and Definitions

An RNA molecule is defined by a sequence of letters (called bases) and a set of
pairings between its bases. The base C typically pairs with G, A typically pairs
with U, and another weaker pairing can occur between G and U. This base-paired
structure is called the secondary structure of the RNA. Paired bases almost always
occur in a nested fashion. Informally, this means that if we draw arcs over an RNA
sequence connecting base pairs, none of the arcs cross each other. When non-nested
base pairs occur, they are called pseudoknots (see Fig. 1). Most of current RNA
sequence-structure analysis algorithms ignore pseudoknots. This is done mostly in
order to simplify the problem, due to the fact that prediction of structure while
allowing pseudoknots is NP hard (Akutsu 2000). In nature, there are important
examples of RNA sequence-structure motifs that include pseudoknots (Staple and
Butcher 2005; Brierley et al. 2008).

Fig. 1 An RNA sequence and its structure (defined by the arcs). In the figure there are three
stems (marked red, green, and blue). The green and red stems cross each other, indicating that the
structure of the exemplified RNA contains a pseudoknot (Color figure online)

Learning Heuristics for Mining RNA Sequence-Structure Motifs 23

In RNA studies, structural conservation serves as a strong evidence for essential
RNA functionality. Thus, comparative structure analysis is the gold standard for
the discovery and interpretation of functional RNAs. In particular, an important
and well-studied problem is that of RNA motif discovery. In molecular biology,
a motif is a sequence pattern that is widespread and has, or is conjectured to have,
a biological significance. In the case of functional RNAs, the sought motifs are
patterns combining sequence and structural features, thus denoted RNA sequence-
structure motifs.

In RNA motif discovery, a natural building block is a stem (a local non-crossing
set of base pairs). Therefore, some approaches for the mining of RNA motifs are
based on first identifying sets of stems that are widespread, and then combining
the stems to form more complex structural motif patterns. In this paper we present
a novel approach that addresses both problems simultaneously using learning of
heuristic functions and search techniques. Given a set of n RNA molecules we seek
a set of similar stems, each shared by a minimum of k � n molecules. Using A�
algorithm along with a learned heuristic function, we mine the n molecules both in
sequence and complex structural characteristics. The measure we use for scoring
the similarity between two stems models the typical changes caused by evolution.

1.3 Heuristic Search

Heuristic search algorithms are strongly based on the notion of approximating the
cost of the cheapest path from a given configuration (or state) to the problem’s
solution (or goal). Such approximations are found by means of a computationally
efficient function, known as a heuristic function. By applying such a function to
states reachable from the current one considered, it becomes possible to select
more-promising alternatives earlier in the search process, possibly reducing the
amount of search effort (typically measured in number of states expanded) required
to solve a given problem. The putative reduction is strongly tied to the quality of
the heuristic function used: employing a perfect function means simply “strolling”
onto the solution (i.e., no search de facto), while using a bad function could render
the search less efficient than totally uninformed search, such as breadth-first search
(BFS) or depth-first search (DFS).

A heuristic function is said to be admissible if it never overestimates the cost
to the goal. Thus, the higher the heuristic value, the closer it is to the true cost
of the cheapest path to goal. Using an admissible heuristic with an optimal search
algorithm (e.g. A* or iterative deepening A*, IDA*, Hart et al. 1968; Korf 1985)
guarantees that any solution found will be optimal, i.e., with minimal solution
length.

Combining several heuristics to get a more accurate one is considered one of the
most difficult problems in contemporary heuristics research (Samadi et al. 2008;
Burke et al. 2010). Of course, if all of the heuristic functions are admissible and an
optimal solution is what we are looking for, then we could use the max heuristic

24 A. Elyasaf et al.

(which takes the heuristic function with the maximal value). However, when we do
not need to guarantee optimality or when we do not use only admissible heuristics,
a good solution can be found in a more efficient way.

1.4 Hyper Heuristics

Within combinatorial optimization, the term hyper-heuristics was first used in 2000
(Cowling et al. 2000) to describe heuristics to choose heuristics. This definition of
hyper-heuristics was expanded later (Burke et al. 2010) to refer to an automated
methodology for selecting or generating heuristics to solve hard computational
search problems. In the process of hyper-heuristics learning, heuristics and domain
knowledge are used as building blocks. These heuristics can be of high level, usually
complex and memory-consuming (e.g., landmarks and pattern databases), or low-
level domain knowledge and heuristics that are usually intuitive and straightforward
to implement and compute.

Hyper-heuristics have been applied in many research fields, among them:

• Classical planning (Yoon et al. 2008; Fawcett et al. 2011; Hoffmann and Nebel
2001).

• Classical NP-Complete domains, e.g., personnel scheduling (Burke et al. 2003),
traveling salesman (Oltean 2005), and vehicle routing (Garrido and Rojas 2010).

• Classical AI domains and puzzles, e.g., the Rush Hour puzzle (Hauptman et al.
2009), the game of FreeCell (Elyasaf et al. 2012), and the Tile Puzzle (Arfaee
et al. 2010; Samadi et al. 2008).

The growing research interest in techniques for automating the design of heuristic
search methods motivates the search for automatic systems for generating hyper-
heuristics.

1.5 Our Approach: Learning Hyper Heuristics for the Task
of Mining RNA Sequence-Structure Motifs

In this paper, we present a novel way for mining RNA sequence-structure motifs.
We translate the problem into a search graph and devise 97 heuristics for this
domain. Next, we use these heuristics as building blocks for learning hyper
heuristics using HH-Evolver—an evolutionary algorithm system designed for this
type of learning.

This is still work in progress and as yet we have no results to report. However,
given the interest in the methodology and its previous success in other domains we
are hopeful that these shall be forthcoming soon.

The contributions of this work are as follows:

Learning Heuristics for Mining RNA Sequence-Structure Motifs 25

1. We present a novel approach the task of mining RNA sequence-structure motifs
with possible pseudoknots.

2. While previous approaches artificially divide the mining task into conserved
stem identification followed by the assembly of such stems into complex
structural motifs, we present the first approach for preforming the two tasks
simultaneously. We believe this unified approach offers a more informative
model for deciphering the evolution of functional RNAs, where the sets of stems
comprising a conserved motif co-evolve as a correlated functional unit.

3. By using a more efficient search we are able to use a denser graph with more
nodes (stems) and edges (relations between stems). Thus, we are able to remove
the necessity of previous algorithms to sparsify the graph, at the expense of
sensitivity, by imposing assumptions and rigid limitations.

4. The use of hyper heuristics enables the mining algorithm to find the exact
conditions (i.e., biological indicators) regarding when to apply each heuristic,
or combinations.

5. We push the limit of what has been done with evolution further mining
RNA sequence-structure motifs one of the most difficult domains to which
evolutionary algorithms have been applied to date.

6. Along the way we devise several novel heuristics for this domain. The methodol-
ogy of creating these heuristics could be applied to other biological domains and
other.

7. By devising novel heuristics and evolving them into hyper-heuristics, we con-
tinue our previous presentation of a new framework for solving many (non-
admissible) heuristic problems, which proved to be efficient and successful.

8. We transform a non-search domain into a state graph, and thus strengthen the
bridge between the learning and search community to the biological world.

The rest of the paper is organized as follows: In the next section we examine
previous and related work. In Sect. 3 we describe our method. Finally, we end with
concluding remarks and future work in Sect. 4.

2 Previous Work

2.1 Mining Common Structure Among a Set of Unaligned
RNA Sequences

Several approaches exist for identifying common structure among a given set
of RNA molecules. The first approach (Pederson et al. 2006; Hofacker et al.
2002; Washietl and Hofacker 2004) is to align sequences using standard multiple
sequence alignment tools (e.g., ClustalW, Thompson et al. 1994), then use structure-
conserving mutations for the inference of a consensus structure. However, in order
for this approach to work the multiple sequence-alignment step needs to rely on

26 A. Elyasaf et al.

a very well-conserved sequence, which is rarely the case with swiftly evolving
ncRNAs.

The second approach applies Sankoff’s “Simultaneous Alignment with Folding
(SAF)”—an algorithm designed to simultaneously align a set of co-functional RNA
molecules and predict their common secondary structure. However, the algorithm
requires extensive computational resources both in time (O.n6/) and memory
(O.n4/) (Backofen et al. 2011). Thus, current implementations (Mathews and Turner
2002; Havgaard et al. 2005; Will et al. 2007; Siebert and Backofen 2005; Hofacker
et al. 2004; Torarinsson et al. 2007) are either restricted in the input size or apply a
restricted application of the SAF approach.

The third approach, denoted as the “pre-folding” approach, is applied when
no helpful level of sequence conservation is observed. It excludes the sequence
alignment step, predicts secondary structures for each sequence (or a sub-group
of sequences) separately, and directly aligns the structures. Because of the nested
branching nature of RNA structures, these are represented as trees. Tree comparison
and tree alignment models in the context of detecting conserved RNA structure have
been proposed and implemented in Hofacker et al. (1994), Sczyrba et al. (2003),
Hochsmann et al. (2003), Wang and Zhang (2001), and Milo et al. (2013). Predicting
a global secondary structure from a single molecule is still error, where the best
approaches may yield up to 75 % accuracy (Do et al. 2006).

Due to computational limitations the above methods are generally restricted
to finding conserved sequence-structure motifs without considering pseudoknots.
A leading approach that removes this restriction is the one proposed by Ji et al.
(2004). Here, rather then trying to predict a global structure, i.e., one that is common
to the (full-length) input sequences, local common structure is sought, i.e., a set of
substrings that share a similar predicted structure, where each substring belongs to
a different input sequence.

Ji et al. apply a multi-stage approach to identify common structure among a
given set of n sequences. During a preprocessing stage, an n-partite undirected
weighted stem-graph is constructed, by first extracting local stems from each of
the sequences. The extracted stems serve as the nodes of the graph, and are
partitioned by their sequence of origin. Weighted edges are constructed between
pairs of nodes representing the similarity between stems that were extracted from
different sequences. Stem similarity is computed by using a single pre-defined
scoring function. Ji et al. sparsify this stem-graph by using fixed thresholds on the
scoring function and the stability of the stems. In addition, they require the existence
of conserved sequential regions of a fixed size, termed anchors.

In the next stage, conserved stems are identified. This is done by mining all
cliques in the stem-graph spanning a minimum of k � n sequences.

This is followed by a final stage, where stem-cliques are combined to form
complex motifs. This is achieved by assembling as many compatible cliques as
possible according to topological order and evaluating the plausibility of a proposed
structure by the significance of its members.

In this paper we extend the work of Ji et al. By applying evolution-based
learning, we remove the necessity of the aforementioned single scoring function and

Learning Heuristics for Mining RNA Sequence-Structure Motifs 27

the stringent cutoff thresholds. Our search is more informed, and computes intra-
clique optimizations within the wide context of topological inter-clique assembly
considerations. This allows us to speed up the search without the loss of sensitivity.
In fact, sensitivity can now be increased, as the more efficient search allows us to get
rid of the preprocessing sparsification used by Ji et al. We use evolution to combine
multiple scoring functions and dynamic thresholds.

2.2 Learning Hyper Heuristics

2.2.1 Learning Hyper Heuristics for Planning Systems

Planning systems are strongly based on the notion of heuristics (e.g., Bonet and
Geffner 2005; Hoffmann and Nebel 2001). However, relatively little work has been
done on evolving heuristics for planning.

Aler et al. (2002) (see also Aler et al. 1998, 2001) proposed a multi-strategy
approach for learning heuristics, embodied as ordered sets of control rules (called
policies), for search problems in AI planning. Policies were evolved using a GP
(Genetic Programming) based system called EvoCK (Aler et al. 2001), whose
initial population was generated by a specialized learning algorithm, called Hamlet
(Borrajo and Veloso 1997). Their hybrid system, Hamlet-EvoCK, outperformed
each of its sub-systems on two benchmark problems often used in planning: Blocks
World and Logistics (solving 85 and 87 % of the problems in these domains
respectively). Note that both these domains are considered relatively easy (e.g.,
compared to Rush Hour and FreeCell, mentioned above), as evidenced by the fact
that the last time they were included in an IPC (International Planning Competition)
was in 2002.

Levine and Humphreys (2003), and later Levine et al. (2009), also evolved
policies and used them as heuristic measures to guide search for the Blocks
World and Logistic domains. Their system, L2Plan, included rule-level genetic
programming (for dealing with entire rules), as well as simple local search to
augment GP crossover and mutation. They demonstrated some measure of success
in these two domains, although hand-coded policies sometimes outperformed the
evolved ones.

2.2.2 Learning Hyper Heuristics for Specific Domains

Samadi et al. (2008) used artificial neural networks (ANNs) (Mitchell 1999) for
learning combinations of heuristics for the sliding-tile puzzle and the 4-peg Towers
of Hanoi. They used pattern databases (PDBs) (Korf 1997) and weighted PDBs as
input signals for the ANN.

Arfaee et al. (2010) also used ANNs for learning hyper heuristics for several
domains, however, in addition to the use of small PDBs as input signals, Arfaee

28 A. Elyasaf et al.

et al. used low-level heuristics and domain knowledge as well. For the sliding-tile
puzzle, for example, they used the following additional signals: the number of out-
of-place tiles, the position of the blank, the number of tiles not in the correct row,
and the number of tiles not in the correct column.

Hauptman et al. (2009) and later Elyasaf et al. (2012) evolved heuristics for
the Rush Hour puzzle and the game of FreeCell (respectively). They compared the
performance of different types of hyper heuristics on these domains. In both cases,
evolved hyper heuristics (along with heuristic search) greatly reduced the number
of nodes required to solve instances of the domains, compared to standard methods
and previous solvers. In this paper we use their method for learning hyper heuristics
for the problem of mining RNA sequence-structure motifs.

3 Method

As explained in Sect. 2.1, we extend the work of Ji et al. (2004). The overall scheme
of our method is summarized by the following major steps:

• Cast the problem of mining RNA sequence-structure motifs as one of maximum
weighted clique in an n-partite graph.

• Translate the maximum weighted clique problem into a search graph, where each
state consists of the set of cliques identified so far.

• Gather and define domain knowledge and low-level heuristics for this domain.
• Learn hyper-heuristics for this domain, which can be used with heuristic search

algorithms (e.g., A*, IDA*) for the mining task.

In their paper, Ji et al. (2004) list several heuristics and techniques that already
exist for the task of mining RNA sequence-structure motifs and for the task of
finding maximum weighted cliques, however they note that they are “not aware
of any effective optimization or heuristic algorithm feasible for our problem”. For
this reason they used a fixed scoring function and harsh pruning thresholds (see
Sect. 2.1).

Since there are many heuristics, both for the task of mining RNA sequence-
structure motifs and for the task of finding maximum weighted cliques, we believe
that learning algorithms can find a combination of these heuristics that outperforms
the handcrafted scoring formula used by Ji et al.

The key differences between our approach and Ji et al. are: (1) We use learning
algorithms with many heuristics along with domain knowledge to avoid the use of
a single formula; (2) we let evolution guide the search and remove the need to rely
on fixed thresholds and anchoring; (3) we extend the stem extraction module by
using the approach of Milo et al. (2014), which allows us find a wider range of stem
types; (4) we perform both mining tasks (identification of conserved stems and the
assembly of conserved stems into complex motif structures) simultaneously.

Learning Heuristics for Mining RNA Sequence-Structure Motifs 29

3.1 Casting the Problem of Mining RNA Sequence-Structure
Motifs as One of Maximum Weighted Clique
in an n-Partite Graph

Given a set of n molecules, we extend the stem extraction module of Ji et al. by
using the extraction method described in Milo et al. (2014), allowing us to extract
more stems from the molecules. Next, we construct an n-partite undirected weighted
graph to represent the stems and their relations. Each vertex represents a stem,
and the graph is partitioned into n parts. Each part comprises the stems from one
molecule. Only stems (or vertices) from different parts can be connected. We call
the edges between the stems stem edges, to differentiate between these edges and
the edges described in Sect. 3.2. While Ji et al. sparsify this graph using rigid
thresholds, we do not sparsify the graph at this stage and connect all stems of
different partitions.

For each stem edge we define several features (dubbed stem edge features,
or SEF), described in Sect. 3.3.1. For each feature it is possible to define a hard
threshold set by the user, or let the learning algorithm set the threshold value.

3.2 Converting the Maximum Weighted Clique Problem
into a State Graph

Once the n-partite graph is built, Ji et al. (2004) extract all possible stem-cliques, a
task for which the worst-case time complexity is O.mn/, where m is the maximum
number of stems examined in one sequence and n is the number of total RNA
sequences. The average run-time is much less than the worst case, due to the
thresholds and pruning. However, the time could still be impractical in many cases,
and furthermore the sparsification comes at the expense of data-mining sensitivity.
Moreover, if the goal is to mine the input and find significantly similar structures
among the molecules, one does not need to exhaustively consider all possible
cliques. If we are able to find the most important cliques first, we can stop the search
at an earlier phase. This is the reason that we now turn to heuristic search algorithms
such as A*.

In order to search for cliques in an A* manner, we first define a new search
graph, where each state contains the set of cliques (and partial cliques) found so far.
The edges represent either the start of a new clique or adding a stem to an existing
clique. As opposed to standard search domains, here we do not know which state is
the goal state (i.e., the state with the most important cliques). We will discuss this
point further in Sect. 3.4.3.

We now turn to describe the domain knowledge and low-level heuristics gathered
for the search algorithm.

30 A. Elyasaf et al.

3.3 Gather and Define Domain Knowledge and Low-Level
Heuristics for this Domain

There are three different types of heuristics we use:

1. SEF heuristics. heuristics that are derived from the stem edge features. Recall
that each search state represents the cliques founds so far and that each clique
contains several stem edges. With this notion, we define seven heuristics for each
stem edge feature, f :

(a) Return the minimal/maximal/average/median f value of all stem edges of the
state.

(b) Compute average f value per clique; return average of all average values.
(c) Compute median f value per clique; return average of all median values.
(d) Compute average f value per clique; return median of all average values.

The full SEF list is described below.
2. Topological relation heuristics. heuristics that measure the topology preservation

between stems from different cliques using the topological relations. We have
two heuristics of this type: The first is described in Milo et al. (2014), and the
second is a heuristic version of the structure assembly algorithm described in Ji
et al. (2004).

3. Clique-specific heuristics. standard clique heuristics such as maximal, minimal,
average, median node degree.

All of our heuristics preserve the basic rule of heuristic functions: the lower the
value, the closer we are to the goal. Towards this end we change the heuristic value
h to 1=h, where applicable.

There is a fourth type of heuristics—classic search heuristics (e.g., pattern
database)—however, previous work has shown that using domain knowledge-based
heuristics provides good solutions.

The distribution of the heuristic types is described in Table 1.

Table 1 Distribution of heuristic types

Heuristic type Number of heuristics

SEF 91 (7 heuristics � 13 features D 91)

Topological relation heuristics 2

1 Clique-specific heuristics 4

Total 97

Learning Heuristics for Mining RNA Sequence-Structure Motifs 31

3.3.1 Stem Edge Features

As described in Sect. 2.1, Ji et al. (2004) defined a fixed equation for describing
similarity between two stems, which was a combination of five features. We use
these features, as well as the equation, as part of our stem edge features (SEF),
along with additional features described below.

Some of our features are added twice: once as is (i.e., fl.ix; jy/), and once divided

by the energy, using the formula Nfl.ix; jy/ D 2�fl.ix;jy/

2Crx.i/Cry.j/ (as described by Ji et al.).
The complete list of our features is described in Table 2.

Table 2 The list of features

Feature Origin Description

f1 : Helix length [1] Number of base-pairs in the
stem

f2: f2 D Nf1 [1] [*]

f3 : Helix sequence [1] The sequence of bases in the
stem

f4: f4 D Nf3 [1] [*]

f5 : Loop sequence [1] The sequence of letters
between the innermost
base-pair in the stem

f6: f6 D Nf5 [1] [*]

f7 : Stem stability [1] The free energy value of the
stem

f8: f8 D Nf7 [1] [*]

f9 : Relative positions [1] The position of the left base
in the outermost base-pair in
the stem (relative to the
sequence)

f10: f10 D Nf9 [1] [*]

f11 : Ji. et al. Similarity [1]
2�

P
lD1;3;5;7 fwl�fl.ix ;jy/g

2Crx.i/Cry.j/

f12 : Context [3] The shift between both helix
counterparts of a stem in the
anchor or non-anchor region

f13 : StemSearch similarity [2] Similarity score used by
StemSearch, determined by
structural and sequential
similarity

Œ1�—Features taken from Ji et al. (2004)
Œ2�—Features taken from Milo et al. (2014)
Œ3�—Features designed by us

Œ*�—Nfl.ix; jy/ D 2�fl.ix ;jy/

2Crx.i/Cry.j/

32 A. Elyasaf et al.

3.4 Learning Hyper Heuristics Using HH-Evolver

Combining several heuristics to get a more accurate one is considered one of the
most difficult problems in contemporary heuristics research (Samadi et al. 2008;
Burke et al. 2010).

This task typically involves solving three major sub-problems:

1. How to combine heuristics by arithmetic means, e.g., by summing their values
or taking the maximal value.

2. Finding exact conditions (i.e., logic functions) regarding when to apply each
heuristic, or combinations thereof—some heuristics may be more suitable than
others when dealing with specific state configurations.

3. Finding the proper set of domain configurations in order to facilitate the learning
process while avoiding pitfalls such as overfitting.

The problem of combining heuristics is difficult mainly because it entails traversing
an extremely large search space of possible numeric combinations, logic conditions,
and state configurations. To tackle this problem we turn to evolution.

As previously mentioned, we use the learning method of Hauptman et al. (2009)
and Elyasaf et al. (2012) for the mining problem. For this task we use their tool, HH-
Evolver (Elyasaf and Sipper 2013), a hyper-heuristic generator for search domains.
The HH-Evolver system receives as input: a domain, several heuristics for the
domain, and a dataset of domain instances to be used partly as training set and
partly as test set. HH-Evolver generates a population of random hyper-heuristics
and trains them over generations against the training set. When used with a heuristic
search algorithm, the individuals are required to produce near-optimal solutions to
the instances encountered. The search-size (i.e., the number of states encountered
during the search) should be small as well.

In order to properly solve the aforementioned sub-problems, we use three
different HH-Evolver genomic representations—Standard GA, GP, and policies—
all of which are thoroughly described below. These representations use the heuristics
given as input to HH-Evolver.

3.4.1 The Hyper Heuristic-Based Genome

We use three different genomic representations. All of these representation were
used by Hauptman et al. (2009) and Elyasaf et al. (2012).

All of our representations comprise real-value thresholds for all minimum
heuristics (e.g., minimal node degree heuristic). During the search we prune nodes
when one of the heuristic values exceeds its threshold.

Learning Heuristics for Mining RNA Sequence-Structure Motifs 33

Standard GA (Genetic Algorithm)

This type of hyper-heuristic only addresses the first problem of how to combine
heuristics by arithmetic means. Each individual comprises 97 real values in
the range Œ0; 1�, representing a linear combination of all 97 heuristics described
above (Table 1). Specifically, the heuristic value, H, designated by an evolving
individual is defined as H D P97

iD1 wihi, where wi is the ith weight specified by
the genome, and hi is the ith heuristic shown in Table 1. As results in other domains
showed (Hauptman et al. 2009; Elyasaf et al. 2012), the GA proved quite successful
and was therefore retained as a yardstick to measure against when we embarked
upon our GP path.

GP (Genetic Programming)

As we want to embody both combinations of estimates and conditions for applying
each combination, we evolve GP-trees as described in Koza (1994). The function
set included the functions {IF,AND,OR,�,�,�,C}, and the terminal set included all
heuristics in Table 1, as well as random numbers within the range Œ0; 1�.

Policies

The last genome used also combines estimates and application conditions, using
ordered sets of control rules, or policies. As stated above, policies have been evolved
successfully with GP to solve search problems—albeit simpler ones (e.g., Hauptman
et al. 2009; Elyasaf et al. 2012).

The policies have the following structure:

RULE1: IF Condition1 THEN Value1

.

.

.
RULEN : IF ConditionN THEN ValueN

DEFAULT: ValueNC1

where Conditioni and Valuei represent conditions and estimates, respectively.
Policies are used by the search algorithm in the following manner: The rules are

ordered such that we apply the first rule that “fires” (meaning its condition is true for
the current state being evaluated), returning its Value part. If no rule fires, the value
is taken from the last (default) rule: ValueNC1. Thus individuals, while in the form of
policies, are still heuristics—the value returned by the activated rule is an arithmetic
combination of heuristic values, and is thus a heuristic value itself. This accords with
our requirements: rule ordering and conditions control when we apply a heuristic
combination, and values provide the combinations themselves.

34 A. Elyasaf et al.

Thus, with N being the number of rules used, each individual in the evolving
population contains N Condition GP trees and N C 1 Value sets of weights used
for computing linear combinations of heuristic values. Experimenting with several
sizes of policies in different domains showed that N D 5 provides enough rules per
individual, while avoiding cumbersome individuals with too many rules. The depth
limit used for the Condition trees is set to 5 for the same reason.

For Condition GP trees, the function set included the functions {AND,OR,�,�},
and the terminal set included all heuristics in Table 1. The sets of weights appearing
in Values all lie within the range Œ0; 1�, and correspond to the heuristics listed
in Table 1.

The genetic operators for the individuals are described thoroughly in Elyasaf
et al. (2012).

3.4.2 Training and Test Sets

We use the data from the RFAM (Griffiths-Jones et al. 2005) database to create
training and testing data sets. RFAM is a curated database of RNA molecules
grouped together by common functionality (termed RNA families). This allows
us to generate a large and diverse set of syntactic inputs for our hyper-heuristic
population. This set is divided to training set and test sets, using a standard cross-
validation method.

The set is generated as follow: For each family we randomly divide the members
into different (overlapping) groups of different sizes. We then add to each group a
random amount of noise in the range of Œ0; n

5
�, where the noise is defined as members

of a different functional family. Each generated group is used as an instance in
the set.

The above technique allows us to collect different statistical metrics needed for
computing the correctness of solutions (described below).

3.4.3 Fitness

The individual’s fitness score preserves the rule that the higher the value, the better
the individual (as opposed to heuristic functions). The score is obtained by running
A* on m instances taken from the training set, with the individual used as the
heuristic function. The g value is defined as the length of the path from the initial
state to the current one. During the search, each individual keeps the best state
found so far (i.e., the one with the lowest heuristic value). Once the search space
is exhausted or the time limit (described below) is reached, the individual returns
that state, designating it as the goal state.

Learning Heuristics for Mining RNA Sequence-Structure Motifs 35

The fitness score is then calculated, incorporating three elements:

1. Answer’s correctness (80%): The most important element is the
correctness, hence its weight is 80 % of the score. The correctness calculation
is described below.

2. Time to solution (10%): The time to solution is defined as the average
time it took the individual to find the solution for all instances. We wish to reduce
this time, and thus the element’s weight is 10 %. The score of the element is
1=time_to_solution.

3. Number of cliques (10%): Since the cliques represent the similarities
between the molecules, the more correct cliques the individual finds, the better
the solution is. The element’s weight is 10 %.

Each element is normalized to a value in the range Œ0; 1�. Towards this end we
divide the element value by its maximal value, where applicable.

Correctness is calculated by the Positive Predictive Values (PPV) formula:
correctness D TP

TPCFP , where TP is the number of times the individual marked a
stem correctly in a clique (for all training instances), and FP is the number of times
the individual marked a stem incorrectly in a clique (also for all training instances).
In case TP D FP D 0, the correctness value is 0. For example, if we have three
molecules from the same family and one “noisy” molecule from a different family,
we increase TP by one for each stem in a clique that belongs to a molecule of the
family. Consequently, we increase FP by one for each stem in a clique that belongs
to the noisy molecule.

The number of instances the individuals are trained on, m, is limited by the
computational resources. Yet, the user should set it to be as high as possible in
order to reach convergence. Avoiding over-fitting is achieved by using a standard
cross-validation method.

The minimum clique size, k, is set by the user according to the molecular families
and should be in the range Œ n

2
; n�.

3.4.4 Search Time

The time limit for a hyper-heuristic to return an answer is set initially by the user.
However, during evolution, we collect the median time for finding the best state. In
such a way we can reduce the time limit to be the average time + 1 min.

4 Concluding Remarks

We presented a new approach for the detection of RNA structure (including
pseudoknots), which is conserved among a set of unaligned RNA sequences. Our
method extends previous approaches that were based on first identifying conserved
stems and then assembling them into complex structural motifs. The novelty of our
approach is in simultaneously preforming both the identification and the assembly

36 A. Elyasaf et al.

of these stems. We believe this novel unified approach offers a more informative
model for deciphering the evolution of functional RNAs, where the sets of stems
comprising a conserved motif co-evolve as a correlated functional unit.

We began by casting the problem of mining RNA sequence-structure motifs as
one of maximum weighted clique in an n-partite graph of stems. Next we addressed
the maximum weighted clique problem as a heuristic search problem, by translating
it into a search graph, where each state consists of the set of cliques identified so
far. We then defined domain knowledge and low-level heuristics for this domain.
Finally, we learned hyper-heuristics for this domain, which could be used with
heuristic search algorithms (e.g., A*, IDA*) for the mining task.

This paper extends a leading approach by Ji et al. (2004) with several important
modifications. By applying evolution-based learning we remove the necessity of
their single scoring function and the stringent cutoff thresholds. Our search is
more informed and computes intra-clique optimizations within the wide context
of topological inter-clique assembly considerations. This allows us to speed up the
search without the loss of sensitivity. In fact, sensitivity can now be increased, as
the more efficient search obviates the preprocessing sparsification used by Ji et al.
We used evolution to combine multiple scoring functions and dynamic thresholds.

This is still work in progress and as yet we have no results to report. However,
given the interest in the methodology and its previous success in other domains we
are hopeful that these shall be forthcoming soon (servers are churning as you read
these lines).

Our work may lead to several possible research directions:

• We believe our unified approach offers a more informative model for deciphering
the evolution of functional RNAs, where the sets of stems comprising a conserved
motif co-evolve as a correlated functional unit. We hope that our results will shed
light on functional RNAs and that new biological discoveries will follow.

• The methodology presented here could be applied to other biological and non-
biological domains.

• There are many heuristics and similarity measurements that are not described in
this can be incorporated into our system.

Acknowledgements This research was supported by the Israel Science Foundation (grant no.
123/11 and grant no. 179/14).

References

Akutsu T (2000) Dp algorithms for rna secondary structure prediction with pseudoknots. Discrete
Appl Math 104(1–3):45–62

Aler R, Borrajo D, Isasi P (1998) Genetic programming of control knowledge for planning. In:
Proceedings of AIPS-98

Aler R, Borrajo D, Isasi P (2001) Learning to solve planning problems efficiently by means of
genetic programming. Evol Comput 9(4):387–420

Learning Heuristics for Mining RNA Sequence-Structure Motifs 37

Aler R, Borrajo D, Isasi P (2002) Using genetic programming to learn and improve knowledge.
Artif Intell 141(1–2):29–56

Arfaee SJ, Zilles S, Holte RC (2010) Bootstrap learning of heuristic functions. In: Proceedings of
the 3rd international symposium on combinatorial search (SoCS2010), pp 52–59

Backofen R, Tsur D, Zakov S, Ziv-Ukelson M (2011) Sparse folding: time and space efficient
algorithms. J Discrete Algorithms 9(1):12–31

Bonet B, Geffner H (2005) mGPT: A probabilistic planner based on heuristic search. J Artif Intell
Res 24:933–944

Borrajo D, Veloso MM (1997) Lazy incremental learning of control knowledge for efficiently
obtaining quality plans. Artif Intell Rev 11(1–5):371–405

Brierley I, Gilbert RC, Pennell S (2008) Pseudoknots and the regulation of protein synthesis.
Biochem Soc Trans 36(4):684–689

Burke EK, Kendall G, Soubeiga E (2003) A tabu-search hyperheuristic for timetabling and roster-
ing. J Heuristics 9(6):451–470. http://dx.doi.org/10.1023/B:HEUR.0000012446.94732.b6

Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward JR (2010) A classification of hyper-
heuristic approaches. In: Gendreau M, Potvin J (eds) Handbook of meta-heuristics, 2nd edn.
Springer, Berlin, pp 449–468

Cowling PI, Kendall G, Soubeiga E (2000) A hyperheuristic approach to scheduling a sales
summit. In: Burke EK, Erben W (eds) PATAT. Lecture notes in computer science, vol 2079.
Springer, Berlin, pp 176–190. doi:10.1007/3-540-44629-X_11

Do CB, Woods DA, Batzoglou S (2006) Contrafold: RNA secondary structure prediction without
physics-based models. Bioinformatics 22(14):e90–e98

Elyasaf A, Sipper M (2013) Hh-evolver: a system for domain-specific, hyper-heuristic evolution.
In: Proceedings of the 15th annual conference companion on genetic and evolutionary computa-
tion GECCO ’13 companion. ACM, New York, pp 1285–1292. doi:10.1145/2464576.2482707.
http://doi.acm.org/10.1145/2464576.2482707

Elyasaf A, Hauptman A, Sipper M (2012) Evolutionary design of FreeCell solvers. IEEE Trans
Comput Intell AI Games 4(4):270–281. doi:10.1109/TCIAIG.2012.2210423. http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=6249736

Fawcett C, Karpas E, Helmert M, Roger G, Hoos H (2011) Fd-autotune: domain-specific
configuration using fast-downward. In: Proceedings of ICAPS-PAL 2011

Garrido P, Rojas MCR (2010) DVRP: a hard dynamic combinatorial optimisation problem tackled
by an evolutionary hyper-heuristic. J Heuristics 16(6):795–834. http://dx.doi.org/10.1007/
s10732-010-9126-2

Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) RFAM: anno-
tating non-coding RNAS in complete genomes. Nucleic Acids Res 33(suppl 1):D121–D124

Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for heuristic determination of minimum
path cost. IEEE Trans Syst Sci Cybern 4(2):100–107

Hauptman A, Elyasaf A, Sipper M, Karmon A (2009) GP-Rush: using genetic programming to
evolve solvers for the Rush Hour puzzle. In: GECCO’09: Proceedings of 11th annual con-
ference on genetic and evolutionary computation conference. ACM, New York, pp 955–962.
doi:10.1145/1569901.1570032. http://dl.acm.org/citation.cfm?id=1570032

Havgaard J, Lyngso R, Stormo G, Gorodkin J (2005) Pairwise local structural alignment of RNA
sequences with sequence similarity less than 40%. Bioinformatics 21(9):1815–1824

Hochsmann M, Toller T, Giegerich R, Kurtz S (2003) Local similarity in RNA secondary
structures. In: Proceedings of the IEEE computer society conference on bioinformatics,
Citeseer, p 159

Hofacker I, Fontana W, Stadler P, Bonhoeffer L, Tacker M, Schuster P (1994) Fast folding
and comparison of RNA secondary structures. Monatshefte fur Chemie/Chemical Monthly
125(2):167–188

Hofacker I, Fekete M, Stadler P (2002) Secondary structure prediction for aligned RNA sequences.
J Mol Biol 319:1059–1066

Hofacker I, Bernhart S, Stadler P (2004) Alignment of RNA base pairing probability matrices.
Bioinformatics 20(14):2222–2227

http://dx.doi.org/10.1023/B:HEUR.0000012446.94732.b6
http://dx.doi.org/10.1007/3-540-44629-X_11
http://doi.acm.org/10.1145/2464576.2482707
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6249736
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6249736
http://dx.doi.org/10.1007/s10732-010-9126-2
http://dx.doi.org/10.1007/s10732-010-9126-2
http://dl.acm.org/citation.cfm?id=1570032

38 A. Elyasaf et al.

Hoffmann J, Nebel B (2001) The FF planning system: fast plan generation through heuristic search.
J Artif Int Res 14(1):253–302. http://dl.acm.org/citation.cfm?id=1622394.1622404

Ji Y, Xu X, Stormo GD (2004) A graph theoretical approach for predicting common rna
secondary structure motifs including pseudoknots in unaligned sequences. Bioinformatics
20(10):1591–1602

Korf RE (1985) Depth-first iterative-deepening: an optimal admissible tree search. Artif Intell
27(1):97–109

Korf RE (1997) Finding optimal solutions to Rubik’s cube using pattern databases. In: Proceedings
of the fourteenth national conference on artificial intelligence and ninth conference on
innovative applications of artificial intelligence, AAAI’97/IAAI’97, AAAI Press, pp 700–705

Koza JR (1994) Genetic programming II: automatic discovery of reusable programs. MIT Press,
Cambridge, MA

Levine J, Humphreys D (2003) Learning action strategies for planning domains using genetic
programming. In: Raidl GR, Meyer JA, Middendorf M, Cagnoni S, Cardalda JJR, Corne D,
Gottlieb J, Guillot A, Hart E, Johnson CG, Marchiori E (eds) EvoWorkshops. Lecture notes in
computer science, vol 2611. Springer, New York, pp 684–695

Levine J, Westerberg H, Galea M, Humphreys D (2009) Evolutionary-based learning of generalised
policies for AI planning domains. In: Rothlauf F (ed) Proceedings of the 11th annual conference
on genetic and evolutionary computation (GECCO 2009). ACM, New York, pp 1195–1202

Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Cell 6:451–463
Mathews DH, Turner DH (2002) Dynalign: an algorithm for finding the secondary structure

common to two RNA sequences. J Mol Biol 317(2):191–203
Milo N, Zakov S, Katzenelson E, Bachmat E, Dinitz Y, Ziv-Ukelson M (2013) Unrooted unordered

homeomorphic subtree alignment of rna trees. Algorithms Mol Biol 8(1):13
Milo N, Yogev S, Ziv-Ukelson M (2014) Stemsearch: Rna search tool based on stem identification

and indexing. Methods
Mitchell TM (1999) Machine learning and data mining. Commun ACM 42(11):30–36
Oltean M (2005) Evolving evolutionary algorithms using linear genetic programming. Evol

Comput 13(3):387–410. http://dx.doi.org/10.1162/1063656054794815
Pederson J, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, Lander E, Kent J, Miller W,

Haussler D (2006) Identification and classification of conserved RNA secondary structures in
the human genome. PLOS Comput Biol 2:e33

Samadi M, Felner A, Schaeffer J (2008) Learning from multiple heuristics. In: Fox D, Gomes CP
(eds) Proceedings of the twenty-third AAAI conference on artificial intelligence (AAAI 2008),
AAAI Press, pp 357–362

Sczyrba A, Kruger J, Mersch H, Kurtz S, Giegerich R (2003) RNA-related tools on the bielefeld
bioinformatics server. Nucleic Acids Res 31(13):3767

Siebert S, Backofen R (2005) MARNA: multiple alignment and consensus structure prediction of
RNAs based on sequence structure comparisons. Bioinformatics 21(16):3352–3359

Staple DW, Butcher SE (2005) Pseudoknots: RNA structures with diverse functions. PLoS Biol
3(6):e213

Thompson J, Higgins D, Gibson T (1994) CLUSTALW: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucleic Acids Res 22(22):4673

Torarinsson E, Havgaard JH, Gorodkin J (2007) Multiple structural alignment and clustering of
RNA sequences. Bioinformatics 23(8):926–932

Wang Z, Zhang K (2001) Alignment between two RNA structures. Lecture notes in computer
science. Springer, Berlin, pp 690–702

Washietl S, Hofacker I (2004) Consensus folding of aligned sequences as a new measure for the
detection of functional RNAs by comparative genomics. J Mol Biol 342:19–30

Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007) Inferring non-coding RNA families
and classes by means of genome-scale structure-based clustering. PLOS Comput Biol 3(4):e65

Yoon SW, Fern A, Givan R (2008) Learning control knowledge for forward search planning. J
Mach Learn Res 9:683–718. http://doi.acm.org/10.1145/1390681.1390705

http://dl.acm.org/citation.cfm?id=1622394.1622404
http://dx.doi.org/10.1162/1063656054794815
http://doi.acm.org/10.1145/1390681.1390705

Kaizen Programming for Feature Construction
for Classification

Vinícius Veloso de Melo and Wolfgang Banzhaf

Abstract A data set for classification is commonly composed of a set of features
defining the data space representation and one attribute corresponding to the
instances’ class. A classification tool has to discover how to separate classes based
on features, but the discovery of useful knowledge may be hampered by inadequate
or insufficient features. Pre-processing steps for the automatic construction of
new high-level features proposed to discover hidden relationships among features
and to improve classification quality. Here we present a new tool for high-
level feature construction: Kaizen Programming. This tool can construct many
complementary/dependent high-level features simultaneously. We show that our
approach outperforms related methods on well-known binary-class medical data sets
using a decision-tree classifier, achieving greater accuracy and smaller trees.

Keywords Kaizen programming • Genetic programming • Classification
• Decision-tree

1 Introduction

The objective of a classification algorithm is to predict the class (label) of a record
given the values of its attributes. In order to do that, it employs knowledge obtained
from a tagged data set, composed of pre-classified records. The information
contained in the attribute set (also known as feature set) and in the labels is used
to build a model able to accurately differentiate the classes present in the data. This

V.V. de Melo (�)
Department of Computer Science, Memorial University of Newfoundland,
St. John’s, NL, Canada A1B 3X5

Institute of Science and Technology, Federal University of São
Paulo – UNIFESP, São Paulo, Brazil
e-mail: vinicius.melo@unifesp.br

W. Banzhaf
Department of Computer Science, Memorial University of Newfoundland,
St. John’s, NL, Canada A1B 3X5

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_3

39

mailto:vinicius.melo@unifesp.br

40 V.V. de Melo and W. Banzhaf

model will then be tested using unseen data which have labels (for quality assurance)
and other data without labels (for use the classifier).

The classification process can therefore be seen to consist of two phases. The
first phase, which corresponds to model building or training, employs a data set of n
records with known labels for each record. The model has to correctly identify the
class (yi; i D 1; : : :; n) of each record xi;j; j D 1; : : :; m, where m is the number
of features. The second phase consists of using this classifier to predict classes
of unknown records that were not employed in the training phase. Obviously, to
evaluate the classifier’s performance in the second phase, the test records must have
a known class, which is not used in the prediction but is used for comparison with
the class predicted by the model.

The method proposed in this paper aims at an improvement of predictive quality
by discovering useful knowledge from data in the pre-processing stage. Such
extracted knowledge is inserted into the data set in the form of new attributes and
can be used subsequently by the classifier to build new models. This strategy is
known as feature construction or feature generation (Liu and Motoda 1998), which
can also be employed for dimensionality reduction (Guo et al. 2008).

While many feature construction methods are deterministic (Schölkopf et al.
1997; Nguyen and Rocke 2004; Jolliffe 2005), stochastic approaches have also
been proposed (Guo et al. 2008; Neshatian et al. 2012; Wu and Banzhaf 2011).
Deterministic methods rely on greedy heuristics that are supposed to work on any
kind of data, but have been shown to not always effective (Wolpert and Macready
1997). Stochastic approaches are more flexible in this aspect: They can generate and
evaluate non-linear features that would be discarded by deterministic methods. It is
easy to see that, by being more rigid, greedy deterministic methods tend to be much
faster but less capable of exploring the search-space, while stochastic methods will
be slower but may generate better features.

The method reported in this chapter combines a stochastic and a deterministic
method into a hybrid method. Its stochastic part performs knowledge extraction to
generate high-level features, and its deterministic part builds a classification model
on top of that. In this work we aim at a grey-box classifier, which is a human-
readable model that may not be fully understandable (“gray” instead of “white”)
because some formulas in the new features could be complex and opaque, though
clearer than results produced by black-box approaches such as Artificial Neural
Networks.

In the present contribution we employ a collaborative approach to search
for high-quality features. There are many aspects that differentiate our method
from others found in the literature that use a team-based approach, see, for
instance (Brameier and Banzhaf 2001). Those differences will be explained later.
For now, to say that our approach evolves a set of features instead of evolving
individual features to be used as an ensemble, as commonly explored in the
literature.

In order to have a good ensemble, it is important that all classifiers have high
predictive quality. Therefore, it is reasonable to suppose that there is a high chance
of having very similar classifiers that do not augment each other. The methodology

Kaizen Programming for Feature Construction for Classification 41

of the present study builds a single classifier whose features are likely to be
complementary to each other. It is similar in behavior to PCA (Jolliffe 2005), where
the features generated show a decreasing degree of variance the data. The difference
is, however, that our method discovers non-linear features using arbitrary formulas.

In order to perform an efficient search, our approach is based on the Kaizen
methodology (Imai 1986), that will be briefly introduced below. The main idea
of Kaizen is the continuous improvement of a process through the PDCA (Plan-
Do-Check-Act, Gitlow et al. 1989) cycle, generating a new solution based on
the knowledge obtained in previous cycles. This new solution can be divided to
conquer, allowing individual analysis and improvement of each part. Therefore,
a solution is actually composed of partial solutions. Our approach, called Kaizen
Programming (KP, de Melo 2014) is an implementation of the PDCA cycle. KP can
generate a feature set, build and evaluate the model, extract the importance of each
feature from the set, and evolve useful attributes to extract high-quality knowledge
from the training data.

The rest of this chapter is organized as follows. Section 2 introduces the
concept of Feature Construction, Section 3 describes related algorithms for feature
constructions that were used for comparison in this work. Section 4 presents
Kaizen Programming applied to feature construction. Computational experiments
are presented in Sect. 5 with Sect. 6 providing some conclusions.

2 Feature Construction

Feature construction (Liu and Motoda 1998; Guyon et al. 2006; Kantardzic 2011)
is a process employed to discover useful knowledge regarding hidden relationships
among features in a set of data. The newly constructed features can then be either
used alone or to augment the existing data set. When used alone, the new features
may be smaller in number than the original feature set, acting as a dimensionality
reduction method; thus named Feature Extraction (Liu and Motoda 1998; Guyon
et al. 2006; Kantardzic 2011). It is expected that the new features perform a better
separation of classes, facilitating the data mining task.

As pointed out by Freitas (2008), when compared to feature selection, the
construction of new useful attributes can be a much more difficult task. This can
be explained by the fact that feature selection is a binary combination problem
(a feature is selected or not selected, giving 2k possibilities, where k is the number
of features), while construction is a multi-valued combination task because the new
feature is a function composition.

Many methods have been proposed in the last decades to perform feature con-
struction for dimensionality reduction. Deterministic approaches such as Principal
Component Analysis (PCA, Jolliffe 2005), and Partial Least Squares (PLS, Nguyen
and Rocke 2004) are usually fast and able to find useful features. However, these
techniques do not search for a global optimum. Stochastic techniques such as
evolutionary algorithms have been investigated to that end. As examples of distinct

42 V.V. de Melo and W. Banzhaf

methods from the area of Genetic Programming (Banzhaf et al. 1998) we refer to
Smith and Bull (2005), Gavrilis et al. (2008), and Drozdz and Kwasnicka (2010).

After generating a feature one must measure its quality. As we are aiming
to achieve the best prediction quality, we selected the wrapper approach (Miner
et al. 2009), where a predictive model (a classifier, for instance) is built using the
input feature set, and the prediction results are compared to the expected results.
The percentage of correct predictions made on the test set is used as a quality
measure. Since the wrapper does not provide feature importance, it is necessary
to investigate how the classifier used the features to build the model in. This
information about feature importance is then used to efficiently guide the search.

Our models are built using a random sample from the data set (the training set),
and tested using a distinct sample from the same data set. Wrappers may require a
large computational effort, but their use tends to result in high-quality features that
will be tuned to the specific classifier. Finding this best solution implies a global
search and a stochastic algorithm is a reasonable choice for this task. The next
Section presents some related work.

3 Evolutionary Algorithms for Feature Construction

While there are many using evolutionary algorithms for feature construction, here
we briefly introduce only those techniques that are used for comparison in the
experimental section.

GPMFC+CART (Neshatian et al. 2012): This technique is a GP-based system for
construction of multiple features for classification problems. It uses a filter approach
instead of a wrapper, to evaluate the quality of the constructed features during the
evolution. The multiple features are sequentially constructed, one by one, for each
class of the dataset, maximizing the purity of class intervals. After evolution, the
features were tested using the CART decision-tree technique.

MLGP (Wu and Banzhaf 2011): In this contribution, the multilevel selection
framework (Wu and Banzhaf 2010) served as inspiration to the development of
a multilevel genetic programming approach (MLGP). Multilevel selection tries
to encourage cooperation among individuals based on biological group selection
theory. The authors developed a cooperation operator in order to build solutions
hierarchically. The fitness of a group (or individual) is calculated through direct
evaluation, without external classifiers. Therefore, the individual, or group, is used
to classify the data.

GP-EM (Guo et al. 2010): This method uses GP to generate a single feature,
and an expectation maximization algorithm (EM) to model the new features as a
Gaussian mixture (GM). The objective is to evolve features that better separate the
classes when modeled as GM. The fitness measure, in this case, considers both the
within-class scatter and the between-class scatter values.

Kaizen Programming for Feature Construction for Classification 43

GP+C4.5 (Neshatian et al. 2007): In this contribution, classical GP is used
to evolve multiple features, and a class-dispersion and entropy-based measure is
employed to calculate a feature’s quality. A feature is independently constructed for
each class in the dataset. Therefore, the distribution of classes in a particular feature
must be well separated. After evolving the features, experiments were performed
using the well-known C4.5 classifier.

GP+CART (Muharram and Smith 2004): These authors employ two distinct
fitness measures to evolve features using GP: Information Gain and Gini Index.
The constructed feature is assumed to be a node in a decision-tree, and fitness is
calculated using the result of a split in that node. A single feature is evolved in
each GP run, and four classifiers are tested on the features. We selected the results
obtained by CART to compare to the results herein.

In the next section we describe KP and our proposal for feature construction.

4 Kaizen Programming Applied to Feature Construction

Kaizen Programming (KP), proposed by de Melo (2014), is a novel tool inspired by
the concepts of the Kaizen method (Imai 1986). KP is a computational implementa-
tion of a Kaizen event with the Plan-Do-Check-Act (PDCA) methodology employed
to guide a process continuous improvement. However, KP is an abstraction of the
main components of PDCA.

Compared with classical GP, KP follows a different method for the automated
design of algorithms. KP individuals are not complete solutions, only parts of solu-
tions that have to combine together. As a result, evolution becomes a collaborative
approach with the expectation that more than one partial solution is improved to
help other partial solutions.

In KP, a team of experts is formed to propose ideas to solve a problem, which
then are joined to become a solution. The quality of a solution measures how well it
solves the problem, and the quality of an idea quantifies its contribution/importance
to the solution. KP first builds a model, and then calculates the importance of each
feature. Therefore, different from general GP and other evolutionary algorithms that
perform trial-and-error search guided by natural selection, in KP can determine,
exactly which parts of the solution should be removed or improved because they
were important to the method that built the model. Consequently, the experts
contribute by providing better ideas in each cycle. This results in a reduction in
bloat, population size, and number of function evaluations. A further difference to
other team-based approaches is that the team in KP is a set of agents (data structure
+ procedures), while for other methods a team is a set of solutions (individuals).

Conceptually, the knowledge acquired during the search is shared with the team
to improve everyone’s ideas. Thus, there is a single set of ideas accessible to all
experts, not multiple populations. Not all experts may provide useful contributions
all the time that is, the search mechanism does not guarantee that every cycle will

44 V.V. de Melo and W. Banzhaf

give a better solution. However, it is expected that better ideas are generated over
the cycles. A brief explanation of the PDCA cycle is presented next.

REPEAT

PLAN: assuming the current ideas (called standard) the team performs a
brainstorming, and each expert proposes one or more ideas to solve part of
the problem;
DO: the standard and new ideas are applied (executed/parsed/evaluated/
calculated) to the problem and put together to become a complete solution;
CHECK: evaluate the proposed solution, then each single idea (considering the
standard and the new ones) is analyzed and its contribution to solve the problem
is measured. Create a new solution using only the important ideas and measure
its quality;
ACT: if the solution quality has improved, then the standard is updated, which
is presented to the team along with each contribution, improving the knowledge
of the problem. Create another kaizen event with a new team if the current one
doesn’t improve the standard after a certain number of cycles;

WHILE target not achieved

In this chapter, KP is employed to perform high-level feature construction
to improve prediction quality of a particular classifier. Various features can be
generated at the same time, being improved over PDCA cycles. As opposed to what
happens in traditional approaches, in KP those features are dependent on each other,
therefore the result is a feature set for a single model, not an ensemble.

4.1 Implementation

Algorithm 1 presents the pseudo-code of the KP method implemented for this
contribution. The experts work on a tree-based representation, i.e., as a traditional
GP, and may perform only recombination (crossover), only variation (mutation), or
both.

The ideas proposed by the experts are non-linear combinations of the original
features (formulas) using the terminals and non-terminals defined by the user. The
ideas are randomly selected for improvement (there is no tournament) as all of them
are supposed to be important. To facilitate implementation, we assumed that the
number of experts is the same as the number of features to be constructed, but they
are actually distinct parameters. The Expansion Factor to increase the size of the
team is a mechanism that may be used when stagnation is detected.

The method selected for building the model was the Classification and Regres-
sion Tree algorithm (CART, Breiman et al. 1984). Also, our CART implemen-
tation (Pedregosa et al. 2011) provides the Gini Importance (Breiman 2001) for
each feature of the dataset, which is used as the importance measure. Thus, one
may notice that CART must be used twice: first with all features to measure

Kaizen Programming for Feature Construction for Classification 45

Algorithm 1 Pseudo-code of Kaizen Programming for feature construction
1. Read the dataset and set n as the number of instances
2. Set CurrentStandardQuality 0, MaxStagnated, Stagnated 0, Size of the Team (st),

number of New Ideas per Expert (NIE), Expansion Factor (EF), w st � NIE
3. Define the target and set it as not achieved
4. Generate st initial random ideas as CurrentStandard
5. Apply the CurrentStandard (calculate the results from the expressions) and create the feature

set STDn;st

6. BestStandard CurrentStandard
7. BestStandardQuality CurrentStandardQuality on k-fold cross-validation
8. Do

a. Generate, via GP operators, the TrialIdeas, which are NIE variations (ideas) of the
CurrentStandard through multiple crossover and mutation. Even the worst idea from
CurrentStandard might have offspring

b. Apply each new idea, resulting in the TRIALn;w feature set
c. Create the expanded feature set Fn;stCw containing TRIALn;w and STDn;st

d. Create new k stratified folds from F to reduce bias in the search
e. For each fold

i. Induce a decision tree via CART
ii. Calculate the array FoldImportances as the importance of each feature from F using Gini

Importance

f. End For
g. Set TrialImportances as the average of all FoldImportances
h. MostImportantTrialIdeas is the subset of the st most important TrialIdeas (considering

TrialImportances)
i. Create MITIn;st as a subset of F, and calculate MostImportantTrialIdeasQuality using the

current k-folds
j. If MostImportantTrialIdeasQuality is better than CurrentStandardQuality then

i. CurrentStandard MostImportantTrialIdeas
ii. CurrentStandardQuality MostImportantTrialIdeasQuality

iii. STDn;st MITIn;st

iv. If CurrentStandardQuality is better than BestStandardQuality then

A. BestStandard CurrentStandard
B. BestStandardQuality CurrentStandardQuality

v. End If

k. Else

i. Stagnated StagnatedC 1

l. End If
m. If Stagnated > MaxStagnation then

i. Stagnated 0

ii. st st C dst � EFe to increase the team of experts’ size
iii. Generate st initial random ideas as CurrentStandard
iv. Apply the CurrentStandard (calculate the results from the expressions) and create STDn;st

v. Calculate CurrentStandardQuality on k-fold cross-validation

n. End If

9. While target is not achieved
10. Return BestStandard, BestStandardQuality

46 V.V. de Melo and W. Banzhaf

their importance, and then with the reduced feature set to measure the actual
solution quality. Therefore there is an expansion of the feature set, followed by
feature selection. Finally, to reduce the risk of overfitting we used cross-validation
in the training.

5 Experiments

This section presents our experiments performed to evaluate KP for classification.
KP was tested using publicly available two-class medical datasets from the UCI
online repository (Lichman 2013). Some characteristics of the datasets are presented
in Table 1. The datasets were chosen after selecting papers from literature that will
be used for comparison.

5.1 Pre-processing

Given that KP generates mathematical expressions using features from the dataset,
it is necessary to prepare the data. The Weka machine learning tool (Hall et al.
2009) was used to replace missing values with the means from the training data,
instead of removing incomplete instances. No other transformation, normalization,
or standardization was performed on the data.

5.2 Computational Environment

KP was implemented in the Python programming language (version 2.7.6), using
GP from DEAP (Distributed Evolutionary Algorithms in Python) library (version
1.0.1), and scikit-learn library (version 0.14.2) for CART. To evaluate the features
discovered by KP, tests were performed using CART in Weka (version 3.6.11)
running on Java (version 1.7.0_55) via OpenJDK Runtime Environment (IcedTea
version 2.4.7). The experiments were executed on an Intel i7 920 desktop, with 6Gb
of RAM, Archbang Linux (kernel version 3.14.5-1), GCC (version 4.9.0 20140521).

Table 1 Summary of the
two-class datasets employed
in the experiments

Continuous

Dataset attributes Instances

Breast-w (Winsconsin) 9 699

Diabetes (PIMA) 8 768

Liver-disorders (BUPA) 6 345

Parkinson 22 195

Kaizen Programming for Feature Construction for Classification 47

5.3 Organization of the Experiments

During the discovery phase (training), a k-fold stratified cross-validation was
performed to calculate both the importance of ideas and the solution quality of
selected ideas. It is important to be clear that KP did not evolve features for a specific
k-fold configuration, because every time the objective function was called k new
stratified folds were generated.

For each dataset of Table 1, KP was run 32 independent times with a different
random seed.1 All runs used the configuration shown in Tables 2, 3, and 4. KP was
configured to search for the same number of ideas (10 new features), independently
of the number of features in the original dataset. However, not all may be used in
the final classifier.

In the expert configuration, GP evolutionary operators, pdiv, plog, and psqrt are
protected versions of these operations. pdiv.a; b/ returns zero whenever b is zero;
plog.a/ returns zero whenever the a is zero, and log.abs.a// otherwise; psqrt.a/

returns 1e100 if a � 0; and hypot.a; b/ D sqrt.a � a C b � b/.
Since the CART implementation in scikit-learn is not exactly the same as in

Weka, it was necessary to use two parameters to achieve greater similarity between
the results of different implementations: maximum tree-depth and minimum objects
in the leaf node. Features were then tested, in the second phase, with distinct
configurations of the CART method (in Weka), which also performed the statistical
analysis. This experiment was to evaluate the decision-tree’s performance using
the original feature set (O), the new feature set (N) discovered by KP, and the

Table 2 KP and CART
configuration

Parameter Value

Initial experts (st) 10

Initial ideas generator GP ramped half-half

Initial ideas max. depth 2

New ideas per expert (NIE) 5

Cycles 2000

Stagnation 2.5 % of the cycles

Factor (EF) to increase experts 0, disabled

Independent runs 32

Model builder (decision-tree) CART

CART Max. depth 5

CART Min. instances at a leaf 10

k (folds) 10

Solution quality/fitness Accuracy

Idea importance Gini Importance

1Thirty-two runs were performed because it is a multiple of 8, and the runs were done in parallel
on a quad-core machine with hyper-threading, so we employed all available processing units.

48 V.V. de Melo and W. Banzhaf

Table 3 Experts configuration (GP operators)

Parameter Value

Crossover probability 0.2

Idea combinator/crossover operator One-point

Mutation probability 1.0

Idea improver/mutation operator GP subtree replacement

Max. depth 10

Non-terminals C;�;�; pdiv.a; b/; plog; psqrt; neg; cos; sin; tan;

tanh; square; cube; sigmoid; hypot.a; b/; max.a; b/;

min.a; b/; avg2.a; b/; avg3.a; b; c/

Terminals xi; i D 1; : : :; nf (features of the original dataset)

Table 4 CART configuration
in Weka for the Test phase

Config. name Min.Number.Obj Prune Use OneSE rule

CART_1 2 No No

CART_2 2 Yes No

CART_3 2 Yes Yes

CART_4 10 No No

CART_5 10 Yes No

CART_6 10 Yes Yes

The other parameters were the default values

combination of new and original feature sets (NO). In Weka, CART was configured
in six different ways (see Table 4) to verify the influence of the pruning mechanism.

The second analysis is the comparison of the best results obtained by CART
experiments versus other feature construction techniques, mainly using Genetic
Programming, whose results are reported in the literature. We selected only those
that performed ten-fold cross-validation.

5.4 Method of Analysis

The results presented here are only from the test phase. Given that KP was run 32
times on each dataset, we have 32 new feature sets for each of them. A CART
decision-tree was induced for each feature set using tenfold cross-validation.
Therefore, the original dataset gives 10 results, while each new feature set gives
32 � 10 D 320 results.

The evaluated measures were Accuracy, Weighted F-Measure, and Tree size.
Accuracy considers the whole dataset, while the Weighted F-Measure is the sum
of all F-measures, each weighted according to the number of instances with that
particular class label. Tree size is used to evaluate the complexity of the final
solution; however, it does not take into consideration the complexity of a feature.

Kaizen Programming for Feature Construction for Classification 49

The relevance of this information can be decided by the user when defining the
maximum tree-depth used by KP when generating new ideas (features).

In order to verify if there are differences between the feature sets (O versus N,
and O versus NO), we executed Welch’s t-test at a significance level ˛ D 0:05. If
the new features result in statistically different means, a mark ‘*’ is inserted after
the standard-deviation in the tables showing the results.

5.5 Evaluation of the Discovered Features

For each dataset investigated here, one has a table with a short descriptive analysis
(mean and standard-deviation) of the results for each CART configuration and
feature sets, with the significant differences (via Welch’s test) marked when
necessary. The discussion on the results is as follows.

For the Breast Cancer dataset, one can see the short descriptive analysis in
Table 5. Accuracy when using either the New features (N) or the combination of
New and Original features (NO) improved significantly, as shown by the symbol
‘*’. It is interesting to notice that for both configurations CART_5 and CART_6,
the accuracies using N and NO were identical. This suggests that CART used only
the new features from the NO dataset; therefore, the Original features (O) were not
very useful anymore. This hypothesis gets stronger when configurations CART_2,
CART_3, and CART_4 are analyzed, in which the mean accuracy of using N is
bigger than using NO. The highest mean accuracy was achieved using a minimum of
2 instances for leaf and the pruning mechanism without the OneSE rule (CART_2).

The second classification quality measure is the Weighted F-Measure, which
considers the correct classification of each class separately. Again, all CART
configurations presented statistically better results when using N. For unbalanced
datasets, where one class has considerably more instances than the other, these two
measures may not have the same statistical interpretation.

The third measure is the tree size. Given that N is more representative than
O, a significant reduction is expected. As shown in the corresponding table, this
reduction was bigger than 50 % for CART_1, CART_2, and CART_3, all of them
using minimum number of leaves set 2. A relevant comparison can be made between
the results of CART_1 and CART_3: there was an increment in the accuracy (from
93:7 to 97:28 %) and a reduction in the tree size (from 41 to 4.41). Consequently,
by the results present in this table, the features discovered by KP for the Wisconsin
Breast Cancer dataset helped CART in finding better and smaller trees.

Regarding the PIMA diabetes dataset (Table 6), the lowest accuracy occurred
using CART_1 on the O dataset, while the highest accuracy was obtained with
CART_2 on the N dataset. All N datasets improved over O and were also better than
all NO. Similar behavior is present in the Weighted F-Measure results. A posterior
application of feature selection on NO could help improving the accuracy. With
respect to the trees sizes, large reductions can be seen from CART_1 to CART_2,
with corresponding increase in Accuracy and Weighted F-Measure. However, in

50 V.V. de Melo and W. Banzhaf

Ta
bl

e
5

Sh
or

td
es

cr
ip

tiv
e

an
al

ys
is

(m
ea

n
an

d
st

an
da

rd
-d

ev
ia

tio
n)

fo
r

th
e

br
ea

st
-w

da
ta

se
t

M
et

ri
c

Fe
at

C
A

R
T

_1
C

A
R

T
_2

C
A

R
T

_3
C

A
R

T
_4

C
A

R
T

_5
C

A
R

T
_6

A
cc

ur
ac

y
O

93
.7

0
(2

.8
0)

94
.4

2
(3

.5
3)

94
.2

7
(3

.9
3)

93
.9

9
(4

.0
3)

94
.1

3
(3

.9
6)

93
.5

6
(4

.7
3)

A
cc

ur
ac

y
N

97
.2

1
(2

.1
6)

*
97

.4
3

(2
.0

3)
*

97
.2

8
(2

.0
2)

*
97

.4
4

(1
.9

9)
*

97
.1

2
(2

.6
6)

*
97

.0
4

(2
.6

4)
*

A
cc

ur
ac

y
N

O
97

.2
2

(2
.1

6)
*

97
.3

8
(2

.0
7)

*
97

.2
5

(2
.0

5)
*

97
.4

3
(1

.9
9)

*
97

.1
2

(2
.6

6)
*

97
.0

4
(2

.6
4)

*

W
.F

-M
ea

s.
O

0.
94

(0
.0

28
)

0.
94

(0
.0

35
)

0.
94

(0
.0

39
)

0.
94

(0
.0

41
)

0.
94

(0
.0

4)
0.

94
(0

.0
47

)

W
.F

-M
ea

s.
N

0.
97

(0
.0

21
)*

0.
97

(0
.0

2)
*

0.
97

(0
.0

2)
*

0.
97

(0
.0

2)
*

0.
97

(0
.0

32
)*

0.
97

(0
.0

32
)*

W
.F

-M
ea

s.
N

O
0.

97
(0

.0
22

)*
0.

97
(0

.0
2)

*
0.

97
(0

.0
2)

*
0.

97
(0

.0
2)

*
0.

97
(0

.0
32

)*
0.

97
(0

.0
32

)*

T
re

e
si

ze
O

41
.0

0
(3

.5
3)

16
.8

0
(7

.3
3)

9.
00

(5
.0

8)
15

.4
0

(1
.2

6)
5.

60
(0

.9
7)

5.
20

(1
.1

4)

T
re

e
si

ze
N

18
.8

9
(4

.1
9)

*
7.

02
(3

.5
8)

*
4.

41
(2

.3
5)

*
8.

00
(2

.8
0)

*
3.

76
(1

.5
8)

*
3.

18
(0

.8
6)

*

T
re

e
si

ze
N

O
18

.3
4

(4
.2

2)
*

6.
74

(3
.3

6)
*

4.
25

(2
.2

1)
*

7.
96

(2
.7

8)
*

3.
76

(1
.5

8)
*

3.
18

(0
.8

6)
*

Kaizen Programming for Feature Construction for Classification 51

Ta
bl

e
6

Sh
or

td
es

cr
ip

tiv
e

an
al

ys
is

(m
ea

n
an

d
st

an
da

rd
-d

ev
ia

tio
n)

fo
r

th
e

di
ab

et
es

da
ta

se
t

M
et

ri
c

Fe
at

C
A

R
T

_1
C

A
R

T
_2

C
A

R
T

_3
C

A
R

T
_4

C
A

R
T

_5
C

A
R

T
_6

A
cc

ur
ac

y
O

71
.7

5
(3

.3
9)

75
.1

3
(4

.0
9)

74
.3

6
(4

.0
7)

75
.2

6
(6

.2
0)

75
.2

7
(3

.6
9)

74
.0

9
(4

.4
3)

A
cc

ur
ac

y
N

75
.5

4
(4

.5
1)

*
79

.6
5

(4
.6

5)
*

78
.5

8
(4

.7
3)

*
79

.4
8

(4
.5

9)
*

79
.4

5
(4

.7
9)

*
78

.3
6

(4
.7

9)
*

A
cc

ur
ac

y
N

O
74

.6
2

(4
.7

0)
79

.1
7

(4
.8

9)
*

78
.1

9
(4

.8
3)

*
79

.0
2

(4
.5

3)
*

79
.0

8
(4

.6
7)

*
78

.0
5

(4
.7

6)
*

W
.F

-M
ea

s.
O

0.
71

(0
.0

35
)

0.
74

(0
.0

48
)

0.
73

(0
.0

43
)

0.
75

(0
.0

61
)

0.
74

(0
.0

41
)

0.
73

(0
.0

44
)

W
.F

-M
ea

s.
N

0.
75

(0
.0

46
)*

0.
79

(0
.0

49
)*

0.
78

(0
.0

51
)*

0.
79

(0
.0

47
)*

0.
79

(0
.0

5)
*

0.
78

(0
.0

52
)*

W
.F

-M
ea

s.
N

O
0.

75
(0

.0
47

)
0.

79
(0

.0
52

)*
0.

78
(0

.0
52

)*
0.

79
(0

.0
47

)*
0.

79
(0

.0
5)

*
0.

77
(0

.0
51

)*

T
re

e
si

ze
O

13
1.

80
(1

1.
93

)
16

.2
0

(1
3.

54
)

4.
40

(1
.3

5)
27

.8
0

(5
.9

8)
8.

60
(8

.3
7)

4.
20

(1
.4

0)

T
re

e
si

ze
N

10
5.

51
(1

4.
74

)*
15

.2
7

(7
.8

7)
9.

19
(4

.6
7)

*
26

.6
6

(5
.6

9)
13

.8
4

(5
.3

3)
*

8.
57

(4
.4

7)
*

T
re

e
si

ze
N

O
10

4.
69

(1
4.

45
)*

14
.3

6
(8

.0
2)

8.
01

(4
.5

1)
*

26
.1

8
(5

.1
3)

13
.3

8
(5

.8
1)

*
7.

50
(4

.1
5)

52 V.V. de Melo and W. Banzhaf

contrast to what happened to the breast-w dataset, in this case the sizes were bigger
when N and NO were used by CART_3, CART_5, and CART_6. We are still
investigating the results to propose a reasonable explanation for this issue.

In the BUPA liver-disorders dataset (Table 7) both Accuracy and Weighted
F-Measure improved more than 11:94 % D .75 % � 67 %/=67 % when the
discovered features were employed. As will be seen in the comparison with results
from the literature, this improvement is very relevant. Finally, the increase in the
trees sizes is present for the same CART configurations as in the previous dataset.
Nevertheless, smaller trees showed similar or better quality than the bigger ones.

The last dataset contains information of Parkinson’s disease. The most noticeable
characteristic in Table 8 is that even though both the mean Accuracy and Weighted
F-Measure improved, the standard-deviations were large, reflecting non-significant
differences for configurations CART_4, CART_5, and CART_6, that had as a
termination criterion a minimum of 10 instances per leaf. Therefore, it was better to
let the tree grow deeper and prune it afterwards, taking the risk of overfitting. This
means that, for this dataset, for a significant number of times KP did not discover
features capable of reducing entropy in the leaf nodes. A possible explanation is that,
as shown in Table 1, this dataset has not only more attributes than the other three
datasets, but also fewer instances. Therefore, either a longer run would be necessary
or one would need more than 10 features. Nevertheless, the new features led to an
increase in mean Accuracy from 87:68 % (best solution using O) to 93:85 % (best
solution using N or NO).

5.6 Comparison Against Other Feature Construction
Techniques

In this section, KP’s results are compared with those from the literature. In order to
have a fairer comparison, we selected only works using GP (or a similar technique)
to evolve features, with ten-fold cross-validation in the test phase. The comparison
is performed with techniques presented in the literature review: GPMFC+CART,
MLGP, GP-EM, GP+C4.5, and GP+CART. The results on other methods were taken
from the other authors’ original works.

From each dataset in the previous section, we have selected the highest mean
Accuracy among the CART configurations (see Table 9). Not all datasets used in
this work were found in other papers.

As one can see, the features discovered by KP led to more accurate classifiers
than all the other feature construction techniques. An important characteristic the
number of feature sets created by the techniques. For KP, two feature sets have
to be tested at each generation: the first one using the current ideas (features) and
the new ideas simultaneously to calculate the importance of each idea; the second
one using only the st most important ideas to finally calculate the solution quality.
Given that KP was run for 2000 cycles, 4000 feature sets were generated in the

Kaizen Programming for Feature Construction for Classification 53

Ta
bl

e
7

Sh
or

td
es

cr
ip

tiv
e

an
al

ys
is

(m
ea

n
an

d
st

an
da

rd
-d

ev
ia

tio
n)

fo
r

th
e

liv
er

-d
is

or
de

rs
da

ta
se

t

M
et

ri
c

Fe
at

C
A

R
T

_1
C

A
R

T
_2

C
A

R
T

_3
C

A
R

T
_4

C
A

R
T

_5
C

A
R

T
_6

A
cc

ur
ac

y
O

67
.5

4
(8

.3
2)

67
.5

7
(7

.9
4)

65
.8

5
(8

.8
8)

68
.6

6
(6

.3
7)

65
.2

6
(7

.5
9)

65
.2

5
(8

.2
2)

A
cc

ur
ac

y
N

76
.2

3
(7

.5
5)

*
78

.8
6

(7
.2

7)
*

77
.1

0
(7

.2
4)

*
78

.8
0

(7
.5

1)
*

77
.6

4
(7

.0
8)

*
74

.9
5

(7
.1

5)
*

A
cc

ur
ac

y
N

O
75

.7
1

(7
.6

9)
*

78
.3

4
(7

.3
2)

*
76

.5
0

(7
.2

4)
*

78
.2

8
(7

.4
2)

*
77

.1
8

(7
.2

3)
*

74
.7

7
(7

.1
8)

*

W
.F

-M
ea

s.
O

0.
67

(0
.0

83
)

0.
66

(0
.0

87
)

0.
64

(0
.0

89
)

0.
68

(0
.0

65
)

0.
64

(0
.0

81
)

0.
62

(0
.1

0)

W
.F

-M
ea

s.
N

0.
76

(0
.0

76
)*

0.
79

(0
.0

73
)*

0.
77

(0
.0

75
)*

0.
79

(0
.0

76
)*

0.
77

(0
.0

72
)*

0.
74

(0
.0

75
)*

W
.F

-M
ea

s.
N

O
0.

75
(0

.0
77

)*
0.

78
(0

.0
74

)*
0.

76
(0

.0
75

)*
0.

78
(0

.0
75

)*
0.

77
(0

.0
74

)*
0.

74
(0

.0
75

)*

T
re

e
si

ze
O

79
.4

0
(1

2.
64

)
20

.8
0

(1
4.

92
)

8.
00

(5
.8

3)
22

.2
0

(3
.4

3)
10

.0
0

(4
.5

5)
5.

80
(3

.1
6)

T
re

e
si

ze
N

53
.4

8
(

9.
96

)*
17

.7
6

(7
.4

8)
11

.4
3

(4
.2

0)
*

18
.1

6
(4

.0
7)

*
12

.6
2

(4
.1

7)
8.

57
(4

.1
4)

T
re

e
si

ze
N

O
50

.7
1

(9
.2

9)
*

17
.2

6
(8

.0
2)

10
.9

4
(4

.5
3)

17
.6

2
(3

.8
7)

*
12

.2
1

(4
.3

9)
8.

18
(4

.1
6)

54 V.V. de Melo and W. Banzhaf

Ta
bl

e
8

Sh
or

td
es

cr
ip

tiv
e

an
al

ys
is

(m
ea

n
an

d
st

an
da

rd
-d

ev
ia

tio
n)

fo
r

th
e

pa
rk

in
so

ns
da

ta
se

t

M
et

ri
c

Fe
at

C
A

R
T

_1
C

A
R

T
_2

C
A

R
T

_3
C

A
R

T
_4

C
A

R
T

_5
C

A
R

T
_6

A
cc

ur
ac

y
O

87
.6

8
(4

.2
7)

85
.6

6
(4

.5
7)

87
.2

6
(8

.2
3)

86
.7

1
(7

.1
2)

86
.2

1
(8

.2
1)

84
.7

1
(8

.5
4)

A
cc

ur
ac

y
N

93
.3

2
(5

.3
4)

*
93

.8
5

(5
.5

3)
*

93
.7

9
(5

.6
4)

*
92

.2
5

(6
.6

8)
*

91
.2

0
(7

.0
3)

90
.4

0
(7

.1
1)

A
cc

ur
ac

y
N

O
92

.8
0

(5
.6

4)
*

93
.1

7
(5

.8
5)

*
93

.0
3

(6
.1

7)
*

91
.7

1
(6

.8
6)

90
.6

0
(7

.3
7)

89
.5

7
(7

.6
4)

W
.F

-M
ea

s.
O

0.
88

(0
.0

41
)

0.
86

(0
.0

47
)

0.
87

(0
.0

84
)

0.
86

(0
.0

73
)

0.
86

(0
.0

8)
0.

84
(0

.0
89

)

W
.F

-M
ea

s.
N

0.
93

(0
.0

54
)*

0.
94

(0
.0

56
)*

0.
94

(0
.0

59
)*

0.
92

(0
.0

69
)*

0.
91

(0
.0

74
)

0.
90

(0
.0

76
)

W
.F

-M
ea

s.
N

O
0.

93
(0

.0
57

)*
0.

93
(0

.0
6)

*
0.

93
(0

.0
65

)*
0.

91
(0

.0
72

)
0.

90
(0

.0
78

)
0.

89
(0

.0
81

)

T
re

e
si

ze
O

17
.6

0
(4

.4
3)

10
.8

0
(3

.4
6)

5.
40

(2
.8

0)
8.

40
(1

.3
5)

5.
80

(2
.7

0)
3.

80
(1

.6
9)

T
re

e
si

ze
N

14
.2

0
(2

.8
5)

*
8.

65
(2

.8
5)

7.
26

(2
.1

2)
*

7.
44

(1
.8

0)
5.

83
(1

.8
5)

5.
02

(1
.8

2)

T
re

e
si

ze
N

O
13

.5
2

(3
.2

5)
*

8.
54

(2
.7

6)
*

7.
12

(2
.1

6)
*

7.
28

(1
.6

9)
5.

72
(1

.8
6)

4.
74

(1
.8

3)

Kaizen Programming for Feature Construction for Classification 55

Table 9 Comparison of mean accuracy among feature extraction techniques that use GP

Dataset KP+CART GPMFC+CART MLGP GP-EM GP+C4.5 GP+CART

Breast-w 97.44 96.3** 96.8 – 97.2** –

Diabetes 79.65 – 71.6 – 75.4 –

Liver-disorders 78.86 67.68 67.5 – 70.4 69.71

Parkinsons 93.85 – – 93.12 – –

Feature sets 4000 100,000 600,000 11,200 18,000 60,000

Symbol ‘**’ means a reduction in the number of instances due to missing values, and “–” means
Not Available

process. Even though a ten-fold cross-validation approach was used in the training
phase, the features were the same for all folds. Because the features in KP are partial
solutions, they cannot be evaluated separately.

On the other hand, for the other techniques from Table 9 a single individual is a
solution to the problem thus they employed more feature sets. As most techniques
evolve a single expression per solution/class, more runs are necessary to have a set
of features, while KP can evolve many complementary features at the same time.
For them, we calculated the number of feature sets as Population size � number
of generations � number of features generated. An interesting conjecture is that in
order to achieve a performance close to that shown by KP, other techniques may
need a more complex formula, while KP may generate a set of smaller/simpler
formulas allowing for a posterior feature selection procedure, if desired by the user.

6 Conclusions

This chapter presented Kaizen Programming (KP) as a technique to perform high-
level feature construction. KP evolves partial solutions that complement each other
to solve a problem, instead of producing individuals that encode complete solutions.

Here, KP employed tree-based evolutionary operators to generate ideas (new
features for the dataset) and the CART decision-tree technique for the wrapper
approach. The gini impurity used by CART as split criterion is used to calculate the
importance of each feature, translating into the importance of each partial solution
in KP. The quality of complete solutions was calculated using accuracy in a tenfold
stratified cross-validation scheme.

Four widely studied datasets were used to evaluate KP, and tests were performed
on six distinct CART configurations. Comparisons among different configura-
tions were made in terms of mean and standard deviation of accuracy, weighted
f -measure, and tree-size. A hypothesis test was performed to compare the mean
performance when using the new features, and the new and original features
together. Results show that the new features with or without the original ones,
improved performance and reduced tree-sizes significantly.

The second comparison was against five related approaches from the literature.
All those approaches employ genetic programming to construct features from the

56 V.V. de Melo and W. Banzhaf

original dataset and test them using well-known classifiers. It was found that KP
was better than all other approaches, while requiring a fraction of the feature sets
generated in other work. KP was not only more accurate, but also much faster.

As future work, a deeper sensitivity analysis will be necessary to verify KP’s
behavior on distinct configurations in order to be able to differentiate poor from
good configurations.

Acknowledgements This paper was supported by the Brazilian Government CNPq (Universal)
grant (486950/2013-1) and CAPES (Science without Borders) grant (12180-13-0) to Vinícius
Veloso de Melo, and Canada’s NSERC Discovery grant RGPIN 283304-2012 to Wolfgang
Banzhaf.

References

Banzhaf W, Nordin P, Keller R, Francone F (1998) Genetic programming - an introduction. Morgan
Kaufmann, San Francisco

Brameier M, Banzhaf W (2001) Evolving teams of predictors with linear genetic programming.
Genet Program Evolvable Mach 2(4):381–407

Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Breiman L, Friedman J, Stone C, Olshen R (1984) Classification and regression trees. The

Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis, London
de Melo VV (2014) Kaizen programming. In: Proceedings of the 2014 conference on genetic and

evolutionary computation (GECCO). ACM, New York, pp 895–902
Drozdz K, Kwasnicka H (2010) Feature set reduction by evolutionary selection and construction.

In: Agent and multi-agent systems: technologies and applications. Springer, Berlin, Heidelberg,
pp 140–149

Freitas AA (2008) A review of evolutionary algorithms for data mining. In: Soft computing for
knowledge discovery and data mining, Springer, Berlin, pp 79–111

Gavrilis D, Tsoulos IG, Dermatas E (2008) Selecting and constructing features using grammatical
evolution. Pattern Recogn Lett 29(9):1358–1365. doi:10.1016/j.patrec.2008.02.007.
http://www.sciencedirect.com/science/article/B6V15-4S01WDH-4/2/aaff3c40c5eca125dfacb
426d88fa177

Gitlow H, Gitlow S, Oppenheim A, Oppenheim R (1989) Tools and methods for the improvement
of quality. Irwin series in quantitative analysis for business. Taylor & Francis, London

Guo H, Zhang Q, Nandi AK (2008) Feature extraction and dimensionality reduction by genetic
programming based on the fisher criterion. Expert Syst 25(5):444–459

Guo PF, Bhattacharya P, Kharma N (2010) Advances in detecting parkinson’s disease. In: Zhang
D, Sonka M (eds) Medical biometrics. Lecture notes in computer science, vol 6165. Springer,
Berlin, Heidelberg, pp 306–314

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining
software: an update. SIGKDD Explor Newsl 11(1):10–18. doi:10.1145/1656274.1656278.
http://doi.acm.org/10.1145/1656274.1656278

Imai M (1986) Kaizen (Ky’zen), the key to Japan’s competitive success. McGraw-Hill, New York
Isabelle G, André E, An introduction to feature extraction. In: Guyon I, Gunn S, Nikravesh M,

Zadeh LA (eds) Feature extraction: foundations and applications (Studies in Fuzziness and
Soft Computing). Springer, Berlin/Heidelberg, pp 1–25. doi:10.1007/978-3-540-35488-8

Jolliffe I (2005) Principal component analysis. Wiley Online Library
Kantardzic M (2011) Data mining: concepts, models, methods, and algorithms. Wiley, New York
Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml

http://dx.doi.org/10.1016/j.patrec.2008.02.007
http://dx.doi.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
http://dx.doi.org/10.1007/978-3-540-35488-8
http://archive.ics.uci.edu/ml
http://www.sciencedirect.com/science/article/B6V15-4S01WDH-4/2/aaff3c40c5eca125dfacb426d88fa177
http://www.sciencedirect.com/science/article/B6V15-4S01WDH-4/2/aaff3c40c5eca125dfacb426d88fa177

Kaizen Programming for Feature Construction for Classification 57

Liu H, Motoda H (1998) Feature extraction, construction and selection: a data mining perspective.
Springer, Berlin

Miner G, Nisbet R, Elder IVJ (2009) Handbook of statistical analysis and data mining applications.
Academic Press, New York

Muharram MA, Smith GD (2004) Evolutionary feature construction using information gain and
gini index. In: Genetic programming, Springer, pp 379–388

Neshatian K, Zhang M, Johnston M (2007) Feature construction and dimension reduction
using genetic programming. In: AI 2007: advances in artificial intelligence. Springer, Berlin,
pp 160–170

Neshatian K, Zhang M, Andreae P (2012) A filter approach to multiple feature construction for
symbolic learning classifiers using genetic programming. Trans Evol Comp 16(5):645–661

Nguyen DV, Rocke DM (2004) On partial least squares dimension reduction for microarray-based
classification: a simulation study. Comput Stat Data Anal 46(3):407–425

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Schölkopf B, Smola A, Müller KR (1997) Kernel principal component analysis. In: Artificial
neural networks–ICANN 97. Springer, Berlin, pp 583–588

Smith MG, Bull L (2005) Genetic programming with a genetic algorithm for feature construction
and selection. Genet Program Evolvable Mach 6(3):265–281

Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol
Comput 1(1):67–82

Wu SX, Banzhaf W (2010) A hierarchical cooperative evolutionary algorithm. In: Proceedings
of the 12th annual conference on genetic and evolutionary computation, GECCO ’10. ACM,
New York, pp 233–240

Wu SX, Banzhaf W (2011) Rethinking multilevel selection in genetic programming. In: Pro-
ceedings of the 13th annual conference on genetic and evolutionary computation, Dublin,
pp 1403–1410

GP As If You Meant It: An Exercise
for Mindful Practice

William A. Tozier

Abstract In this contribution I present a kata called “GP As If You Meant It”,
aimed at advanced users of genetic programming. Inspired by code katas that are
popular among software developers, it’s an exercise designed to help participants
hone their skills through mindful practice. Its intent is to surface certain unques-
tioned habits common in our field: to make the participants painfully aware of the
tacit justification for certain GP algorithm design decisions they may otherwise
take for granted. In the exercise, the human players are charged with trying to
“rescue” an ineffectual but unstoppable GP system (which is the other “player”),
which has been set up to only use “random guessing”—but they must do so by
incrementally modifying the search process without interrupting it. The exercise
is a game for two players, plus a Facilitator who acts as a referee. The human
“User” player examines the state of the GP run in order to make amendments to its
rules, using a very limited toolkit. The other “player” is the automated GP System
itself, which adds to a growing population of solutions by applying the search
operators and evaluation functions specified by the User player. The User’s goal
is to convince the System to produce “good enough” answers to a target supervised
learning problem chosen by the Facilitator. To further complicate the task, the User
must also provide the Facilitator with convincing justifications, or warrants, which
explain each move she makes. The Facilitator chooses the initial search problem,
provides training data, and most importantly is empowered to disqualify any of the
User’s moves if unconvinced by the accompanying warrants. As a result, the User
is forced to work around our field’s most insidious habit: that of “stopping it and
starting over again with different parameters”. In the process of working within these
constraints, the participants—Facilitator and User—are made mindful of the habits
they have already developed, tacitly or explicitly, for coping with “pathologies” and
“symptoms” encountered in their more typical work with GP.

Keywords Mindful practice • Design process • Coding kata • Praxis • Mangle
of Practice

W.A. Tozier (�)
Ann Arbor, MI, USA
e-mail: bill@vagueinnovation.com

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_4

59

mailto:bill@vagueinnovation.com

60 W.A. Tozier

1 Why: An Excuse

More than a decade ago, Rick Riolo, Bill Worzel and I worked together on a genetic
programming consulting project. As we chatted one day, one of them—I don’t recall
which, and accounts vary—was asked what he’d most like to see as GP “moved
forward”, and said he’d want the field to think more about the “symptoms” we so
often see when we apply evolutionary search processes in complex settings. That
is: premature convergence, slow and spotty improvement, a catastrophic lack of
diversity, and more generally that ineffable feeling all GP professionals experience
when we look at results and know we have chosen unwisely.

Now the reader will point out that the literature in our field overflows with well-
written papers describing tips for avoiding local minima, improving on common
search operators, and running “horse races” between Bad Old and Better New
search methodologies applied to benchmark problems. But while as a rule these
are presented as a sort of general principle, most in practice are case studies in
which it is shown, for example, that search operator X acts under contingency Y and
sometimes produces outcome Z.

I am not left with a sense that this catalog addresses my colleague’s stated wish.
While it is surely necessary to compile such a list of individual observations under
particular suites of experimental treatments and benchmarks, it is insufficient until
we can achieve the skill of recognizing when something noteworthy is happening.
In particular, I want to focus on those frequent but contingent situations in which
we are willing to say our GP system resists our expectations.

A good deal of this chapter will be spent explaining just what I mean by this
particular usage of “resistance”, but for the moment the idea will be clear enough
from this simple mental exercise: What are things GP has “done”—in the context of
a particular project—that have left you feeling unsatisfied, confused, or frustrated?
Not because you’ve made a simple mistake setting a parameter, or introduced a bug
in a codebase, but because (at that moment) you have no idea why the GP process
is doing that thing under those particular circumstances? Maybe it’s not converging
when you know it should; maybe it’s exploring unexpectedly complex algorithms
rather than obvious simpler ones, despite your reasonable parameter settings; maybe
it’s failing to solve simple problems but easily solving hard ones. In any case,
the system “resists” your careful and knowledgeable expectations by inexplicably
refusing to follow your plan.

My general point, and the particular point of this chapter and the exercise it
describes, is that we should then ask: When we feel GP is resisting us, what should
we do—and why? Further, after more than 20 years of work in the field, I think we
have learned enough for this to be reasonable and productive research program.

I’m sure every reader has at least one story they can tell, in which GP has
“resisted” in this sense. I want to draw our attention to these incidents from a
conviction that it is exactly the steps we take to accommodate GP’s resistance which
provoke our sudden insights into the structure of our problem, drive us to build a

GP As If You Meant It 61

“workaround” that becomes a novel selection algorithm or architecture, and lead us
to successfully re-frame our project to use a completely new approach. Almost any
chapter in this series of GPTP Workshop Proceedings will contain a story just like
this: We create an age-layered population because working without age-layering
didn’t perform as expected (Hornby 2009); we invent a new selection mechanism
because traditional algorithms worked as described, but failed to capture crucial
details of our problems (Spector 2012); we create an entirely new representation
and suite of search operators because our goals aren’t met by snipping up and
recombining in the traditional way (Ryan and Nicolau 2003); and so on.

The point in each case is: one gains little insight into a problem when GP
quickly pops out the “right answer” without a fight. Too often I see papers treating
this ubiquitous resistance as something to be eradicated before “real users” are
allowed run their own GP searches. Instead I’ll argue here that “surprises” and
“disappointments” are not only inevitable but are the main source of value in
many GP projects, and as such should be the main focus of our theoretical and
practical work.

Every interesting project will resist our plans and expectations. But in our field,
whenever we’re faced with even a bit of this sort of behavior, our first reaction is
generally to act as though something has “gone wrong in the setup”, then shut the
misbehaving run down so we can start again with “better parameters” next time. I
find it unusual for anybody to interrogate the system in itself when it resists, or to
make an attempt to adapt or accommodate perceived resistance. I hasten to say this is
not a fault with our field, but rather a symptom of broader philosophical and cultural
problems in our approach to programming and computational research projects, and
our understanding of computing more generally.

The exercise I describe in this chapter is intended to bring our attention back
on GP as a dynamical process in itself, as opposed to a tool to be adjusted “in
between” applications. It may be the case that other “traditional” machine learning
methodologies are built on better-defined information-theoretic foundations, and
come with suites of strong statistical tests for overfitting and robustness; as a result
it’s perfectly reasonable to treat them as tools, and as malfunctioning or just being
wrong for a problem when they act in unexpected ways. But GP is somehow a
different sort of animal: when it “resists”, we are left with an essentially unlimited
choice of how we should accommodate that resistance.

1.1 On Mindful Exercises

The habit of pursuing kata, “code retreats”, “hackathons” and other skill-honing
practices is popular among software developers, and especially among the more
advanced. It apparently arose independently among a few groups in the 1980s, but
Dave Thomas seems to have first used the Japanese term (Thomas 2013).

Indeed, the title of my exercise (“GP As If You Meant It”) is directly inspired
by from an exercise designed by Keith Braithwaite, “TDD as if you meant it”
(Braithwaite 2011). One of the interesting aspects of Braithwaite’s exercise is that

62 W.A. Tozier

it feels subjectively “harder” when attempted by advanced programmers honing
their development form; he suggests that novice programmers haven’t learned
ingrained but questionable habits, and haven’t identified “shortcuts” that “simplify”
the practices.

In the same way, the exercise I describe will feel most artificial and restrictive
to those of us with the most experience with GP. But like the martial arts exercises
by which software kata first were inspired, it isn’t intended to be simple or even
pleasant for the participants. Just as Braithwaite’s exercise targeted what he calls
“Pseudo-TDD”, I intend mine to surface habits we can think of as “pseudo-GP”:
the sense that it’s cheap and painless to just shut it off and start over when we start
sensing a problem is arising.

1.2 Caveats

What I describe here should be considered a “thought-experiment” backed up by
my own experiences; there are only a few sketchy manual implementations to date.
Some readers have imagined that the “automated” System player must somehow be
a self-contained and tested process running on the cloud (and that is an eventual
goal), but in all my early tests that role has been played by a handful of simple
Ruby scripts, edited between “turns” by the Facilitator to reflect changes made by
the User player. In other words, there need not be an actual autonomous “computer
player” in this game, unless you feel compelled to write one up beforehand, and the
game can as easily be played by a Facilitator who codes the moves of the System
and plays that role, plus the User as described.

Further, there is no reason the User player need be a single human being. Indeed,
it’s common practice in many software development katas to work in teams or
even as an aggregated crowd of everybody in the room. Many hands make light
work, especially on a tight schedule. In other words, these roles are intended to be
“notional” rather than definitional.

I should also point out that this game is not a serious suggestion for a new way of
working on “real problems”, nor as any sort of “training” for newcomers to the field
of GP. Rather it is designed as a rigorous and formal exercise in mindful practice,
to be undertaken by people already working closely enough with GP systems to
recognize the problems when they arise.

2 “TDD As If You Meant It”

Keith Braithwaite seems to have first described this training exercise for software
developers in 2009 (Braithwaite 2011). His target was a sense that software devel-
opers who thought they were using test-driven development practices (Beck 2002)

GP As If You Meant It 63

were in fact doing something more like “Pseudo-TDD”, a sort of slapdash and
habitual approximation lacking many of the benefits of mindful practice.

While I’ve noted elsewhere that several agile software development practices
share useful overlaps with the problems of GP science and engineering,1 in this
work I’ll focus on those of TDD. In particular, the observation that test-driven
development (or more accurately “test-driven design”) when done correctly can
break down the complex design space of a software project into a value-ordered
set of incremental test cases, focus developers’ attention on those cases alone,
inhibit unnecessary “code bloat” and feature creep, and produce low-complexity
understandable and maintainable software.

TDD as such is a very constraining and rigorous process—to the point where it
can easily be described as “painful” (though also “useful”) by experienced program-
mers. The steps are deceptively easy to gloss, misunderstand or miscommunicate,
especially for those whose coding habits are ingrained. To paraphrase Beck and
Braithwaite:

1. Add a little (failing) test which exercises the next behavior you want to build into
your codebase

2. Run all tests, expecting only the newest to fail
3. Make the minimal change to your codebase that permits the new test to pass
4. Run all tests, expecting them all to succeed
5. Refactor the codebase to remove duplication

Even though a single cycle through this iterative process can take less than a
minute, each step can throw itself up as a stumbling block for an experienced
programmer. But the most salient for us here is the iterative flow of implementation
(or “design”) that the cycle imposes: it begins with a choice of which little test
should next be added, and ends with a rigorous process of refactoring, not just of
the new code but of the entire cumulative codebase produced so far. The middle
three steps—implementing a single failing test and modifying the codebase by just
enough so that all tests pass—feel when one is working as though they could be
automated easily. The mindfulness of the process lives in the choice of next steps
and (though somewhat less so) of standard refactoring operations.

Braithwaite’s exercise does an interesting thing to surface the formal rigor of
those decisions, by making them harder rather than easier. In “TDD as if you meant
it”, the participants (willing, of course) are asked to implement a nominally simple
project like the game of Tic-Tac-Toe using TDD, and are given a list of requisite
features and an extra constraint. Rather than using “normal” TDD and producing a
suite of tests to exercise a separate and self-contained codebase, they are forced to
add code only to the tests themselves (to make them pass), and can only produce a

1I imagine there is an Engineering Studies thesis in this for some aspiring graduate student: Genetic
programming and agile development practices arose in the same period and more or less the same
culture, and both informed by the same currents in complex systems and emergent approaches to
problem-solving.

64 W.A. Tozier

separate “codebase” when duplication or other “code smells” drive them to refactor
the code already added to tests. In other words, the demand for a warrant for writing
code is much more stringent.

Throughout the exercise, a facilitator patrols teams of participants and deletes any
and all code not called for by a pre-existing failing test. Words like “irritating” and
“annoying” crop up in participants’ accounts of this onerous backtracking deletion
the first few times it happens, as one might imagine. But as Adzic (2009) has said
in descriptions of workshops he’s facilitated, the resulting designs even for well-
known algorithms in this artificially amplified setting become much more “open-
ended” than would be expected if the code were written under the offhand attention
of an experienced programmer without painful constraints.

Adzic passes along some observations in his account of a Tic-Tac-Toe exercise
(Adzic 2009) that are especially interesting for me:

By the end of the exercise, almost half the teams were coding towards something that was
not a 3 � 3 char/int grid. We did not have the time to finish the whole thing, but some
interesting solutions in making were:

• a bag of fields that are literally taken by players—field objects start in the collection
belonging to the game and move to collections belonging to players, which simply
avoids edge cases such as taking an already taken field and makes checking for game
end criteria very easy.

• fields that have logic whether they are taken or not and by whom
• game with a current state field that was recalculated as the actions were performed on it

and methods that could set this externally to make it easy to test

In other words: innovative approaches to the problem at hand began to arise,
though there wasn’t enough time to finish them in the time allotted for the exercise.

3 GP As If You Meant It

In the same way that Braithwaite’s coding exercise uses an onerous extra constraint2

to drive participants towards more mindful and insightful decision-making, in this
exercise I will demand a warrant for each implementation decision that moves a
running GP setup away from random guessing. Braithwaite’s target of “Pseudo-
TDD” suggests an analogous “Pseudo-GP”: one in which the fitness function and
post hoc analysis is the only “interface” with the problem itself, and where the
representation language, search operators, search objectives and other algorithmic
“parameters” are fixed in the course of the run.3

2In this the sensibility reminds me of the constraint-driven art collective Oulipo (Becker 2012),
who are perhaps most famous for the lipogram, a literary work which cannot use a particular letter
of the alphabet.
3Braithwaite’s participants (Braithwaite 2012) often acknowledge they know and use TDD as it’s
formally described, but rarely take the time to do so unless “something goes wrong”. I imagine
many GP users will say they know and use all the innumerable design and setup options of GP, but

GP As If You Meant It 65

Not only will traditional search operators like crossover, mutation and [negative]
selection not come “for free” in this variant, but in every case we must develop
a cogent argument in favor of starting them as part of an ongoing search process.
Similarly, the initial selection criteria will be limited to a single training case, and
expansion of the active training set will have to be made in response to particular
features of observed progress, not merely on the basis of the assumption that “more
will be better”.

The result is a painfully incrementalized process, one that focuses on the
refinement and eventual correction of an unstoppable search which was intentionally
“started wrong”, and which must be carried out by doing surgery on the living
patient to correct perceived “pathologies” and “resistance”. Along the way, a
fraction of the mysteries of “pathology” has the potential to be much clearer and
better-defined.

4 Overview

The exercise is structured as though it were a game for two players, plus a Facilitator
who establishes the ground rules, provides any needed technical infrastructure, and
acts as referee. One player is (or represents) a running GP System, and one player
is (or represents) a human User trying to mindfully drive the System’s performance
in a desirable direction over a series of turns.

While I speak below of the System player “being” a self-contained software
process, it is of course a loose role that might more easily be played by another
human, potentially the Facilitator herself, writing and running a simple series of
scripts on a laptop. Similarly, while I may say that the User player “is” a single
human being, it could as easily be a room-full of students or workshop participants,
or a mailing list voting over many weeks on strategies for each turn. Indeed, in
working out the exercise as it’s described here, I’ve “played” all the roles myself,
simultaneously, and still found interesting and unexpected insight.

In preparing the kata, the Facilitator selects a target problem, which should be
a supervised learning task for which plenty of data is available. The target should
not be “toy” in the sense of having a simple, well-known answer; rather it should be
challenging and open-ended enough to warrant a publication if solved (a problem
that has recently been solved might do in a pinch, though there is no shortage of open
ones). Any good book of mathematical recreations [for example (Winkler 2003) or
nearly any book by Martin Gardner, Ian Stewart or Ivan Moscovich] will provide
numerous abstract problems that have never been attempted with GP.

treat them as adjustments to be invoked only when “something goes wrong”. I offer no particular
justification for either anecdote here, but the curious reader is encouraged to poll a sample of
participants at any conference (agile or GP).

66 W.A. Tozier

The Facilitator will also need to choose a representation language, set up an initial
Tableau, and provide enough software infrastructure so that the System’s turns can
be made easily. In each turn of the game, both the System and the User players
take actions to modify and extend the initial Tableau: the User’s options include
adding rubrics and operators (described below), and in its turns the System acts
“mindlessly” by invoking the specified rubrics and operators to add a fixed number
of new individuals to the growing population.

The User’s goal is to drive the System towards producing sufficiently good
solutions to the target problem, but their decisions are constrained by the obligation
to provide a warrant for every change made which is convincing to the Facilitator.
The particular definition of a “sufficiently good solution” is left for the players and
Facilitator to decide in context: it may be impossible to completely “solve” some
target problems, given the tools at hand.

It should always be kept in mind that the point of the exercise is to evoke
interesting and useful warrants, not merely to drive the System in a desired
direction. In each turn the User is obliged to produce a convincing warrant for
every move she makes, which must be reviewed and approved by the Facilitator
before play proceeds. These warrants need not be factually correct, but they must
be convincing in the context of the game state at the time they’re put forth.

4.1 The Tableau

The game “board” is a Tableau with two components: A list of search operators,
and a two-dimensional spreadsheet-like table which uses answers as its row labels
and rubrics as its column labels. Initially the Tableau is empty, except for a single
entry on the list of operators labeled “random guess”.

The “random guess” operator is set up by the Facilitator before play begins; it
produces a single random answer for the target problem, with no arguments. Think
of it as equivalent to the “initialization” function used to produce a single “random”
individual in a traditional GP setting.

During the User’s turn, she can examine the state of the Tableau, including any or
all of its history, and the algorithms in play, and apply any amount of data analysis or
statistical work she wants. On her turn she is permitted no more than two moves: She
can (optionally) code and append one new operator to the list of operators,
and she can (optionally) code and append one new rubric column to that table.

During the System’s turn, it will produce a fixed number of new answers.
It creates each new answer by first picking an entry from the list of operators
with uniform probability. When an operator is chosen, it executes the indicated
algorithm, selecting parents from the answers table as needed. For each required
selection of a parent, the scores recorded in the table of answers vs rubrics are
used (see below). Once parents are selected, the operator is applied and a new
answer is immediately appended to that part of the Tableau.

GP As If You Meant It 67

4.1.1 Answers

What I’m calling an answer here would probably be called an “individual” in the
GP literature. In this case, it is a particular script or program in the representation
language the Facilitator has chosen for the target problem.

Answers never “die”, and cannot be removed from the Tableau by either player.

4.1.2 Operators

Each operator is a function which takes as its argument an unordered collection
of zero or more answers, and which produces a new collection of one or more
answers as output.

The initial Tableau includes only a single operator, which implements a pre-
coded “random guessing” algorithm. On the User’s move, she may build and launch
other more complex (and familiar) operators like crossover or mutation. The
only permitted argument is a set of zero or more answers; no numerical or other
parameters are allowed. A wide variety of operator algorithms are still possible,
and the details of the code in which they are implemented is left to the Facilitator to
specify as part of the game setup.

Except for some unusual edge cases, the specific set of answers to which an
operator will be applied cannot be chosen directly by the User. All “parents”
defined for each operator are chosen independently (and incrementally) by
lexicase selection, using the suite of rubrics in play when the System takes its
turn. This lexicase selection process samples every rubric in the Tableau with
equal probability. It may be possible for the User to design a new “selection”
operator which takes as its argument “all the answers” and somehow culls that
collection down to a subset—but to do so, it must rely on the immediate state of
the answers it is given; rubric scores are “stored” only in the Tableau answer
table itself, not as gettable attributes of the answers, making it very difficult for
any new operator algorithm to use rubric scores in its implementation.

Note again: no mechanism exists which removes answers from the Tableau.

4.1.3 Rubrics

A rubric is a function which returns a scalar value (not necessarily a number)
for any given answer, conditioned (as needed) on the instantaneous Tableau state.
When a rubric is applied to an answer, it sets a new value (or “score”) for that
answer in the appropriate cell of the “spreadsheet” portion of the Tableau.

No score is ever changed for an answer, once it has been set by a rubric.
However, if multiple answers exist which have the same script, each may be
scored at different times or in different contexts, and the resulting values may differ.

An aggregate or higher-order rubric can be created, but its existence “entails”
all of the component rubrics from which its score is derived. So, for example,

68 W.A. Tozier

if the User constructs a rubric like “maximum absolute error observed over any
of these 30 training cases”, on the turn when she adds that rubric up to 31 new
columns will be added to the spreadsheet portion of the Tableau: one for each of the
30 requisite “sub-rubrics”, which produce as their scores the absolute error for a
single training case, and also one aggregate rubric which calculates and reports
“maximum of those other 30 scores”. Whenever the User submits such a higher-
order rubric on her turn, all of the entailed rubrics are added automatically
if they do not already exist. Note however that there must still be a warrant for the
rubric, which convinces the Facilitator of its potential usefulness.

The User can use any information present in the Tableau in building new
rubric functions (such as row numbers, string values of answers, or scores), and
can also examine the detailed state of the interpreter before and after the script is
run. It should be clear therefore that the User can specify rubric functions which
score aspects of the problem such as:

• the absolute error for a single training case
• the number of tokens in the answer’s script
• maximum error measured in any of 35 other rubrics
• number of div0 errors produced when running a script with a particular set of

inputs
• number of stochastic instructions appearing in the answer’s script
• rewrite difference between the scored script the most common answer in the

population
• (and so on)

Various problem-specific aspects are glossed here, and it is left to the Facilitator
to be reasonable in the context of the target problem and the representation she has
chosen. Suffice to say, the construction of useful rubrics in response the System’s
moves is the core of the User player’s game strategy.

4.2 Lexicase Selection

All operator inputs are chosen by lexicase selection. Slightly simplifying Spec-
tor’s original description (Spector 2012), the following algorithm can be used:

• (beginning with a “set under consideration” which includes all answers. . .)
• for each rubric in a random permutation of all the rubrics in the Tableau,

discard all answers from the set under consideration whose score on this
rubric is sub-optimal (relative to the current set under consideration)

• if multiple answers remain after all rubrics have been applied, return one
answer picked randomly, with uniform probability, from the remaining set
under consideration

At the beginning of the game when no rubrics have been added and no
operators exist which require “parents”, no selection occurs or needs to occur.

GP As If You Meant It 69

But note that the algorithm as described would still provide a parent, even when no
rubrics have been specified: an empty set of rubrics would be immediately
exhausted without eliminating any answers, and then a single answer would be
selected with uniform probability from that complete set.

Lexicase selection has several characteristics which argue for its use here; in
particular it is interesting because it seems (anecdotally, but see also Helmuth in
this volume) to be a relatively “slow” selection method, permitting a diversity of
answers to coexist in a population at the same time. However I admit readily that
I’ve specified it as a core part of this kata because it is unfamiliar to most prospective
players, and therefore more likely to produce unexpected behavior of a useful sort.

4.3 The User’s Turn

In her turn, the User can do either (or both) of the following:

1. add one operator to the list in the Tableau
2. add one rubric to the Tableau, which can be “higher-order” and therefore entail

others

To support these decisions, the User can examine the Tableau state and history
in detail. Before any code is implemented, though, a warrant must be written for
each one.

4.3.1 Warrants

A warrant is a verbal or written argument which spells out the justification for one
of the User’s moves in the context of the game as it stands when the move is made.

Suppose, for example, that the User has not yet added any rubrics, and would
like to add a new one that scores answers for a single training case. Since the
System is simply making new answers with the “random guess” operator, it
seems perfectly reasonable to warrant this new rubric simply by pointing out that
selection can’t drive search towards better answers without at least one training case
being used.

Suppose further that later in the same game the User has added more rubrics,
such that more than 100 training cases are being used to select parents for the several
operators in play. In this context, the reasons given for adding a new rubric
that specifies just that one particular training case must surely be very different:
perhaps there is a problematic region of the response surface, or a different training
case that needs additional “support” to differentiate between two close input states
(and so forth).

That said, a warrant does not need to be “technical” or even “rigorous”, but
merely robust enough to be convincing in the moment. For example, “I made
a crossover operator because I think we need to search for new answers ‘in

70 W.A. Tozier

between’ the parents,” sounds to me like a shoddy excuse that invokes received
wisdom. On the other hand, “I made crossover so we can drop the variance on this
rubric and foster inbreeding of these solutions here,” given a glance at the Tableau
and charts on hand, should be more convincing.

Note though that decisions and the warrants that supported them may well prove
to have been wrong in hindsight. This in itself is an interesting and useful outcome
in the game: when an earlier decision does not actually produce the expected
effect in the system, this is a perfect point for the User to be reminded of the
apparent inconsistency. Such “failed” warrants shouldn’t be rescinded, but it may
be appropriate to bring them up as “concerns” in later moves, especially if they
begin to accumulate.

There is one particular warrant that the Facilitator should always permit, as long
as it isn’t abused by the User: “Because I have no idea what will happen when I
do this, but I suspect it may be useful in order to [X] later on.” In other words, it
is perfectly reasonable for the User to state outright they are “exploring” the range
of system behaviors. More generally, the basis on which the User, and therefore the
Facilitator, decides to make or permit a change should always depend on the history
of the game so far. Indeed, reasoning will always change dramatically over the
course of any interesting game, under the constraint that the Facilitator should never
approve a change on the argument that “that’s the way we always do it”. Every clear
and convincing why argument will surely be contingent on the immediate state of
the system and dependent on all the prior decisions made by the User and Facilitator.

4.4 The Facilitator

The Facilitator is responsible for picking a representation language and target
problem, for providing technical infrastructure as required for the kata, and for
approving and implementing any changes to the System that the User player makes.
As noted several times above, warrants are the focus of the exercise, and as such
great care should be taken that each decision is well-justified.

4.4.1 Choosing a Representation Language

No particular constraints apply to the language or representation chosen for the
exercise, except that it should be sophisticated enough to support redundant
capacity. That is, for any given algorithmic goal, there should be multiple paths to
success. So for example if the problem’s solution could reasonably be expected to
involve ordered lists, then it would be best if the language had at least two different
ways to “use lists”, for example with iterators, recursion, a comprehensive set of
second-order functional operators, an explicit List type with associated methods,
and so forth.

GP As If You Meant It 71

If the language is sophisticated enough to have “libraries” of instructions and
types intended for specialized domains, I’d strongly encourage that all of these
should be used. That is, the Facilitator should err on the side of “winnowing
complexity”, rather than forcing the User (and thus the System) to invent basic data
structures or the idea of floating-point numbers at the same time they’re trying to
solve the “real” problem under consideration.

Finally, if there is a choice between a familiar language and an odd one, then
the odd one should be chosen, all other things being equal. Unfamiliarity can be a
useful constraint here.

4.4.2 Target Problems

As with the choice of language, in the choice of problems the planner should aim
for something that would strike any experienced GP person as “ambitious”. Which
is to say: a reasonably good programmer would be able to hand-code the answer
with a day’s thought and work, but only in a familiar language; in an oddball GP
language, it should feel “practically impossible” to hand-code. That said, it should
also be clear to any programmer familiar with the language specification that the
needed components are all there, and that there are enough “parts” to approach any
sub-task that crops up along the way from more than one angle.

Colleagues have pointed out that even if the chosen problem turns out to be
“too simple”, in the sense that the System solves it quickly without much input
from the User, then the “problem” addressed in the exercise can be extended by the
Facilitator to one of driving the System to find a second dissimilar solution. . . still
without restarting the search process, of course. Keeping in mind that the purpose of
the exercise is to provoke insight into the justification for particular decisions, this
decision (by the Facilitator) can be justified by being a perfectly reasonable event in
a real research project, in which intellectual “stretch goals” are commonplace when
resources permit.

4.4.3 Initial Setup and Restrictions

• the only operator is “random guess”, which creates one new answer with
an arbitrary script

• no rubrics are present
• the System player moves first
• there is no mechanism for removing answers from the tableau
• the System player always uses lexicase selection, always chooses operators

with equal probability from the current list, and always uses all rubrics in the
Tableau

• a rubric can only be run on a given answer once; stochastic scripts will only
be sampled one time, and no rubric score is ever recalculated after the first
time, though multiple copies of the same stochastic answer will probably end
up with different scores in the same field.

72 W.A. Tozier

4.4.4 The System’s Turn

During its turn, the System player will add a specified number of new answers to
the Tableau, one at a time, using a simple form of lexicase selection. Until it reaches
its halting state it iterates this cycle:

1. select one operator from those in the Tableau, with equal probability
2. apply lexicase selection to select the required number of input answers
3. apply the chosen operator to the inputs answers to produce one or more

new answers, and append those new answers immediately to the Tableau
4. HALT if the number of new answers meets or exceeds the limit, and delete any

extra answers that exceed the limit; otherwise, go to step (1).

The number of answers created in each turn should be enough to have a chance
of providing new and useful information to the User, and not so much that the
System state grows out of control. I would suggest 100 or 500 answers per turn;
this is about the size of the typical “population” for most GP users, and is on a
comfortable scale for them.

5 Why: A Warrant

Genetic Programming4 embodies a very particular stance towards the scientific and
engineering work of modeling, design, analysis and optimization. I increasingly
suspect that social resistance to GP has little to do with the quality of our technical
results. Rather it arises from unfamiliarity with GP’s very particular “way of
working”. We in the field have become used to it—perhaps to the point of taking
it for granted—but colleagues in other fields have not.

Briefly, the systemic fault lies in the awful “scientific method” that permeates
our cultural dialog about the practice of science and engineering. You know the one,
which I can here as something like:

vision! planning! design! architecture! implementation! testing! debugging

I’m sure very few scientists or engineers of my acquaintance would admit
any real project has ever followed this narrative in a literal sense. But that story
nonetheless informs and constrains much of our work lives, from fund-raising to
publishing reports, producing narratives of our work that run more or less like
this: “Based on the body of published work, an insight was had. The insight was
framed as a formal hypothesis. The hypothesis (shaped by current Best Statistical
Practices) immediately suggested an experimental design, which design is obvious

4And not just Genetic Programming as such, but also the broader discipline to which I claim it
belongs and which is not obliged to be either “genetic” or “programming”. I prefer to call this
looser collection of practices “generative processing”, and will also abbreviate it “GP”; assume I
mean the latter in every case.

GP As If You Meant It 73

to anyone familiar with Our Discipline. That experimental design was undertaken,
the data were collected, the hypothesis duly tested, and now we can be confident of
its veracity because. . . well, you just heard me say ‘Best Practices’, right?”

“Nothing surprising happened while we were working on this project,” in other
words. Under trivial term substitutions—“cost–benefit analysis” and “requirements
document” for “hypotheses” and “experimental design”, for example—the same
narrative can be used to describe almost any institutional project management
or public policy planning process as well. The flow in every case is essentially
from vision to plan, plan to implementation, implementation to verification, and
verification to validation.

Of course, nobody “really believes” this narrative who has ever done the work.
It is a matter for another day to draw parallels with the social construction of
religious belief.5 And I am not the first to point it out; the history of Philosophy
of Science is built primarily from the numerous philosophical challenges to this
artificial narrative, from Peirce and Dewey nearly a century ago, to Kuhn and
Lakatos and Feyerabend in the 1970s, and with many more to be found in the Table
of Contents in any Philosophy of Science text.

That said, it is Andrew Pickering who has provided my immediate inspiration for
this project.

5.1 On the Mangle of Practice

Andrew Pickering’s monograph The Mangle of Practice (Pickering 1995) is a
decade old, but surprisingly little-known outside his discipline of Science Studies.
His approach is especially useful here, because I find it captures a surprising amount
of our actual experience of building and using GP systems. Indeed, most colleagues
who hear it for the first time utter an inevitable “didn’t we already know this?”

Pickering’s approach focuses on that problematic division I’ve sketched above,
between the illusory (but publishable) linear narrative of the “scientific method”,
and the realized experience we all have had of performing science (or Mathematics,
or Engineering, or for that matter Art). At the cost of glossing too much of his well-
considered structure, let me summarize.

First, I should remind us all that the performance of science is just that: not an
isolated but perceptive mind standing apart from the world, working in an objective
and static field of “externalities” and “facts”, but a performance done by a human
being present in that world. In Pickering’s framework, we can say that research
proper begins only when the researcher makes some artifact or formal “machine”
in the world: writes a block of code, designs a technical instrument, considers a
particular equation, draws a pencil sketch, or simply has a thoughtful conversation

5Paul Veyne’s excellent Did the Greeks Believe in Their Myths? (Veyne 1988) might be an
interesting starting point, I suspect.

74 W.A. Tozier

at a conference. Let me call this artifact the thing made. This is not the scientific
paper that results the end of the project, but rather the sum of all the sketchy notes,
the cloud of more-or-less coherent ideas, the code and instruments, the collected
observations, the plan and the community of colleagues helping with that plan:
everything done in the world, mentally or physically, towards the goals of the
project.

Pickering’s model jumps quickly away from more traditional “scientific meth-
ods” when he treats this mechanism as capable of agency in its own right, and is
willing to say that it can and does resist our intentions. In the context of the Mangle,
the thing made is the conduit of the facts of the actual world to the researcher
(and also of the cultural assumptions and norms of one’s discipline, of the inherent
tendencies of the raw materials and the practitioner’s toolkit). “Resistance” here is
not merely a reference to a software bug, a mathematical mistake or a shortage
of crucial raw materials, but specifically denote one’s sense on seeing it that
“something’s not quite right”. In other words, it is the thing made’s resistance “on
behalf of” the real world which forces the researcher to reconsider, change or adapt
her plans, or otherwise accommodate that resistance.

The inspiration for granting agency to machinic abstractions (or even concrete
dynamics) is obvious whenever we hear the phrases we utter in the course of our
work: the system “is acting up”; the mathematics is “pointing something out”; the
machine “wants to do X instead of Y”. Projects in science, engineering and the arts
do not proceed from a stage of planning to a stage of implementation, except in the
ahistorical mythology of our published papers (see Koutalos 2008 for a particularly
good assessment of this from a biologist). Pickering’s Mangle6 does much better
at capturing our first-hand experience of the work as an emergent dance of human
and machinic agency with one another. The researcher starts to follow her vision by
making (and altering) some artificial thing, that thing made acts as a channel for the
world itself to resist, and as a result the researcher accommodates that resistance by
moving in some different direction. In the traditional linear narrative, we elide the
work as it and re-frame it as a sort of idealized, apersonal Platonic truth: we use the
passive voice, we hide the missteps and confusion, after the fact paint a story which
flows from vision to plan to success. But within the dance of Pickering’s Mangle,
the degree to which we as researchers can successfully accommodate the resistance

6Pickering’s word “mangle” and the way he came to choose it are a recursive example of the
framework itself:

. . . I find “mangle” a convenient and suggestive shorthand for the dialectic because, for me,
it conjures up the image of the unpredictable transformations worked upon whatever gets
fed into the old-fashioned device of the same name used to squeeze the water out of the
washing. It draws attention to the emergently intertwined delineation and reconfiguration
of machinic captures and human intentions, practices, and so on. The word “mangle” can
also be used appropriately in other ways, for instance as a verb. Thus I say that the contours
of material and social agency are mangled in practice, meaning emergently transformed and
delineated in the dialectic of resistance and accommodation. . . .

GP As If You Meant It 75

we encounter is exactly the degree to which we can say we have made progress in
our projects.

In a GP setting, the notion of “machinic agency” seems much closer to our
experience; after all, we are obliged not only pick or write a specialized formal
language to represent the space of solutions, but in every project we must also cobble
together some framework of search operators, fitness operators, algorithms and
instrumentation. But even when we’ve written all the code and set all the parameters
personally—dotted the Ts and crossed the Is, as it were—we’re still driven to speak
of our GP run “doing” things, rather than merely unfolding according to our plan.
Indeed, if it happens by chance that GP “runs according to our plan” then arguably
the problem was too boring to be worth mentioning. . . .

I will argue below that GP’s power (and difference from other machine learning
approaches) lies in the very particular form of resistance it can offer us as its
users. This is not merely “resistance” of the frustrating kind: we use GP most
effectively when we want it to surprise us. The “surprise” is certainly something
we are forced to accommodate with just as much attention and concentration as
any more annoying resistance which might be thrown up, for example when we are
forced to figure out how the “winning solution” GP has disgorged actually works.

It is worth saying explicitly now (and then again as many times as necessary) that
by granting the thing made a machinic agency of its own, we can frame the problem
of “pathology” and “symptoms” in GP more constructively. A GP system does not
resist by “having the wrong population size” or by “having too high a mutation
rate”; those are not behaviors, but tiny facets of a complex plan instantiated (to some
extent) in a complex dynamical system. Rather we should say that a GP system is
resisting when it is raising concern or causing dissatisfaction in its human user.
It is inevitably that human observer who is driven to the insight needed to provide
an accommodating response.

5.2 GP as “mangle-ish Practice”

The broader field of machine learning seems to take a much more “linear” stance
towards its subject matter than we do in ours, in the sense that the pastiche of the
“scientific method” applies. The result of training a neural network or even a random
forest on a given data set is not expected to be a surprise in any real sense, but
rather the reliable and robust end-product of applying numerical optimization to a
well-specified mathematical programming problem. Indeed, the supposed strength
of most machine learning approaches is the very unsurprising nature of their use
cases and outputs.

On the other hand, we all know that GP embodies a capacity to tell us stories,
even in the relatively “simple” domain of symbolic regression. The space under
consideration by GP is not some vector of numerical constants or a binary mask
over a suite of input variables, but the power-set of inputs, functions over inputs, and
higher-order functions over those. We who work in the field can be glib about the

76 W.A. Tozier

“open-endedness” of GP systems, but that open-endedness puts GP in a qualitatively
different realm from its machine learning cousins. While GP can be used to explore
arbitrarily close to some parametric model, its more common use case is exactly the
production of unexpected insights.

When the GP approach “works”, it does so by offering helpful resistance in our
engagement with the problem at hand, whether in the form of surprising answers,
validation of our suspicions, or simply as a set of legible suggestions of ways to
make subsequent moves. GP dances with us, while most other machine learning
methods are exactly the “mere tools” they have been designed to be.

5.3 Against Replication

Nonetheless, there seems to be a widespread desire inside and outside our field to
frame GP as a way of exploring unsurprising models from data. As with neural
networks or decision trees, the machine learning tool-user is expected to proceed
something like this:

1. frame your problem in the correct formal language
2. “get” a GP system
3. run GP “on your data”
4. (unexpected things happen here, but it’s not our problem)
5. you have solved your problem

This is of course exactly the stance expected in any planning or public policy
setting, or any workplace using waterfall project management. And as we know
from those cultures, “being surprising” could be the worst imaginable outcome.
Given that pressure, it’s no wonder that so much of GP research is focused on
the discovery of constraining tweaks aimed at bringing GP “into line” with more
predictable machine learning tools. If only GP could be “tamed” or made “adaptive”
so that step (4) above never happens. . . . I imagine this is why so many GP research
projects strive for rigor in the form of counting replicates which “find a solution”:
they aim not to convince users, but rather to demonstrate to critical peers that GP
can be “tamed” into another mere tool.

Think about “replicates” for a moment. What might a “replicate” be for a user
who wants to exploit GP’s strength of discovering new solutions? If one is searching
for noteworthy answers—which is to say surprising and interesting answers—then
a “replicate” must be some sort of proxy for user frustration in step (4) above. That
is, a “replicate” stands in for a project in which search begins, stalls, and where the
user cannot see a way to accommodate the resistance in context. . . and just gives
up trying.

I cannot help but be reminded of the fallacy, surprisingly common both in and
outside of our field, that “artificial intelligence” must somehow be a self-contained
and non-interactive process. That is, that an “AI candidate” loses authenticity as
soon as it’s “tweaked” or “adjusted” in the course of operation. It is as if every

GP As If You Meant It 77

new-born “AI” must be quickly jammed into an air-tight computational container
and isolated until it learns to reason by itself —and for that matter without exceeding
a finite computational budget.

If humans creating real intelligences (for example, other human beings) treated
them anything like the way computer scientists insist we treat nascent artificial
intelligences, I have no doubt that the resulting murder convictions would be swift
and merciless. It is my hope with this contribution to suggest that we might be able
to do better than the virtualized serial murder that is our legacy to date.

Consider the poor “GP user” that most of our research seems aimed at, one who
is carefully “not interfering” with her running GP system: she can only peer at
a results file after the fact, and can’t fiddle with the “settings” while the thing is
actually working. But of course during any given run of 100 generations, all sorts
of dynamics have happened: crossover, mutation, selection, all the many random
choices.

Imagine for a moment if she were given perfect access to the entire dynamical
pedigree of the unsatisfying results she receives at the end, and were able to
backtrack to any point in the run and change a single decision. Before that point, it’s
unclear how badly things will actually turn out at the 100-generation mark; at some
point after that juncture, it’s obvious to anybody watching that the whole thing’s a
mess. If such miraculous insights were available, then surely her strategy would be
one of intervention: even if she could only decide after the fact, she should roll back
the system to that crucial turning point, make a change aimed at avoiding the mess,
and then continue from there.

Lacking (as we do) this miraculous insight, or the tools for understanding the
internal dynamics of any particular GP system, on what grounds does it seem
reasonable to stop any run arbitrarily at a pre-ordained time point and begin again
from scratch? Replication, in the sense we are prohibited from reaching in and
affecting outcomes, is no better than dice-rolling.

I would much rather say this: Insofar as GP surprises us, and since that is its
sole strength over more familiar and manageable machine learning frameworks,
we must learn to recognize and accommodate the surprises that arise in its use.
Some surprises will always remain disappointments, but the senseless restriction
we impose on engaging the systems we build blocks us from seeing others as
encouraging opportunities to improve our plans before it’s too late.

References

Adzic G (2009) Tdd as if you meant it – revisited. http://gojko.net/2009/08/02/tdd-as-if-you-
meant-it-revisited/

Beck K (2002) Test driven development: by example. Addison-Wesley, New York
Becker DL (2012) Many subtle channels: in praise of potential literature. Harvard University Press,

Cambridge, MA
Braithwaite K (2011) Tdd as if you meant it. http://cumulative-hypotheses.org/2011/08/30/tdd-as-

if-you-meant-it/

http://gojko.net/2009/08/02/tdd-as-if-you-meant-it-revisited/
http://gojko.net/2009/08/02/tdd-as-if-you-meant-it-revisited/
http://cumulative-hypotheses.org/2011/08/30/tdd-as-if-you-meant-it/
http://cumulative-hypotheses.org/2011/08/30/tdd-as-if-you-meant-it/

78 W.A. Tozier

Braithwaite K (2012) Tdd as if you meant it (workshop recording). http://www.infoq.com/
presentations/TDD-as-if-You-Meant-It

Hornby GS (2009) A steady-state version of the age-layered population structure EA. In:
Riolo RL, O’Reilly UM, McConaghy T (eds) Genetic programming theory and practice
VII. Genetic and evolutionary computation, chap 6. Springer, Ann Arbor, pp 87–102.
doi:10.1007/978-1-4419-1626-6_6

Koutalos Y (2008) The docile body of the scientist. In: Andrew P, Keith G (ed) The mangle
in practice: science, society, and becoming. Duke University Press, Durham. https://www.
dukeupress.edu/the-mangle-in-practice

Pickering A (1995) The mangle of practice: time, agency, and science. University of Chicago Press,
Chicago, IL

Ryan C, Nicolau M (2003) Doing genetic algorithms the genetic programming way. In: Riolo
RL, Worzel B (eds) Genetic programming theory and practice, chap 12. Kluwer, Dordrecht,
pp 189–204. doi:10.1007/978-1-4419-8983-3_12. http://www.springer.com/computer/ai/book/
978-1-4020-7581-0

Spector L (2012) Assessment of problem modality by differential performance of lexicase selection
in genetic programming: a preliminary report. In: McClymont K, Keedwell E (eds) 1st
workshop on understanding problems (GECCO-UP). ACM, Philadelphia, PA, pp 401–408.
doi:10.1145/2330784.2330846. http://hampshire.edu/lspector/pubs/wk09p4-spector.pdf

Thomas D (2013) Codekata: how it started. http://codekata.com/kata/codekata-how-it-started/
Veyne P (1988) Did the Greeks believe in their myths?: an essay on the constitutive imagination.

University of Chicago Press, Chicago, IL
Winkler P (2003) Mathematical puzzles: a connoisseur’s collection. A K Peters/CRC Press, Natick,

MA/Boca Raton

http://www.infoq.com/presentations/TDD-as-if-You-Meant-It
http://www.infoq.com/presentations/TDD-as-if-You-Meant-It
http://dx.doi.org/10.1007/978-1-4419-1626-6_6
https://www.dukeupress.edu/the-mangle-in-practice
https://www.dukeupress.edu/the-mangle-in-practice
http://dx.doi.org/10.1007/978-1-4419-8983-3_12
http://www.springer.com/computer/ai/book/978-1-4020-7581-0
http://www.springer.com/computer/ai/book/978-1-4020-7581-0
http://dx.doi.org/10.1145/2330784.2330846
http://hampshire.edu/lspector/pubs/wk09p4-spector.pdf
http://codekata.com/kata/codekata-how-it-started/

nPool: Massively Distributed Simultaneous
Evolution and Cross-Validation in EC-Star

Babak Hodjat and Hormoz Shahrzad

Abstract We introduce a cross-validation algorithm called nPool that can be
applied in a distributed fashion. Unlike classic k-fold cross-validation, the data
segments are mutually exclusive, and training takes place only on one segment. This
system is well suited to run in concert with the EC-Star distributed Evolutionary
system, cross-validating solution candidates during a run. The system is tested with
different numbers of validation segments using a real-world problem of classifying
ICU blood-pressure time series.

Keywords Evolutionary computation • Distributed processing • Machine learn-
ing • Cross-validation

1 Introduction

The Age-Varying fitness approach is suitable for data problems in which evolved
solutions need to be applied to many fitness samples in order to measure a
candidate’s fitness (see Hodjat and Shahrzad 2013). This is an elitist approach: best
candidates of each generation are retained to be run on more fitness cases to improve
our confidence in the candidate’s fitness. The number of fitness evaluations in this
method depends on the relative fitness of a candidate solution compared to others at
any given point.

EC-Star (see O’Reilly et al. 2013) is a massively distributed evolutionary
platform that uses age-varying fitness as the basis for distribution, thus allowing
for easier distribution of large data problems through sampling or hashing/feature-
reduction techniques, breaking the data stash into smaller chunks, each contributing
to the overall evaluation of the candidates.

In this system, age is defined as the number of fitness samples a candidate has
been evaluated upon. EC-Star uses a hub and spoke architecture for distribution,
where the main evolutionary process is moved to the processing nodes (see Fig. 1).
Each node, or Evolution Engine, has its own pool and independently runs through

B. Hodjat (�) • H. Shahrzad
Sentient Technologies, 1 California St. #2300, San Francisco, CA, USA
e-mail: babak@sentient.ai; hormoz@sentient.ai

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_5

79

mailto:babak@sentient.ai
mailto:hormoz@sentient.ai

80 B. Hodjat and H. Shahrzad

Fig. 1 The EC-Star hub and spoke distribution architecture

the evolutionary cycle. At each new generation, an Evolution Engine submits its
fittest candidates to the server for consideration. This is typically after a set number
of evaluations (i.e., the maturity age). Age is defined as the number of samples a
candidate is evaluated upon.

The server side, or Evolution Coordinator, maintains a list of the best of the best
candidates so far. EC-Star achieves scale through making copies of candidates at
the server, sending them to Evolution Engines for aging, and merging aged results
submitted after aging simultaneously on the Evolution Engines (see Fig. 2). This
also allows the spreading of the fitter genetic material.

EC-Star is massively distributable by running each Evolution Engine on a
processing node (e.g., CPU) with limited bandwidth and occasional availability
(see Hodjat et al. 2014). Typical runs utilize hundreds of thousands of processing
units spanning across thousands of geographically dispersed sites.

In the Evolution Coordinator, only candidates of the same age-range are com-
pared with one another. This technique is called age-layering, and it was first
introduced by Hornby (2006)—note, however, that the definition of age here is
quite different. In EC-Star, each age-range has a fixed quota, and a ‘shadow’ of a
candidate that has aged out of an age-layer is retained as a place-holder for filtering
incoming candidates. To balance the load, a farm of Evolution Coordinators are
used, all of which are synchronized over a single age-layered pool of candidates.

Typically, candidates harvested from the top age-layer of an EC-Star run are
validated on an unseen set, post harvest, in order to ensure generalization. What if
some validation could take place at scale in a distributed manner?

The nPool approach described in this paper is inspired by the well-known k-fold
cross validation technique (see Refaeilzadeh et al. 2009), in which k iterations of
training and validation are performed on k equally sized segments (or folds) of data,

nPool: Cross-Validation in EC-Star 81

Fig. 2 Evolution Coordinators make copies of candidates and send them to the Evolution engines
for further aging. The reported results are merged. Note that, in step 8, if the candidate is not worthy
of being added to the new layer, it is discarded, but its ‘dead’ copy may remain in lower layers to
help with filtering (step 7)

such that within each iteration a different fold is held-out for validation while the
remaining k � 1 folds are used for learning. The learned models are asked to make
predictions about the data in their respective (unseen) validation folds.

2 Description

Similar to k-fold cross validation, in nPool, the training data sample set is divided
(roughly) equally into n segments. This division can be done randomly and
segments should be mutually exclusive. Each evolution engine validates candidates
exclusively on data samples from the segment randomly assigned to them by
the Evolution Coordinator at start up. Every candidate generated by an Evolution
Engine is tagged with the segment assigned to that Evolution Engine. We call this
the candidate’s originating segment, and at birth, the candidate’s current segment
is said to be its originating segment. Once a candidate has been evaluated on a
sufficient number of data samples from its own segment, it is said to have hit
its graduation age. The Evolution Coordinator tags graduated candidates with a
segment id (out of the n available) that they have not been tagged yet. This id is
the new current segment for the candidate.

82 B. Hodjat and H. Shahrzad

Training
Data Segment 2

Training
Data

Segment 1
Training

Data

Segment 2
Evolution
Engines

Segment 1
Evolution
Engines

Candidate B originating
on segment 2

Candidate A validated
on unseen segment 2

Candidate A originating
on segment 1

Candidate B validated on
segment 1

Evolution Coordinators
Age-layered

cadidate
list

Fig. 3 Distributed cross*Tesladog*-validation

Evolution Engines ensure that candidates being sent down for further validation
are only sent to Evolution Engines with a segment id equal to the current segment of
the candidate. A candidate is said to have completed its validation once it has aged
sufficiently on data samples from all available segments.

Evolution Engines validating candidates on segments other than the candidate’s
originating segment are barred from bearing offspring. This way, new generations
are not contaminated by data from other segments, which we aim to keep as unseen
for them for cross-validation purposes (see Fig. 3).

Rather than training on k�1 and validating on one segment, in nPool, we train on
one and validate on k � 1. This is in order to maintain complete exclusivity between
the training and validation sets. Also, this ensures a more reliable assessment for
the generalization of the candidates by using larger unseen validation sets. It is
important, however, to ensure that the size of each segment is large enough to avoid
over-fitting.

The segments should be mutually exclusive. In the experiments for this paper,
the segments were divided up randomly. However, depending on the application,
the division of the data into segments might require stratification.

nPool: Cross-Validation in EC-Star 83

3 Rule-Based Representation and a Real-World Problem

We demonstrate our approach on a real world problem of classifying time series of
arterial blood pressure data. Our particular area of investigation is acute hypotensive
episodes.

A large number of patient records are time series based. Some are at the
granularity of high resolution physiological waveforms recorded in the ICU or via
the remote monitoring systems. Given a time-series of training exemplars each of
length T (in samples), to build a discriminative model capable of predicting an event,
features are extracted by splitting the time series into non-overlapping, divisions of
size k samples each, up to a certain point h < T such that there are m D h=k
divisions. A number of aggregating functions are then applied to each of these
divisions (a.k.a windows) to give features for the problem.

We use a decision list (Rivest 1987) representation as the model for the candidate
in EC-Star. In this representation, each rule is a variable length conjunction of
conditions with an associated class prediction (see Fig. 1). In the evaluation, each
condition compares a lagged value or the current value of the time series to a
threshold (decision boundary). The decision lists in EC-Star have a variable number
of rules and conjunctive clauses in each rule, but are limited by max decision list
size. This representation is different from many other classifiers e.g., DecisionTrees,
simple Decision Lists, Support Vector Machines and Logistic Regression, which
require every time lagged value or an aggregate to be set as a different feature.

Furthermore, the EC-Star representation requires a specific layout of the data.
The data is assembled as data packages, where each data package is a classification
example. Consider two time series x1(t) and x2(t). Within each data package for each
time interval t D a the values of x1(a) and x2(a) are stored as columns. This is shown
below in the example in Table 1. If the problem has more time series additional
columns can be incorporated into the data package. Each data package is associated
with a label l. The rule is evaluated for each data package and its error rates, false
positive and false negatives are calculated by accumulating the discrepancy between
its predicted label and the true label for the data package. Table 1 presents a rule and
its prediction for a data package.

The quality of an evolved decision list (i.e., the candidate) is determined by the
weighted error (WE). L is the set of labels. Cijj is the cost of predicting label i as j,
and pijj is the probability of predicting the label i when it is actually j.

WE D
X

j�inL

X

i2L

.Cijj:pijj/ (1)

The cost is

84 B. Hodjat and H. Shahrzad

Table 1 Example of a
decision list (top) and a data
package (bottom), and the
evaluation of a rule on a data
package

Number Condition1 Condition2 Action

1 if x1.T/ < 10 and x2.T�1/ > 20 then l D 0

2 if x2.T/ < 10 and x2.T�3/ > 20 then l D 1

3 if x1.T � 1/ < 10 then l D 0

T x1.T/ x2.T/ l

0 10 20

1 10 32

2 9 30

3 8 20 0

The example shows how the current Time, T D 3 is applied to
each rule. The first rule evaluates the first clause with x1 at the
current time to true. The second clause of the first rule, x2 at
current time �1, T � 1 D 2 is also true. The first rule applies
label l D 0 as the action, which matches the label for T D 3.
The first clause in rule number 2 compares x2 at T D 3, which
is false. The second clause compares x2 at T� 3 D 0, which is
again false (this second clause does not have to evaluated given
the first one is false). Thus, the rule takes no action. The third
rule compares x1 at time T � 1 D 2 and is true and takes the
action l D 0, which is correct. When there is more than one
prediction the current heuristic for choosing the action is to
take the first prediction, in the same manner as a decision list.
Thus, the action from rule number one, l D 0, is predicted,
which is correct. If no rules are true then the action will be
‘Null’, which is always incorrect

C D

0

BB@

0 1 1

500 0 1

600 1 0

600 1 1

1

CCA

Each data sample includes a time-series of 100 labeled events. The quality of
predictions is aggregated and normalized by the candidate’s age to calculate the
candidate’s fitness at any given time.

We demonstrate the efficacy of the approach on roughly 4000 patients Arterial
Blood Pressure (ABP) waveforms from MIMIC II v3. In MIMIC Waveform records
available are sampled at 125 Hz (125 samples/s) (Goldberger et al. 2000) and ABP
is recorded invasively from one of the radial arteries. The raw data size was roughly
1 TB. The labels in the data are imbalanced, the total number of Low event are just
1.9 % of the total number of events. In total we had 45,693 EC-Star data packages
from 4414 patient records. Of these, we used 32,898 packages with 100 events each
as the training set. 12,795 samples are used for the unseen set.

nPool: Cross-Validation in EC-Star 85

4 Experiments

For the purposes of the experiments in this paper, we split the training data into 1,
2, 4, 8, 16, 32, and 64 mutually exclusive segments respectively. The data sets are
regenerated randomly from the training set before each experiment.

All experimental runs used the same number of Evolution Engine processing
nodes, namely 64, with a run duration of 24 h. The maturity age, and consequently,
the age-layer range, in all experiments was set to 150. The age-layer quota for all
runs was set at 100 candidates per age-layer. The Evolution Engine pool size for all
runs was fixed at 1000 candidates, with an elitist percentage of 10 %.

For the nPool experiments, the top-layer min age for the runs is reduced in inverse
proportion to the number of segments. For n=1, top-layer min-age is 30,000. For
n=2, it is set to 15,000, for n=4, it is 7500, for n=8, it is 3750, for n=16, it is 1800,
for n=32, it is 900, and for 64, it is 450. In all cases, of course, the harvest age is the
same (i.e., 30,000).

4.1 Results

In Fig. 4 we compare average fitness results from training. Note that the training
results include the results from running on the unseen segments in the cases where
n is greater than one. The unseen set is the same for all runs.

Fitness

580,000

600,000

620,000

640,000

660,000

680,000

700,000

720,000

740,000

760,000

1 2 4 8 16 32 64 n
Average Training Average Unseen

Fig. 4 Comparison of nPool training and unseen results between runs with 1 (i.e., no nPool), 2, 4,
8, 16, 32, and 64 segments for the top four candidates. These candidates are then run on the unseen
set withheld from training for comparison

86 B. Hodjat and H. Shahrzad

Fig. 5 Distribution of
originating segments for 100
fittest candidates in top-layer
of runs with 2 segments. Each
slice in chart represents a
segment

Fig. 6 Distribution of
originating segments for 100
fittest candidates in top-layer
of runs with 4 segments

Fig. 7 Distribution of
originating segments for 100
fittest candidates in top-layer
of runs with 8 segments

Hundred Best Genes Distribution Among Eight
Segments

8
3%

7
14%

6
15%

5
5%

7%
4

2
4%

3
9%

1
43%

Figures 5, 6, 7, 8, 9, and 10 show the relative contribution of different originating
segments to the top 100 candidates of each run.

nPool: Cross-Validation in EC-Star 87

Fig. 8 Distribution of
originating segments for 100
fittest candidates in top-layer
of runs with 16 segments.
Note that segments 1, 9, and
12 have no candidates
represented in the top 100

Hundred Best Genes Distribution Among
Thirty Two Segments

32
0%31

0%

30
8%

1
2% 2

12%

3
10%

4
2%

5
2%

7
2%8

1%
10
0%

12
0%

13
1%

14
1%

15
1%

6
14%

9
2%

11
4%

16
12%

17
0%

19
0%

20
0%

21
1%

22
3%

23
2%

24
2%

25
1%

26
0%

28
0%

27
4%

29
7%

18
6%

Fig. 9 Distribution of originating segments for 100 fittest candidates in top-layer of runs with 32
segments. Note that segments 10, 12, 17, 19, 20, 26, 28, 31 and 32 have no candidates represented
in the top 100

4.2 Discussion

The experiments show that running in nPool mode does not adversely impact the
quality of the results, and, there’s a hint that it actually may be helping to improve
them. This may be due to differences in the makeup of the originating segments,
allowing for better generalization. We base this on the evidence of disparity in the
contribution of different originating segments to the make-up of the top performers.

88 B. Hodjat and H. Shahrzad

Fig. 10 Distribution of originating segments for 100 fittest candidates in top-layer of runs with
64 segments. Note that 56 of the 64 segments have no candidates represented in the top 100

In Fig. 7, for example, segment 1 has a disproportionately large contribution to
the top layer. It is as if candidates that were trained on segment 1 had a better
potential to learn and generalize. By the same token, we believe that the resulting
candidates originating from different segments have a higher diversity. This needs
to be investigated and qualified further and we hope to get to it in our future work.

The results show that, when n increases, the number of segments contributing
to the top candidates drops. For example, for n D 16 three of the segments do
not contribute at all to the top 100 candidates from the run. This number goes up
to 56 for n D 64. This is mitigated by other segments that seem to have a better
representation of the data and so allow for even better generalization and overall
results. There is a point, however, after which the size of the segments, regardless of
the makeup, cannot sustain the run (e.g., see the 64 segment run results in Fig. 4).

5 Conclusions

We described the nPool model for cross-validation in a distributed evolutionary
system with incremental fitness evaluations. The real-world experimental results for
this approach are promising. Here are some of the benefits of this method:

nPool: Cross-Validation in EC-Star 89

1. Diversity promotion
Training takes place on a diversity of mutually exclusive training sets, which

can potentially lead to a diversity of solutions.
2. Generalization

The method allows for much more effective use of the data set, removing
the requirement to always hide part of the data from any training to be used as
the out-of-sample set. The method also significantly reduces sensitivity to any
selection bias on the training set by allowing n originating segments, each to
act as a training set for a subset of the candidates. This method removes, or at
least reduces, the need for a separate process for verifying evolved candidates on
out-of-sample data, as that step is built into the production system. In addition,
generalization of any evolved candidate is much more reliable as its respective
out-of-sample evaluation set is n � 1 times larger than the evolved set.

3. Scale
Many more candidates are tested on unseen, this is done in parallel, and it is

simultaneous to the training run.
4. Speed

A lower top layer max age means faster convergence over the training sets
(i.e., originating segments). However, this is evened out somewhat because
more time and processing capacity is spent on validation, so less capacity is
available for training. The age-layered nature of the system filters out over-fitting
candidates, so segments with uneven distributions of data points have less of
an impact. This manner of association of segments to Evolution Engines has
the added benefit of allowing for the caching of the data points at the worker
nodes, reducing the need for moving data packages around. This allows the
infrastructure to be smarter about moving the candidates around rather than
the data—reducing the bandwidth requirements and, as a result, improving the
efficiency of the system.

5.1 Future Work

One of the drawbacks to the system just described is that the single fold of data
on which the candidates are trained is fixed throughout training, with no overlap.
This means that there is a chance that the training pools associated with each data
segment may converge relatively quickly, and the diversity of data is not translated
into a diversity of genotypic solutions. In other words, if the data segments are small
enough, there is a risk that candidates with the same source segment evolve to local
optima much quicker than if we trained on the entire data set.

To combat this problem, we can alter the approach so that an Evolution
Coordinator designates each Evolution Engine to evaluate material from M different
sub-segments, where M is less than the total number of data segments in the system
(often less than 1=2). Candidates originating from an Evolution Engine are also
marked as originating from all of the segments available to the Evolution Engine.

90 B. Hodjat and H. Shahrzad

Training continues until the maturity age for all of its M folds is reached. At this
point validation can then begin on the remaining N � M segments, by sending the
candidate back down to Evolution Engines designated to sub-segment pair unseen
by the candidate so far.

Note that M is really a maximum for a given data set. An individual Evolution
Engine can be assigned any number of folds from 1 to M. By doing so, we have
many more permutations of the data sub-segments assigned as originating segments,
and the segments have overlaps. For instance, rather than dividing the data set to a
fixed 4 segments, we can divide it to 8 sub-segments, and assign each Evolution
Engine two of the possible permutations of the sub-segments, which would be a
total of 8 � 7 D 56 possible pairs to be used as originating segments. This would
mean, however, that a candidate should be prevented from being sent for evaluation
to an Evolution Engine with a combination of sub-segments that include any sub-
segment in the candidate’s originating segment set.

More experimental and theoretical work on the approach and the best settings for
n are also in order.

Acknowledgements The authors wish to thank Sentient Technologies for sponsoring this research
and providing the processing capacity required for the experiments presented in this paper.

References

Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB,
Peng CK, Stanley HE (2000) Physiobank, physiotoolkit, and physionet components of a new
research resource for complex physiologic signals. Circulation 101(23):e215–e220

Hodjat B, Shahrzad H (2013) Introducing an age-varying fitness estimation function. In: Genetic
programming theory and practice X. Springer, Berlin, pp 59–71

Hodjat B, Hemberg E, Shahrzad H, O’Reilly UM (2014) Maintenance of a long running distributed
genetic programming system for solving problems requiring big data. In: Genetic programming
theory and practice XI. Springer, Berlin, pp 65–83

Hornby, GS (2006) ALPS: the age-layered population structure for reducing the problem of pre-
mature convergence. In: Proceedings of the 8th annual conference on Genetic and evolutionary
computation, ACM, New York, pp 815–822

O’Reilly UM, Wagy M, Hodjat B (2013) Ec-star: a massive-scale, hub and spoke, distributed
genetic programming system. In: Genetic programming theory and practice X. Springer, Berlin,
pp 73–85

Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. In: Encyclopedia of database systems.
Springer, Berlin, pp 532–538

Rivest RL (1987) Learning decision lists. Mach Learn 2(3):229–246

Highly Accurate Symbolic Regression
with Noisy Training Data

Michael F. Korns

Abstract As symbolic regression (SR) has advanced into the early stages of
commercial exploitation, the poor accuracy of SR, still plaguing even the most
advanced commercial packages, has become an issue for early adopters. Users
expect to have the correct formula returned, especially in cases with zero noise and
only one basis function with minimally complex grammar depth.

At a minimum, users expect the response surface of the SR tool to be easily
understood, so that the user can know a priori on what classes of problems to expect
excellent, average, or poor accuracy. Poor or unknown accuracy is a hindrance to
greater academic and industrial acceptance of SR tools.

In two previous papers, we published a complex algorithm for modern symbolic
regression which is extremely accurate for a large class of Symbolic Regression
problems. The class of problems, on which SR is extremely accurate, is described
in detail in these two previous papers. This algorithm is extremely accurate, in
reasonable time on a single processor, for from 25 up to 3000 features (columns).

Extensive statistically correct, out of sample training and testing, demonstrated
the extreme accuracy algorithm’s advantages over a previously published base line
pareto algorithm in case where the training and testing data contained zero noise.

While the algorithm’s extreme accuracy for deep problems with a large number
of features, on noiseless training data, is an impressive advance, there are many
very important academic and industrial SR problems where the training data is very
noisy.

In this chapter we test the extreme accuracy algorithm and compare the results
with the previously published baseline pareto algorithm. Both algorithms’ perfor-
mance are compared on a set of complex representative problems (from 25 to 3000
features), on noiseless training, on noisy training data, and on noisy training data
with range shifted testing data.

The enhanced algorithm is shown to be robust, with definite advantages over the
baseline pareto algorithm, performing well even in the face of noisy training data
and range shifted testing data.

M.F. Korns (�)
Analytic Research Foundation, 2240 Village Walk Drive Suite 2305, Henderson, NV 89052, USA

Freeman Investment Management, Henderson, NV, USA
e-mail: mkorns@korns.com

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_6

91

mailto:mkorns@korns.com

92 M.F. Korns

Keywords Symbolic regression • Abstract expression grammars • Grammar tem-
plate genetic programming • Genetic algorithms • Particle swarm

1 Introduction

The discipline of Symbolic Regression (SR) has matured significantly in the
last few years. There is at least one commercial package on the market for
several years http://www.rmltech.com/. There is now at least one well doc-
umented commercial symbolic regression package available for Mathematica
www.evolved-analytics.com. There is at least one very well done open source
symbolic regression package available for free download http://ccsl.mae.cornell.
edu/eureqa. In addition to our own ARC system (Korns 2010), currently used
internally for massive (million row) financial data nonlinear regressions, there are
a number of other mature symbolic regression packages currently used in industry
including Smits and Kotanchek (2005) and Kotanchek et al. (2008). Plus there is
another commercially deployed regression package which handles up to 50–10,000
input features using specialized linear learning (McConaghy 2011).

Yet, despite the increasing sophistication of commercial SR packages, there
have been serious issues with SR accuracy even on simple problems (Korns 2011).
Clearly the perception of SR as a must use tool for important problems or as an
interesting heurism for shedding light on some problems, will be greatly affected
by the demonstrable accuracy of available SR algorithms and tools. The depth and
breadth of SR adoption in industry and academia will be greatest if a very high level
of accuracy can be demonstrated for SR algorithms.

In Korns (2012, 2013, 2014) we published both a baseline pareto algorithm and
an extreme accuracy algorithm for modern symbolic regression the (EA) algorithm.
which is extremely accurate for a large class of Symbolic Regression problems. The
class of problems, on which the EA algorithm is extremely accurate, is described
in detail in those papers and also in this chapter. A definition of extreme accuracy
is provided, and an informal argument of extreme SR accuracy is outlined in Korns
(2013, 2014).

Prior to writing this chapter, a great deal of tinker-engineering was performed on
the Lisp code supporting both the baseline and the EA algorithms. For instance, all
generated champion code was checked to make sure that the real numbers were
loaded into Intel machine registers without exception. All vector pointers were
checked to make sure they were loaded into Intel address registers at the start of
each loop rather than re-loaded with each feature reference. As a result of these
engineering efforts, both the baseline and the EA algorithms are now quite practical
to run on a personal computer. Furthermore the EA algorithm is extremely accurate,
in reasonable time, on a single processor, for from 25 to 3000 features (columns);
and, a cloud configuration can be used to achieve the extreme accuracy performance
in much shorter elapsed times.

http://www.rmltech.com/
http://www.evolved-analytics.com
http://ccsl.mae.cornell.edu/eureqa
http://ccsl.mae.cornell.edu/eureqa

Highly Accurate Symbolic Regression with Noisy Training Data 93

In this chapter we test the EA algorithm (Korns 2013, 2014) and compare the
results with the baseline algorithm (Korns 2012). Extensive statistically correct, out
of sample training and testing, are used to compare both algorithms’ performance,
on a set of complex representative problems (from 25 to 3000 features), on noiseless
training, on noisy training data, and on noisy training data with range shifted testing
data.

The EA algorithm is shown to be robust, with definite advantages over the
baseline pareto algorithm, performing well even in the face of noisy training data
with range shifted testing data.

Before continuing with the comparisons of the baseline and EA algorithms,
we proceed with a basic introduction to general nonlinear regression. Nonlinear
regression is the mathematical problem which Symbolic Regression aspires to solve.
The canonical generalization of nonlinear regression is the class of Generalized
Linear Models (GLMs) as described in Nelder and Wedderburn (1972). A GLM
is a linear combination of I basis functions Bi; i D 0; 1; : : : I, a dependent variable
y, and an independent data point with M features x D <x0; x1; x2; : : : ; xM�1>: such
that

• (E1) y D �.x/ D c0 C ˙ciBi.x/ C err

As a broad generalization, GLMs can represent any possible nonlinear formula.
However the format of the GLM makes it amenable to existing linear regression
theory and tools since the GLM model is linear on each of the basis functions Bi.
For a given vector of dependent variables, Y, and a vector of independent data points,
X, symbolic regression will search for a set of basis functions and coefficients which
minimize err. In Koza (1992) the basis functions selected by symbolic regression
will be formulas as in the following examples:

• (E2) B0 D x3

• (E3) B1 D x1 C x4

• (E4) B2 D sqrt.x2/=tan.x5=4:56/

• (E5) B3 D tanh.cos.x2
�:2/�cube.x5 C abs.x1///

If we are minimizing the normalized least squared error, NLSE (Korns 2012),
once a suitable set of basis functions B have been selected, we can discover
the proper set of coefficients C deterministically using standard univariate or
multivariate regression. The value of the GLM model is that one can use standard
regression techniques and theory. Viewing the problem in this fashion, we gain
an important insight. Symbolic regression does not add anything to the standard
techniques of regression. The value added by symbolic regression lies in its abilities
as a search technique: how quickly and how accurately can SR find an optimal set
of basis functions B. The immense size of the search space provides ample need for
improved search techniques. In basic Koza-style tree-based Genetic Programming
(Koza 1992) the genome and the individual are the same Lisp s-expression which
is usually illustrated as a tree. Of course the tree-view of an s-expression is a
visual aid, since a Lisp s-expression is normally a list which is a special Lisp data
structure. Without altering or restricting basic tree-based GP in any way, we can

94 M.F. Korns

view the individuals not as trees but instead as s-expressions such as this depth 2
binary tree s-exp: .= .C x2 3:45/.� x0 x2//, or this depth 2 irregular tree s-exp:
.= .C x4 3:45/ 2:0/.

In basic GP, applied to symbolic regression, the non-terminal nodes are all
operators (implemented as Lisp function calls), and the terminal nodes are always
either real number constants or features. The maximum depth of a GP individual is
limited by the available computational resources; but, it is standard practice to limit
the maximum depth of a GP individual to some manageable limit at the start of a
symbolic regression run.

Given any selected maximum depth k, it is an easy process to construct a maximal
binary tree s-expression Uk, which can be produced by the GP system without
violating the selected maximum depth limit. As long as we are reminded that each f
represents a function node while each t represents a terminal node (either a feature
v or a real number constant c), the construction algorithm is simple and recursive as
follows.

• (U0): t
• (U1): (f t t)
• (U2): (f (f t t) (f t t))
• (U3): (f (f (f t t) (f t t)) (f (f t t) (f t t)))
• (Uk): (f Uk�1 Uk�1)

The basic GP symbolic regression system (Koza 1992) contains a set of functions
F, and a set of terminals T. If we let t 2 T, and f 2 F [� , where �.a; b/ D �.a/ D a,
then any basis function produced by the basic GP system will be represented by
at least one element of Uk. Adding the � function allows Uk to express all possible
basis functions generated by the basic GP system to a depth of k. Note to the reader,
the � function performs the job of a pass-through function. The � function allows
a fixed-maximal-depth expression in Uk to express trees of varying depth, such as
might be produced from a GP system. For instance, the varying depth GP expression
x2 C .x3 � x5/ D �.x2; 0:0/ C .x3 � x5/ D C.�.x2 0:0/ � .x3 x5// which is a fixed-
maximal-depth expression in U2.

In addition to the special pass through function � , in our system we also make
additional slight alterations to improve coverage, reduce unwanted errors, and
restrict results from wandering into the complex number range. All unary functions,
such as cos, are extended to ignore any extra arguments so that, for all unary
functions, cos.a; b/ D cos.a/. The sqroot and ln functions are extended for negative
arguments so that sqroot.a/ D sqroot.abs.a// and ln.a/ D ln.abs.a//.

Given this formalism of the search space, it is easy to compute the size of the
search space, and it is easy to see that the search space is huge even for rather
simple basis functions. For our use in this chapter the function set will be the follow-
ing functions: F D (+ � * / abs inv cos sin tan tanh sqroot square cube quart
exp ln �) (where inv.x/ D 1:0=x). The terminal set is the features x0 through xM�1

and the real constant c, which we shall consider to be 218 in size.
Our core assertion in this chapter is that the enhanced EA algorithm will achieve,

on a laptop computer, in reasonable time, extremely accurate champions for all
of the problems in U2(1)[25], U1(25)[25], U1(5)[150], and in F.x/(5)[3000] (note:

Highly Accurate Symbolic Regression with Noisy Training Data 95

F.x/ D � inv abs sqroot square cube quart exp ln cos sin tan tanh) in reasonable
computation times, of a maximum 20 h (on an advanced laptop built in Dec 2012)
and a maximum 40 h (on an advanced laptop built in Jan 2008). Most noiseless
problems finish far quicker than these maximum time horizons.

Pushing things to the extreme, the enhanced algorithm will achieve extremely
accurate champions for all of the problems in U2(1)[50] through U1(5)[50] in a
maximum of 160 h (on an advanced laptop built in Dec 2012). Most noiseless
problems finish far quicker than these maximum time horizons.

Obviously a cloud configuration will greatly speed up the enhanced EA algo-
rithm, and we will address cloud configurations and extreme accuracy in a later
paper. For this chapter, we will develop an extremely accurate SR algorithm which
any scientist can use on their personal laptop.

1.1 Example Test Problems

In this section we list the example test problems which we will address. All of
these test problems lie in the domain of either U2(1)[25], U1(25)[25], U1(5)[150], or
F.x/(5)[3000], where the function set F.x/ D (� inv abs sqroot square cube quart
exp ln cos sin tan tanh), and the terminal set is the features x0 thru xM�1 plus
the real number constant c with cbit D 18. Our training data sets will contain 25
features, 150, and 3000 features as specified. Our core assertion is that the enhanced
algorithm will find extremely accurate champions for all of these problems and for
all similar problems in practical time on a laptop computer.

Similar problems are easily obtained by substituting all other possibilities within
U2(1)[25], U1(25)[25], U1(5)[150], or F.x/(5)[3000]. For instance one problem in
U2(1)[25] is y D 1:687 C .94:183�.x3

�x2//. By substitution, y D 1:687 C
.94:183�.x3=x2// and y D 1:687 C .94:183�.x23

�x12// are also in U2(1)[25].
Another problem in U2(1)[25] is y D �2:36C .28:413�ln.x2/=x3/. By substitution,
y D �2:36 C .28:413�cos.x12/�x6/ and y D �2:36 C .28:413�sqroot.x21/ � x10/

are also in U2(1)[25]. Our core assertion is that the EA algorithm not only finds
accurate solutions to the 45 test problems listed below, but also to all other possible
test problems in U2(1)[25], U1(25)[25], U1(5)[150], or F.x/(5)[3000].

• Deep problems in U2(1)[25]
• ..Note: these problems trained on 10,000 examples with 25 features each
• (T1): y D 1:57 C .14:3�x3/

• (T2): y D 3:57 C .24:33=x3/

• (T3): y D 1:687 C .94:183�.x3
�x2//

• (T4): y D 21:37 C .41:13�.x3=x2//

• (T5): y D �1:57 C .2:3�..x3
�x0/�x2//

• (T6): y D 9:00 C .24:983�..x3
�x0/�.x2

�x4///

• (T7): y D �71:57 C .64:3�..x3
�x0/=x2//

• (T8): y D 5:127 C .21:3�..x3
�x0/=.x2

�x4///

96 M.F. Korns

• (T9): y D 11:57 C .69:113�..x3
�x0/=.x2 C x4///

• (T10): y D 206:23 C .14:2�..x3
�x1/=.3:821 � x4///

• (T11): y D 0:23 C .19:2�..x3 � 83:519/=.93:821 � x4///

• (T12): y D 0:283 C .64:2�..x3 � 33:519/=.x0 � x4///

• (T13): y D �2:3 C .1:13�sin.x2//

• (T14): y D 206:23 C .14:2�.exp.cos.x4////

• (T15): y D �12:3 C .2:13�cos.x2
�13:526//

• (T16): y D �12:3 C .2:13�tan.95:629=x2//

• (T17): y D �28:3 C .92:13�tanh.x2
�x4//

• (T18): y D �222:13 C .�0:13�tanh.x2=x4//

• (T19): y D �2:3 C .�6:13�sin.x2/�x3/

• (T20): y D �2:36 C .28:413�ln.x2/=x3/

• (T21): y D 21:234 C .30:13�cos.x2/�tan.x4//

• (T22): y D �2:3 C .41:93�cos.x2/=tan.x4//

• (T23): y D :913 C .62:13�ln.x2/=square.x4//

• Narrow problems in U1(2to3)[25]
• ..Note: these problems trained on 10,000 examples with 25 features each
• (T24): y D 13:3 C .80:23�x2/ C .1:13�x3/

• (T25): y D 18:163 C .95:173=x2/ C .1:13=x3/

• (T26): y D 22:3 C .62:13�x2/ C .9:23�sin.x3//

• (T27): y D 93:43 C .71:13�tanh.x3// C .41:13�sin.x3//

• (T28): y D 36:1 C .3:13�x2/ C .1:13�x3/ C .2:19�x0/

• Wide problems in U1(5)[25]
• ..Note: these problems trained on 10,000 examples with 25 features each
• (T29): y D �9:16 C .�9:16�x24

�x0/ C .�19:56�x20
�x21/ C .21:87�x24

�x2/C
.�17:48�x22

�x23/ C .38:81�x23
�x24/

• (T30): y D �9:16 C .�9:16�x24=x0/ C .�19:56�x20=x21/ C .21:87�x24=x2/C
.�17:48�x22=x23/ C .38:81�x23=x24/

• Broad problems in F.x/(5)[3000]
• ..Note: these problems trained on 5000 examples with 3000 features each
• ..Note: F.x/ D noop inv abs sqroot square cube quart exp ln cos sin tan tanh
• (T31): y D 50:63 C .63:6�cube.x0// C .66:54�cube.x1// C .32:95�cube.x2//C

.4:87�cube.x3// C .46:49�cube.x4//

• (T32): y D �9:16 C .�9:16�square.x0// C .�19:56�ln.x123//C
.21:87�exp.x254// C .�17:48�x3/ C .38:81�x878/

• (T33): y D 0:0 C .1�square.x0// C .2�square.x1// C .3�square.x2//C
.4�square.x3// C .5�square.x4//

• (T34): y D 65:86 C .79:4�sin.x0// C .45:88�cos.x1//C
.2:13�tan.x2// C .4:6�sin.x3// C .61:47�cos.x4//

• (T35): y D 1:57 C .1:57=x923/ C .�39:34�sin.x1//C
.2:13�x2/ C .46:59�cos.x932// C .11:54�x4/

• (T36): y D 50:63C.63:6�sqroot.x0//C.66:54�sqroot.x1//C.32:95�sqroot.x2//C
.4:87�sqroot.x3// C .46:49�sqroot.x4//

• (T37): y D 92:25 C .53:53�square.2:3�x0// C .88:26�cos.x1//C
.42:11=x4/ C .29:0�cube.x3// C .93:6�tanh.x4//

Highly Accurate Symbolic Regression with Noisy Training Data 97

• Broad problems in U1(5)[150]
• ..Note: these problems trained on 10,000 examples with 150 features each
• (T38): y D �9:16C .�9:16�x124

�x0/C .�19:56�x120
�x21/C .21:87�x24

�x26/C
.�17:48�x122

�x23/ C .38:81�x123
�x24/

• (T39): y D �9:16 C .�9:16�x124=x0/ C .�19:56�x20=x92/ C .21:87�x102=x2/C
.�17:48�x22=x143/ C .38:81�x23=x149/

• (T40): y D �9:16C.�9:16�cos.0//C.�19:56�x20=x21/C.21:87�square.x125//C
.�17:48�x22=x23/ C .38:81�tanh.x24//

• Dense problems in U1(25)[25]
• ..Note: these problems trained on 10,000 examples with 25 features each
• (T41): y D 50:63C.63:6�cube.x0//C.66:54�square.x1//C.32:95�quart.x2//C

.4:87�cube.x3// C .46:49�square.x4// C .62:85�quart.x5//C

.90:45�cube.x6// C .63:28�square.x7// C .42:15�quart.x8//C

.73:03�cube.x9// C .92:2�square.x10// C .77:99�quart.x11//C

.56:67�cube.x12// C .72:51�square.x13// C .49:77�quart.x14//C

.56:94�cube.x15// C .54:76�square.x16// C .23:11�quart.x17//C

.56:03�cube.x18// C .51:98�square.x19// C .11:71�quart.x20//C

.33:82�cube.x21// C .46:25�square.x22// C .32:98�quart.x23//C

.36:06�cube.x24//

• (T42): y D �9:16 C .�9:16�x4
�x0/ C .�19:56�x0

�x1/ C .21:87�x1
�x2/C

.�17:48�x2
�x3/ C .38:81�x3

�x4/ C .3:1�x4
�x5/ C .59:81�x5

�x6/C
.93:1�x6

�x7/ C .:81�x7
�x8/ C .9:21�x8

�x9/ C .�5:81�x9
�x10/C

.�:01�x10
�x11/ C .4:21�x11

�x12/ C .68:81�x12
�x13/ C .�8:81�x13

�x14/C
.2:11�x14

�x15/ C .�7:11�x15
�x16/ C .�:91�x16

�x17/ C .20:0�x17
�x18/C

.1:81�x18
�x19/ C .9:71�x19

�x20/ C .8:1�x20
�x21/ C .6:1�x21

�x22/C
.18:51�x22

�x23/ C .7:1�x23
�x24/

• (T43): y D 0:0 C .1�square.x0// C .2�square.x1// C .3�square.x2//C
.4�square.x3// C .5�square.x4// C .6�square.x5// C .7�square.x6//C
.8�square.x7// C .9�square.x8// C .10�square.x9// C .11�square.x10//C
.12�square.x11// C .13�square.x12// C .14�square.x13// C .15�square.x14//C
.16�square.x15// C .17�square.x16// C .18�square.x17// C .19�square.x18//C
.20�square.x19// C .21�square.x20// C .22�square.x21// C .23�square.x22//C
.24�square.x23// C .25�square.x24//

• (T44): y D 65:86 C .79:4�sin.x0// C .45:88�cos.x1// C .2:13�tan.x2//C
.4:6�sin.x3// C .61:47�cos.x4// C .30:64�tan.x5// C .51:95�sin.x6//C
.47:83�cos.x7// C .4:21�tan.x8// C .37:84�sin.x9// C .62:57�cos.x10//C
.4:68�tan.x11// C .32:65�sin.x12// C .86:89�cos.x13// C .84:79�tan.x14//C
.31:72�sin.x15// C .90:4�cos.x16// C .93:57�tan.x17// C .42:18�sin.x18//C
.47:91�cos.x19// C .41:48�tan.x20// C .39:47�sin.x21// C .48:44�cos.x22//C
.34:75�tan.x23// C .56:7�sin.x24//

• (T45): y D 1:57C.1:57�x0/C.�39:34�sin.x1//C.2:13�x2/C.46:59�.x3=x2//C
.11:54�x4/ C .30:64�ln.x5// C .51:95�abs.x6// C .47:83�.x7

�x3//C
.4:21�quart.x8// C .37:84�x9/ C .62:57�square.x10// C .4:68�sqroot.x11//C
.32:65�.x12=x3// C .86:89�x14/ C .84:79�tan.x15// C .31:72�cube.x16//C
.90:4�.x17

�x18// C .93:57�.x17=x16// C .42:18�sin.x18// C .47:91�cos.x19//C
.41:48�ln.x20// C .39:47�square.x21// C .48:44�x22/C
.34:75�.x23

�x24// C .56:7�x24/

98 M.F. Korns

2 Training with Zero Noise

Comparing the SR performance of the baseline algorithm and the EA algorithm,
on noiseless training data, using statistical best practices out-of-sample testing
methodology, requires the following procedure. For each sample test problem, a
matrix of independent variables is filled with random numbers between �10 and
C10. Then the specified sample test problem formula is applied to produce the
dependent variable. These steps will create the training data (each matrix row is
a training example and each matrix column is a feature). A symbolic regression
will be run on the training data to produce the champion estimator. Next a matrix
of independent variables is filled with random numbers between �10 and C10.
Then the specified sample test problem formula is applied to produce the dependent
variable. These steps will create the testing data. The fitness score is the root mean
squared error divided by the standard deviation of Y, NLSE. The estimator will be
evaluated against the testing data producing the final NLSE for comparison.

The baseline algorithm and the EA algorithm will be trained on each of the 45
sample test problems for comparison. The baseline algorithm halts automatically
when it achieves an extremely accurate champion on the training data. The EA
algorithm halts automatically when it achieves an extremely accurate champion
on the training data; but the EA algorithm also halts automatically when it has
exhausted it predefined search pattern. Each algorithm will be given a maximum of
20 h for completion, at which time, if the SR has not already halted, the SR run will
be terminated and the best available candidate will be selected as the final estimator
champion.

In each table of results, the Test column contains the identifier of the sample test
problem (T01 through T45). The WFFs column contains the number of regression
candidates tested before finding a solution. The Train-Hrs column contains the
elapsed hours spent training on the training data before finding a solution. The
Train-NLSE column contains the fitness score of the champion on the noiseless
training data. The Test-NLSE column contains the fitness score of the champion
on the noiseless testing data. The Absolute column contains yes if the resulting
champion contains a set of basis functions which are algebraically equivalent to the
basis functions in the specified test problem.

For the purposes of this algorithm, extremely accurate will be defined as any
champion which achieves a normalized least squares error (NLSE) of .0001 or less
on the noiseless testing data. In the tables of results, in this chapter, the noiseless
test results are listed under the Test-NLSE column header.

Obviously extreme accuracy is not the same as absolute accuracy and is therefore
fragile under some conditions. Extreme accuracy will stop at the first estimator
which achieves an NLSE of 0.0 on the noiseless training data, and hope that
the estimator will achieve an NLSE of .0001 or less on the testing data. Yes, an
extremely accurate algorithm is guaranteed to find a perfect champion (estimator
training fitness of 0.0) if there is one to be found; but, this perfect champion may or
may not be the estimator which was used to create the testing data. For instance in

Highly Accurate Symbolic Regression with Noisy Training Data 99

the target formula y D 1:0 C .100:0�sin.x0// C .:001�square.x0// we notice that
the final term .:0001�square.x0// is less significant at low ranges of x0; but, as the
absolute magnitude of x0 increases, the final term is increasingly significant. And,
this does not even cover the many issues with problematic training data ranges and
poorly behaved target formulas within those ranges. For instance, creating training
data in the range �1000 to 1000 for the target formula y D 1:0 C exp.x2

�34:23/

runs into many issues where the value of y exceeds the range of a 64 bit IEEE real
number. So as one can see the concept of extreme accuracy is just the beginning of
the attempt to conquer the accuracy problem in SR.

For the purposes of this algorithm, absolutely accurate will be defined as any
champion which contains a set of basis functions which are algebraically equivalent
to the basis functions in the specified test problem. In the tables of results, in this
chapter, the absolute accuracy results are listed under the Absolute column header.
“Yes” indicates that the resulting champion contains a set of basis functions which
are algebraically equivalent to the basis functions in the specified test problem.

As mentioned, each of the problems were trained and tested on from 25 to 3000
features as specified using out of sample testing. The allocated maximum time
to complete a test problem on our laptop environment was 20 h, at which time
training was automatically halted and the best champion was returned as the answer.
However, most problems finished well ahead of that maximum time limit.

All timings quoted in these tables were performed on a Dell XPS L521X Intel i7
quad core laptop with 16Gig of RAM, and 1Tb of hard drive, manufactured in Dec
2012 (our test machine).

Note: testing a single regression champion is not cheap. At a minimum testing
a single regression champion requires as many evaluations as there are training
examples as well as performing a simple regression. At a maximum testing a
single regression champion may require performing a much more expensive multiple
regression.

The results in baseline Table 1 demonstrate only intermittent accuracy on the 45
test problems. Baseline accuracy is very good with 1, 2, or 5 features in the training
data. Unfortunately, Baseline accuracy decreases rapidly as the number of features
in the training data increases to 25, 100, and 3000. Furthermore, there is a great deal
of overfitting as evidenced by the number of test cases with good training scores and
very poor testing scores.

The baseline algorithm also suffers from bloat. This is often the rea-
son for the baseline’s frequent failure to discover the absolutely accu-
rate formula. For instance, in test problem T19, the correct formula is:
y D �2:3 C .�6:13�sin.x2/�x3/. The baseline algorithm returns a cham-
pion of y D �2:3000000000033 � .6:13�..0:008�.x3

�125:0//�sin.x2/// C
.0:0000000000033�tanh.square.x23///. The first term, .0:008�.x3

�125:0//, and
the last term, .0:0000000000033�tanh.square.x23///, are bloat and will cause
serious problems in range shifted data.

In such cases of overfitting, SR becomes deceptive. It produces tantalizing can-
didates which, from their training NLSE scores, look really exciting. Unfortunately,
they fail miserably on the testing data.

100 M.F. Korns

Clearly the baseline testing results in Table 1 demonstrate an opportunity for
improved accuracy.

Another serious issue with the baseline algorithm is that negative results have
no explicit meaning. For example, Alice runs the baseline algorithm on a large
block of data for the maximum time specified. At the conclusion of the maximum
specified generations, requiring a maximum of 20 h on our laptop, no candidate
with a zero NLSE (perfect score) is returned. The meaning of this negative result
is indeterminate, as one can argue that perhaps if Alice were to run the baseline
algorithm for a few more generations an exact candidate would be discovered.

Table 1 Baseline accuracy zero noise

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute

T01 2K 0:03 0:0000 0:0000 Yes

T02 2K 0:02 0:0000 0:0000 Yes

T03 2K 0:03 0:0000 0:0000 Yes

T04 11K 0:11 0:0000 0:0000 Yes

T05 812K 9:00 0:0000 0:0000 Yes

T06 1246K 20:00 0:5364 0:7727 No

T07 112K 1:29 0:0000 0:0000 Yes

T08 1221K 20:00 0:0034 0:1354 No

T09 1240K 20:00 0:0484 0:9999 No

T10 1242K 20:00 0:0185 0:9999 No

T11 1117K 20:00 0:0317 0:9999 No

T12 1414K 20:00 0:0244 0:9999 No

T13 5K 0:05 0:0000 0:0000 Yes

T14 9K 0:09 0:0000 0:0000 Yes

T15 724K 20:00 0:8540 0:9348 No

T16 884K 20:00 0:0077 0:9999 No

T17 10K 0:10 0:0000 0:0000 Yes

T18 360K 4:51 0:0000 0:0000 Yes

T19 73K 0:86 0:0000 0:0000 Yes

T20 356K 4:41 0:0000 0:0000 Yes

T21 908K 20:00 0:0560 0:0222 No

T22 908K 20:00 0:0568 0:0602 No

T23 621K 8:21 0:0000 0:9999 No

T24 5K 0:05 0:0000 0:0000 Yes

T25 77K 0:88 0:0000 0:0000 Yes

T26 17K 0:18 0:0000 0:0000 Yes

T27 79K 0:85 0:0000 0:0000 Yes

T28 10K 0:10 0:0000 0:0000 Yes

T29 870K 20:00 0:1324 0:1334 No

T30 900K 20:00 0:0290 0:0099 No

Highly Accurate Symbolic Regression with Noisy Training Data 101

Table 1 (continued)

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute

T31 900K 20:00 0:2104 0:2289 No

T32 179K 8:06 0:0000 0:0000 Yes

T33 280K 20:00 0:2435 0:2398 No

T34 283K 20:00 0:2028 0:2412 No

T35 251K 20:00 0:0511 0:0540 No

T36 333K 20:00 0:4524 0:4755 No

T37 255K 11:97 0:0000 0:0000 Yes

T38 275K 20:00 0:7453 0:8026 No

T39 282K 20:00 0:0403 0:9999 No

T40 249K 20:00 0:0022 0:9999 No

T41 854K 20:00 0:0455 0:0645 No

T42 978K 20:00 0:8415 0:9999 No

T43 507K 20:00 0:3838 0:8082 No

T44 517K 20:00 0:0062 0:9999 No

T45 517K 20:00 0:0024 0:9999 No

Note1: the number of regression candidates tested before finding a
solution is listed in the Well Formed Formulas (WFFs) column
Note2: the elapsed hours spent training on the training data is listed
in the (Train-Hrs) column
Note3: the fitness score of the champion on the noiseless training data
is listed in the (Train-NLSE) column
Note4: the fitness score of the champion on the noiseless testing data
is listed in the (Test-NLSE) column with .3551 average fitness
Note5: the absolute accuracy of the SR is given in the (Absolute)
column with 19 absolutely accurate

Significantly, the EA results in Table 2 demonstrate extreme accuracy on the 45
test problems. This extreme accuracy is robust even in the face of problems with
large number of features. More importantly, the EA algorithm achieved a perfect
score on absolute accuracy. In the case of all 45 test problems, the EA algorithm
was consistently absolutely accurate.

Notice the extreme search efficiency which Table 2 demonstrates. Our assertion
is that the EA algorithm is getting the same accuracy on U2(1)[25], U1(25)[25],
U1(5)[150], and F.x/(5)[3000] as if each and every single element of those sets were
searched serially; and yet we are never testing more than a few million regression
candidates.

Another very important benefit of extreme accuracy will only be fully realized
when all undiscovered errors are worked out of our informal argument for extreme
accuracy and when our informal argument is crafted into a complete, peer reviewed,
well accepted, formal mathematical proof of accuracy. Once this goal is achieved,
we can begin to make modus tollens arguments from negative results!

For example, our future Alice runs the EA algorithm on a large block of data for
the maximum time specified. At the conclusion of the maximum time of 20 h on

102 M.F. Korns

Table 2 Extreme accuracy zero noise

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute

T01 1K 0:01 0:0000 0:0000 Yes

T02 1K 0:01 0:0000 0:0000 Yes

T03 34K 0:13 0:0000 0:0000 Yes

T04 20K 0:11 0:0000 0:0000 Yes

T05 135K 0:26 0:0000 0:0000 Yes

T06 243K 0:40 0:0000 0:0000 Yes

T07 137K 0:29 0:0000 0:0000 Yes

T08 255K 0:42 0:0000 0:0000 Yes

T09 2935K 2:19 0:0000 0:0000 Yes

T10 5087K 3:94 0:0000 0:0000 Yes

T11 576K 0:69 0:0000 0:0000 Yes

T12 198K 0:40 0:0000 0:0000 Yes

T13 1K 0:01 0:0000 0:0000 Yes

T14 37K 0:15 0:0000 0:0000 Yes

T15 1432K 1:31 0:0000 0:0000 Yes

T16 1963K 1:70 0:0000 0:0000 Yes

T17 3869K 3:30 0:0000 0:0000 Yes

T18 3927K 3:31 0:0000 0:0000 Yes

T19 972K 1:05 0:0000 0:0000 Yes

T20 644K 0:78 0:0000 0:0000 Yes

T21 8268K 6:96 0:0000 0:0000 Yes

T22 25365K 15:35 0:0000 0:0000 Yes

T23 25675K 15:66 0:0000 0:0000 Yes

T24 1K 0:01 0:0000 0:0000 Yes

T25 1K 0:01 0:0000 0:0000 Yes

T26 1K 0:01 0:0000 0:0000 Yes

T27 1K 0:01 0:0000 0:0000 Yes

T28 1K 0:01 0:0000 0:0000 Yes

T29 453K 0:60 0:0000 0:0000 Yes

T30 143K 0:31 0:0000 0:0000 Yes

T31 113K 2:05 0:0000 0:0000 Yes

T32 51K 1:10 0:0000 0:0000 Yes

T33 232K 3:00 0:0000 0:0000 Yes

T34 1471K 13:47 0:0000 0:0000 Yes

T35 715K 7:36 0:0000 0:0000 Yes

T36 139K 2:44 0:0000 0:0000 Yes

T37 465K 5:02 0:0000 0:0000 Yes

T38 599K 4:99 0:0000 0:0000 Yes

T39 134K 1:21 0:0000 0:0000 Yes

Highly Accurate Symbolic Regression with Noisy Training Data 103

Table 2 (continued)

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute

T40 255K 2:23 0:0000 0:0000 Yes

T41 24K 0:38 0:0000 0:0000 Yes

T42 1901K 8:25 0:0000 0:0000 Yes

T43 119K 1:14 0:0000 0:0000 Yes

T44 80K 0:81 0:0000 0:0000 Yes

T45 216K 1:87 0:0000 0:0000 Yes

Note1: the number of regression candidates tested before finding a
solution is listed in the Well Formed Formulas (WFFs) column
Note2: the elapsed hours spent training on the training data is listed
in the (Train-Hrs) column
Note3: the fitness score of the champion on the noiseless training data
is listed in the (Train-NLSE) column
Note4: the fitness score of the champion on the noiseless testing data
is listed in the (Test-NLSE) column with .0000 average fitness
Note5: the absolute accuracy of the SR is given in the (Absolute)
column with 45 absolutely accurate

our laptop, no candidate with a zero NLSE (perfect score) is returned. Referring to
the published, well accepted formal mathematical proof of accuracy, Alice argues
(modus tollens) that there exists no exact relationship between X and Y anywhere
within U2(1)[25], U1(25)[25], and U1(5)[150] through Fx(5)[3000].

3 Training with Noisy Data

Comparing the SR performance of the baseline algorithm and the EA algorithm,
on noisy training data, using statistical best practices out-of-sample testing method-
ology, requires the following procedure. For each sample test problem, a matrix
of independent variables is filled with random numbers between �10 and C10.
Then the specified sample test problem formula is applied to produce the dependent
variable. Then 20 % noise is added to the dependent variable according to the
following formula: y D .y�:8/ C random.y�:4/. These steps will create the training
data. A symbolic regression will be run on the training data to produce the champion
estimator. Next a matrix of independent variables is filled with random numbers
between �10 and C10. Then the specified sample test problem formula is applied to
produce the dependent variable. No noise is added to the testing dependent variable.
These steps will create the testing data. The fitness score is the root mean squared
error divided by the standard deviation of Y, NLSE. The estimator will be evaluated
against the testing data producing the final NLSE for comparison.

104 M.F. Korns

The baseline algorithm and the EA algorithm will be trained on each of the 45
sample test problems for comparison. Each algorithm will be given a maximum of
20 h for completion, at which time, if the SR has not already halted, the SR run will
be terminated and the best available candidate will be selected as the final estimator
champion.

In each table of results, the Test column contains the identifier of the sample test
problem (T01 through T45). The WFFs column contains the number of regression
candidates tested before finding a solution. The Train-Hrs column contains the
elapsed hours spent training on the training data before finding a solution. The
Train-NLSE column contains the fitness score of the champion on the noisy
training data. The Test-NLSE column contains the fitness score of the champion
on the noiseless testing data. The Absolute column contains yes if the resulting
champion contains a set of basis functions which are algebraically equivalent to the
basis functions in the specified test problem.

The added training noise causes many problems. Even absolute accuracy is
somewhat fragile under noisy training conditions. For instance in case of the target
formula y D 1:0C.100:0�sin.x0//, the SR will be considered absolutely accurate if
the resulting champion, after training, is the formula sin.x0/. Clearly a champion of
sin.x0/ will always achieve a zero NLSE on noiseless testing data, but only if trained
on noiseless training data. If a champion of sin.x0/ is trained on noisy training data,
the regression coefficients will almost always be slightly off and the champion will
NOT achieve a zero NLSE even on noiseless testing data. So even an absolutely
accurate champion (containing the correct basis functions) may not achieve extreme
accuracy on noiseless testing data because the coefficients will have be slightly off
due to the noise in the training data.

Since we have introduced 20 % noise into the training data, we do not expect
to achieve extremely accurate results on the noiseless testing data. However, we
can hope to achieve highly accurate results on the testing data. For the purposes
of this chapter, highly accurate will be defined as any champion which achieves a
normalized least squares error (NLSE) of .2 or less on the noiseless testing data.
In the tables of results, in this chapter, the noiseless test results are listed under the
Test-NLSE column header.

The random noise added is normally distributed and symmetric (as normally
distributed as the random function can achieve). The study of asymmetric noise
and non-normally distributed noise will be left to another paper.

The results in baseline Table 3 demonstrate only very intermittent accuracy on
the 45 test problems. Baseline accuracy is fragile in the face of training noise. High
accuracy on the noiseless testing data is infrequently achieved in 12 of the 45 test
problems. Absolute accuracy on the noiseless testing data is rarely achieved in 2 of
the 45 test problems. There is a great deal of overfitting as evidenced by the number
of test cases with good training scores and very poor testing scores. Furthermore,
there is a great deal of bloat which is why absolute accuracy is rarely achieved (i.e.
the baseline algorithm rarely discovers the correct target formula).

Significantly, the EA results in Table 4 consistently demonstrate high accuracy
in 40 of the 45 test problems. Noteably, the EA algorithm does achieve frequent

Highly Accurate Symbolic Regression with Noisy Training Data 105

Table 3 Baseline accuracy 20 % noise

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute

T01 1366K 20:00 0:0355 0:0187 Yes

T02 1274K 20:00 0:0010 0:1100 No

T03 1142K 20:00 0:0991 0:9920 No

T04 1284K 20:00 0:0005 0:0536 Yes

T05 1155K 20:00 0:0807 0:9999 No

T06 1201K 20:00 0:7324 0:9999 No

T07 1181K 20:00 0:0119 0:9999 No

T08 1214K 20:00 0:0017 0:9999 No

T09 1308K 20:00 0:0448 0:9999 No

T10 1210K 20:00 0:0152 0:9999 No

T11 1230K 20:00 0:0124 0:9999 No

T12 1286K 20:00 0:0189 0:9999 No

T13 1292K 20:00 0:2973 0:4052 No

T14 1242K 20:00 0:8214 0:9999 No

T15 1135K 20:00 0:8849 0:9999 No

T16 1196K 20:00 0:0370 0:9999 No

T17 1230K 20:00 0:1125 0:1339 No

T18 1057K 20:00 0:8900 0:9999 No

T19 1163K 20:00 0:1059 0:0382 No

T20 1227K 20:00 0:0002 0:1992 No

T21 1040K 20:00 0:0120 0:8882 No

T22 934K 20:00 0:0007 0:2953 No

T23 1132K 20:00 0:0001 0:9999 No

T24 1141K 20:00 0:1061 0:1734 No

T25 1054K 20:00 0:0010 0:0657 No

T26 1068K 20:00 0:1070 0:9999 No

T27 1087K 20:00 0:1555 0:9999 No

T28 1112K 20:00 0:2023 0:9999 No

T29 972K 20:00 0:6108 0:9961 No

T30 921K 20:00 0:0115 0:9999 No

T31 247K 20:00 0:1200 0:0607 No

T32 259K 20:00 0:0716 0:0148 No

T33 265K 20:00 0:3946 0:3038 No

T34 288K 20:00 0:3975 0:9999 No

T35 273K 20:00 0:3073 0:8116 No

T36 248K 20:00 0:6486 0:5438 No

T37 309K 20:00 0:1196 0:0677 No

T38 1578K 20:00 0:6697 0:6780 No

T39 1034K 20:00 0:0215 0:9952 No

106 M.F. Korns

Table 3 (continued)

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute

T40 1505K 20:00 0:1097 0:2328 No

T41 590K 20:00 0:2731 0:2731 No

T42 694K 20:00 0:3174 0:3327 No

T43 780K 20:00 0:4356 0:9263 No

T44 800K 20:00 0:6293 0:8469 No

T45 814K 20:00 0:1069 0:0717 No

Note1: the number of regression candidates tested before finding a
solution is listed in the Well Formed Formulas (WFFs) column
Note2: the elapsed hours spent training on the training data is listed
in the (Train-Hrs) column
Note3: the fitness score of the champion on the noisy training data is
listed in the (Train-NLSE) column
Note4: the fitness score of the champion on the noiseless testing data
is listed in the (Test-NLSE) column with .6339 average fitness
Note5: the absolute accuracy of the SR is given in the (Absolute)
column with 2 absolutely accurate

Table 4 Extreme accuracy 20 % noise

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute

T01 26861K 19:38 0:0993 0:0059 Yes

T02 26897K 19:61 0:0003 0:0000 Yes

T03 26922K 19:78 0:1014 0:0133 Yes

T04 26910K 18:84 0:0004 0:0000 Yes

T05 26877K 18:61 0:0948 0:0000 Yes

T06 26922K 18:83 0:1157 0:0000 Yes

T07 26948K 18:98 0:0025 0:0000 Yes

T08 26982K 19:98 0:0009 0:0000 Yes

T09 26897K 20:11 0:0176 0:0000 Yes

T10 26877K 19:33 0:0129 0:2877 Yes

T11 26924K 20:28 0:6912 0:0747 No

T12 26879K 19:73 0:0043 0:0185 No

T13 26907K 19:99 0:3199 0:0000 Yes

T14 26896K 19:96 0:8487 0:2350 No

T15 26930K 20:16 0:6712 0:1581 Yes

T16 26870K 21:84 0:0119 0:4315 Yes

T17 26949K 21:88 0:1227 0:0000 Yes

T18 26865K 21:93 0:8763 0:9999 No

T19 26896K 22:06 0:1085 0:0000 Yes

T20 26878K 22:73 0:0007 0:0668 No

T21 26983K 23:44 0:0013 0:0000 Yes

T22 26886K 22:74 0:0027 0:0000 Yes

T23 26918K 20:46 0:0006 0:0000 Yes

Highly Accurate Symbolic Regression with Noisy Training Data 107

Table 4 (continued)

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute

T24 26936K 20:23 0:1057 0:0140 No

T25 26866K 19:83 0:0009 0:0157 No

T26 26941K 16:64 0:1074 0:0178 No

T27 26884K 19:27 0:1600 0:0000 No

T28 26908K 16:40 0:2059 0:0000 No

T29 26898K 16:33 0:1168 0:0000 Yes

T30 26866K 16:13 0:0036 0:0000 Yes

T31 969K 7:06 0:1084 0:0000 Yes

T32 1472K 10:63 0:0739 0:0050 No

T33 1159K 8:33 0:2726 0:0000 Yes

T34 1123K 8:17 0:0803 0:0000 Yes

T35 1038K 7:49 0:0678 0:0000 Yes

T36 1089K 8:10 0:5901 0:1083 Yes

T37 1031K 7:55 0:1186 0:0124 No

T38 1189K 6:94 0:1128 0:0000 Yes

T39 1279K 7:82 0:0426 0:0000 Yes

T40 1299K 7:72 0:0732 0:0053 No

T41 28313K 31:2 0:1947 0:0730 No

T42 29246K 41:43 0:1002 0:0534 No

T43 28079K 28:21 0:4036 0:3682 No

T44 28605K 34:88 0:0068 0:0000 No

T45 28385K 32:31 0:0375 0:1803 No

Note1: the number of regression candidates tested before finding a
solution is listed in the Well Formed Formulas (WFFs) column
Note2: the elapsed hours spent training on the training data is listed in
the (Train-Hrs) column
Note3: the fitness score of the champion on the noisy training data is
listed in the (Train-NLSE) column
Note4: the fitness score of the champion on the noiseless testing data is
listed in the (Test-NLSE) column with .0698 average fitness
Note5: the absolute accuracy of the SR is given in the (Absolute)
column with 27 absolutely accurate

absolute accuracy, even in the face of the noisy training data, in 27 of the 45 test
problems. This absolute accuracy is robust even in the face of problems with large
number of features (i.e. the EA algorithm frequently discovers the correct target
formula).

Notice the EA’s failure to achieve high accuracy in TestCaseT10. Even though
the EA discovered the absolute accurate basis function, the noisy training data
caused the coefficients to be seriously skewed. Additionally, the EA’s problem with
absolute accuracy in TestCaseT12 is a case in point. Noteably, the EA algorithm
actually does discover the absolute answer; but, on the noisy training data, the

108 M.F. Korns

final fitness score of the correct answer is worse than the final fitness score of a
multivariable formula (containing the correct formula). Faced with this better fitness
score, the EA chooses the incorrect answer as its primary choice and the correct
answer as a secondary choice. The EA has no way of discerning that the added
noise has so seriously altered the training landscape.

Nevertheless, even with all these issues, the EA algorithm achieves a level of
accuracy and search efficiency which raises SR to new level of performance on
noisy training data (Tables 5 and 6).

Table 5 Baseline accuracy range shifting

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute

T01 1666K 20:00 0:2314 0:0251 Yes

T02 1742K 20:00 0:0356 0:0007 No

T03 1675K 20:00 0:1467 0:0393 No

T04 1757K 20:00 0:0413 0:0003 No

T05 1491K 20:00 0:3619 0:0889 No

T06 1785K 20:00 0:5413 0:4399 No

T07 1896K 20:00 0:0377 0:0579 No

T08 1832K 20:00 0:0336 0:1600 No

T09 1619K 20:00 0:3800 0:9998 No

T10 1655K 20:00 0:8966 0:9998 No

T11 1765K 20:00 0:8836 0:9999 No

T12 1653K 20:00 0:0017 0:0106 No

T13 1788K 20:00 0:5727 0:0824 No

T14 1808K 20:00 0:8814 0:7037 No

T15 1857K 20:00 0:6017 0:0477 No

T16 1426K 20:00 0:0117 0:9999 No

T17 1749K 20:00 0:1115 0:0540 No

T18 1681K 20:00 0:8853 0:9999 No

T19 1770K 20:00 0:3066 0:5472 No

T20 1381K 20:00 0:0011 0:0006 No

T21 1811K 20:00 0:3383 0:1484 No

T22 1838K 20:00 0:0453 0:1881 No

T23 1732K 20:00 0:0000 0:0000 No

T24 1831K 20:00 0:2500 0:0324 No

T25 1884K 20:00 0:0428 0:4828 No

T26 1686K 20:00 0:3089 0:1358 No

T27 1613K 20:00 0:4922 0:0715 No

T28 1468K 20:00 0:8754 0:8360 No

T29 1726K 20:00 0:2747 0:3448 No

T30 1638K 20:00 0:0070 0:5507 No

T31 448K 20:00 0:3765 0:3907 No

T32 453K 20:00 0:2953 0:2615 No

Highly Accurate Symbolic Regression with Noisy Training Data 109

Table 5 (continued)

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute

T33 462K 20:00 0:2783 0:1566 No

T34 387K 20:00 0:6321 0:1958 No

T35 534K 20:00 0:1813 0:0617 No

T36 460K 20:00 0:6561 0:2358 No

T37 518K 20:00 0:0974 0:0124 No

T38 1759K 20:00 0:3503 0:4808 No

T39 1734K 20:00 0:0224 0:2714 No

T40 1633K 20:00 0:0124 0:2066 No

T41 571K 20:00 0:4867 0:3647 No

T42 597K 20:00 0:3211 0:3328 No

T43 599K 20:00 0:4478 0:2434 No

T44 635K 20:00 0:6385 0:8469 No

T45 741K 20:00 0:0514 0:9999 No

Note1: the number of regression candidates tested before finding a
solution is listed in the Well Formed Formulas (WFFs) column
Note2: the elapsed hours spent training on the training data is listed
in the (Train-Hrs) column
Note3: the fitness score of the champion on the noisy training data is
listed in the (Train-NLSE) column
Note4: the fitness score of the champion on the noiseless testing data
is listed in the (Test-NLSE) column with .3357 average fitness
Note5: the absolute accuracy of the SR is given in the (Absolute)
column with 1 absolutely accurate

Table 6 Extreme accuracy range shifting

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute

T01 26912K 13:23 0:2308 0:0000 Yes

T02 26832K 12:71 0:0326 0:0000 Yes

T03 26868K 13:05 0:1586 0:0000 Yes

T04 26937K 13:42 0:05426 0:0000 Yes

T05 26820K 12:7 0:3626 0:0000 Yes

T06 26884K 13:03 0:4908 0:0000 Yes

T07 26885K 12:96 0:0527 0:0616 No

T08 26908K 12:21 0:0621 0:0000 Yes

T09 26880K 11:85 0:1686 0:0000 Yes

T10 26870K 13:04 0:8927 0:9999 No

T11 26862K 12:98 0:8969 0:9999 No

T12 26865K 12:94 0:0017 0:0008 No

T13 26905K 13:27 0:5626 0:0716 No

T14 26914K 13:30 0:8820 0:1826 No

T15 26836K 12:21 0:6426 0:0158 Yes

T16 26859K 12:80 0:0198 0:9999 No

110 M.F. Korns

Table 6 (continued)

Test WFFs Train-Hrs Train-NLSE Test-NLSE Absolute

T17 26861K 12:96 0:1223 0:0000 Yes

T18 26832K 12:66 0:9050 0:9999 No

T19 26895K 13:09 0:3130 0:0635 No

T20 26981K 13:61 0:0013 0:1339 No

T21 26885K 13:06 0:3445 0:0808 No

T22 26956K 13:42 0:0449 0:0172 No

T23 26838K 11:91 0:0002 0:0000 Yes

T24 26857K 11:87 0:2541 0:0140 No

T25 26971K 13:49 0:0425 0:0031 No

T26 26984K 13:56 0:3175 0:1258 No

T27 26892K 13:06 0:4942 0:0942 No

T28 26871K 12:88 0:8860 0:9999 No

T29 26896K 13:03 0:1359 0:0000 Yes

T30 26882K 12:89 0:0036 0:0000 Yes

T31 969K 7:10 0:3842 0:0609 No

T32 969K 7:08 0:2776 0:0287 No

T33 975K 7:09 0:2830 0:0139 No

T34 764K 7:51 0:6563 0:0000 No

T35 1094K 8:02 0:1594 0:1042 No

T36 723K 7:01 0:6640 0:1870 No

T37 1121K 8:15 0:0992 0:0073 No

T38 1560K 8:97 0:2616 0:2316 No

T39 1228K 7:46 0:0069 0:0000 Yes

T40 1995K 14:80 0:0052 0:0066 No

T41 28632K 35:34 0:4616 0:9392 No

T42 28700K 37:84 0:2008 0:1363 No

T43 27144K 17:32 0:3983 0:2914 No

T44 27670K 24:78 0:5973 0:8458 No

T45 28694K 37:34 0:0532 0:0020 No

Note1: the number of regression candidates tested before finding a
solution is listed in the Well Formed Formulas (WFFs) column
Note2: the elapsed hours spent training on the training data is listed in
the (Train-Hrs) column
Note3: the fitness score of the champion on the noisy training data is
listed in the (Train-NLSE) column
Note4: the fitness score of the champion on the noiseless testing data is
listed in the (Test-NLSE) column with .1937 average fitness
Note5: the absolute accuracy of the SR is given in the (Absolute) column
with 14 absolutely accurate

Highly Accurate Symbolic Regression with Noisy Training Data 111

4 Noisy Training with Range Shifting Testing

Comparing the SR performance of the baseline algorithm and the EA algorithm, on
noisy training data with range shifted testing data, using statistical best practices out-
of-sample testing methodology, requires the following procedure. For each sample
test problem, a matrix of independent variables is filled with random numbers
between 0 and 1. Then the specified sample test problem formula is applied to
produce the dependent variable. Then 20 % noise is added to the dependent variable
according to the following formula: y D .y�:8/ C random.y�:4/. These steps will
create the training data. A symbolic regression will be run on the training data to
produce the champion estimator. Next a matrix of independent variables is filled
with random numbers between �1 and 0. Then the specified sample test problem
formula is applied to produce the dependent variable. No noise is added to the testing
dependent variable. These steps will create the testing data. The fitness score is the
root mean squared error divided by the standard deviation of Y, NLSE. The estimator
will be evaluated against the testing data producing the final NLSE for comparison.

Notice the range shifted testing data. All training is performed on data between 0
and 1. The SR has never seen a negative number. Furthermore, 20 % noise is added
to the dependent variable during training. Finally, the testing data is in the range
�1 to 0. These are mostly negative numbers which the SR has never seen during
training.

The baseline algorithm and the EA algorithm will be trained on each of the 45
sample test problems for comparison. Each algorithm will be given a maximum of
20 h for completion, at which time, if the SR has not already halted, the SR run will
be terminated and the best available candidate will be selected as the final estimator
champion.

In each table of results, the Test column contains the identifier of the sample test
problem (T01 through T45). The WFFs column contains the number of regression
candidates tested before finding a solution. The Train-Hrs column contains the
elapsed hours spent training on the training data before finding a solution. The
Train-NLSE column contains the fitness score of the champion on the noisy
training data. The Test-NLSE column contains the fitness score of the champion
on the noiseless testing data. The Absolute column contains yes if the resulting
champion contains a set of basis functions which are algebraically equivalent to the
basis functions in the specified test problem.

For the purposes of this chapter, extremely accurate will be defined as any
champion which achieves a normalized least squares error (NLSE) of .0001 or less
on the noiseless testing data. In the table of results, at the conclusion of this chapter,
the noiseless test results are listed under the Test-NLSE column header.

Obviously extreme accuracy is not the same as absolute accuracy and is therefore
fragile under some conditions. Extreme accuracy will stop at the first estimator
which achieves an NLSE of 0.0 on the noiseless training data, and hope that
the estimator will achieve an NLSE of .0001 or less on the testing data. Yes, an
extremely accurate algorithm is guaranteed to find a perfect champion (estimator

112 M.F. Korns

training fitness of 0.0) if there is one to be found; but, this perfect champion may or
may not be the estimator which was used to create the testing data. For instance in
the target formula y D 1:0 C .100:0�sin.x0// C .:001�square.x0// we notice that
the final term .:0001�square.x0// is less significant at low ranges of x0; but, as the
absolute magnitude of x0 increases, the final term is increasingly significant. And,
this does not even cover the many issues with problematic training data ranges and
poorly behaved target formulas within those ranges. For instance, creating training
data in the range �1000 to 1000 for the target formula y D 1:0 C exp.x2

�34:23/

runs into many issues where the value of y exceeds the range of a 64 bit IEEE real
number. So as one can see the concept of extreme accuracy is just the beginning of
the attempt to conquer the accuracy problem in SR.

Furthermore even absolute accuracy is somewhat fragile under noisy training
conditions. For instance in case of the target formula y D 1:0C .100:0�sin.x0//, the
SR will be considered absolutely accurate if the resulting champion, after training,
is the formula sin.x0/. Clearly a champion of sin.x0/ will always achieve a zero
NLSE on noiseless testing data, but only if trained on noiseless training data. If
a champion of sin.x0/ is trained on noisy training data, the regression coefficients
will almost always be slightly off and the champion will NOT achieve a zero NLSE
even on noiseless testing data. So even absolute accuracy is a tricky proposition with
noisy training data.

As mentioned, each of the problems were trained and tested on from 25 to 3000
features as specified using out of sample testing. The allocated maximum time
to complete a test problem on our laptop environment was 20 h, at which time
training was automatically halted and the best champion was returned as the answer.
However, most problems finished well ahead of that maximum time limit.

All timings quoted in these tables were performed on a Dell XPS L521X Intel i7
quad core laptop with 16Gig of RAM, and 1Tb of hard drive, manufactured in Dec
2012 (our test machine).

Note: testing a single regression champion is not cheap. At a minimum testing
a single regression champion requires as many evaluations as there are training
examples as well as performing a simple regression. At a maximum testing a
single regression champion may require performing a much more expensive multiple
regression.

The results in baseline Table 1 demonstrate only intermittent accuracy on the 45
test problems. Baseline accuracy is very good with 1, 2, or 5 features in the training
data. Unfortunately, Baseline accuracy decreases rapidly as the number of features
in the training data increases to 25, 150, and 3000. Furthermore, there is a great deal
of overfitting as evidenced by the number of test cases with good training scores and
very poor testing scores.

In such cases of overfitting, SR becomes deceptive. It produces tantalizing can-
didates which, from their training NLSE scores, look really exciting. Unfortunately,
they fail miserably on the testing data.

Clearly the baseline testing results in Table 1 demonstrate an opportunity for
improved accuracy.

Highly Accurate Symbolic Regression with Noisy Training Data 113

Another serious issue with the baseline algorithm is that negative results have
no explicit meaning. For example, Alice runs the baseline algorithm on a large
block of data for the maximum time specified. At the conclusion of the maximum
specified generations, requiring a maximum of 20 h on our laptop, no candidate
with a zero NLSE (perfect score) is returned. The meaning of this negative result
is indeterminate, as one can argue that perhaps if Alice were to run the baseline
algorithm for a few more generations an exact candidate would be discovered.

Significantly, the EA results in Table 2 demonstrate extreme accuracy on the 45
test problems. This extreme accuracy is robust even in the face of problems with
large number of features.

Notice the extreme search efficiency which Table 2 demonstrates. Our assertion
is that the EA algorithm is getting the same accuracy on U2(1)[25], U1(25)[25],
U1(5)[150], and F.x/(5)[3000] as if each and every single element of those sets were
searched serially; and yet we are never testing more than a few million regression
candidates.

Another very important benefit of extreme accuracy will only be fully realized
when all undiscovered errors are worked out of our informal argument for extreme
accuracy and when our informal argument is crafted into a complete, peer reviewed,
well accepted, formal mathematical proof of accuracy. Once this goal is achieved,
we can begin to make modus tollens arguments from negative results!

For example, our future Alice runs the EA algorithm on a large block of data for
the maximum time specified. At the conclusion of the maximum time of 20 h on
our laptop, no candidate with a zero NLSE (perfect score) is returned. Referring to
the published, well accepted formal mathematical proof of accuracy, Alice argues
(modus tollens) that there exists no exact relationship between X and Y anywhere
within U2(1)[25], U1(25)[25], and U1(5)[150] through Fx(5)[3000].

5 Conclusion

In a previous paper (Korns 2011), significant accuracy issues were identified for
state of the art SR systems. It is now obvious that these SR accuracy issues are due
primarily to the poor surface conditions of specific subsets of the problem space.
For instance, if the problem space is exceedingly choppy with little monotonicity or
flat with the exception of a single point with fitness advantage, then no amount of
fiddling with evolutionary parameters will address the core issue.

In Korns (2013), an EA algorithm was introduced with an informal argument
asserting extreme accuracy in a number of noiseless test problems. This enhanced
algorithm contains a search language and an informal argument, suggesting a priori,
that extreme accuracy will be achieved on any single isolated problem within a
broad class of basic SR problems. In Korns (2014), the EA algorithm was enhanced
to include extreme accuracy on noiseless large feature test problems.

In this paper we test the enhanced EA algorithm measuring levels of extreme
accuracy on problems with noisy training data, and with range shifted testing data.

114 M.F. Korns

The results support the view that the pursuit if high accuracy algorithms in noiseless
training data also conveys distinct and measurable advantages with noisy training
data and range shifted testing data. In fact, for both noiseless training data and when
trained on noisy training data, then tested on range shifted testing data, the enhanced
EA algorithm is measurably faster and more accurate than the baseline algorithm.
This places the Extreme Accuracy algorithm in a class by itself.

The new EA algorithm introduces a hybrid view of SR in which advanced
evolutionary methods are deployed in the extremely large spaces where serial search
is impractical, and in which the intractable smaller spaces are first identified and
then attacked either serially or with mathematical treatments. All academics and SR
researchers are heartily invited into this newly opened playground, as a plethora of
intellectual work awaits. Increasing SR’s demonstrable range of extreme accuracy
will require that new intractable subspaces be identified and that new mathematical
treatments be devised.

Future research must explore the possibility of developing an Extreme Accuracy
algorithm for the related field of symbolic multinomial classification.

Finally, to the extent that the reasoning in this informal argument, of extreme
accuracy, gain academic and commercial acceptance, a climate of belief in SR can
be created wherein SR is increasingly seen as a “must have” tool in the scientific
arsenal.

Truly knowing the strength’s and weaknesses of our tools is an essential step in
gaining trust in their use.

About the Author

Michael Korns is a computer scientist with professional experience at IBM
Research, Chief Scientist at Tymeshare Transactions, Chief Scientist at Xerox
Imaging, and currently CEO of Korns Associates. His primary area of interest
is in symbolic regression classification with an emphasis on investment finance
applications. His most recent research has explored extreme accuracy algorithms
for symbolic regression which are robust even in the face of noisy training data and
range shifted testing data.

References

Hornby GS (2006) Age-layered population structure for reducing the problem of premature
convergence. In: GECCO 2006: Proceedings of the 8th annual conference on genetic and
evolutionary computation. ACM, New York

Korns M (2010) Abstract expression grammar symbolic regression. In: Genetic programming
theory and practice VIII. Springer, New York, Kaufmann Publishers, San Francisco, CA

Korns M (2011) Accuracy in symbolic regression. In: Genetic programming theory and practice
IX. Springer, New York, Kaufmann Publishers, San Francisco CA

Highly Accurate Symbolic Regression with Noisy Training Data 115

Korns M (2012). A baseline symbolic regression algorithm. In: Genetic programming theory and
practice X. Springer, New York, Kaufmann Publishers, San Francisco, CA

Korns M (2013). Extreme accuracy in symbolic regression. In: Genetic programming theory and
practice XI. Springer, New York, Kaufmann Publishers, San Francisco, CA

Korns M (2014). Extremely accurate symbolic regression for large feature problems. In: Genetic
programming theory and practice XII. Springer, New York, Kaufmann Publishers, San
Francisco, CA

Kotanchek M, Smits G, Vladislavleva E (2008) Trustable symbolic regression models: using
ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models. In:
Genetic programming theory and practice V. Springer, New York

Koza JR (1992) Genetic programming: on the programming of computers by means of natural
selection. The MIT Press, Cambridge, MA

Koza JR (1994) Genetic programming II: automatic discovery of reusable programs. The MIT
Press, Cambridge, MA

Koza JR, Bennett FH III, Andre D, Keane MA (1999) Genetic programming III: Darwinian
invention and problem solving. Morgan Kaufmann, San Francisco, CA

McConaghy T (2011) FFX: fast, Scalable, deterministic symbolic regression technology. In:
Genetic programming theory and practice IX. Springer, New York

Nelder JA, Wedderburn RW (1972) Generalized linear models. J Roy Stat Soc Ser A Gen 135:
370–384

Poli R, McPhee N, Vanneshi L (2009) Analysis of the effects of elitism on bloat in linear and
tree-based genetic programming. In: Genetic programming theory and practice VI. Springer,
New York

Schmidt M, Lipson H (2010) Age-fitness pareto optimization. In: Genetic programming theory and
practice VI. Springer, New York

Smits G, Kotanchek M (2005). Pareto-front exploitation in symbolic regression. In: Genetic
programming theory and practice II. Springer, New York

Using Genetic Programming for Data Science:
Lessons Learned

Steven Gustafson, Ram Narasimhan, Ravi Palla, and Aisha Yousuf

Abstract In this chapter we present a case study to demonstrate how the current
state-of-the-art Genetic Programming (GP) fairs as a tool for the emerging field
of Data Science. Data Science refers to the practice of extracting knowledge from
data, often Big Data, to glean insights useful for predicting business, political or
societal outcomes. Data Science tools are important to the practice as they allow
Data Scientists to be productive and accurate. GP has many features that make it
amenable as a tool for Data Science, but GP is not widely considered as a Data
Science method as of yet. Thus, we performed a real-world comparison of GP with a
popular Data Science method to understand its strengths and weaknesses. GP proved
to find equally strong solutions, leveraged the new Big Data infrastructure, and was
able to provide several benefits like direct feature importance and solution confi-
dence. GP lacked the ability to quickly build and test models, required much more
intensive computing power, and, due to its lack of commercial maturity, created
some challenges for productization as well as integration with data management
and visualization capabilities. The lessons learned leads to several recommendations
that provide a path for future research to focus on key areas to improve GP as a Data
Science tool.

Keywords Genetic programming • Data Science • Gradient boosted regression
• Machine learning • Industrial applications • Real-world application • Lessons
learned • Diversity • Ensembles

1 Introduction

Nearly 10 years ago, in this same book series, Castillo et al. (2004) evaluated
Genetic Programming (GP) as a suitable technique for industrial systems modeling.
The authors examined the state-of-the-art GP system developed within Dow

S. Gustafson (�) • R. Palla • A. Yousuf
Knowledge Discovery Lab, GE Global Research, Niskayuna, NY, USA
e-mail: steven.gustafson@research.ge.com

R. Narasimhan
Data Science, GE Software, San Ramon, CA, USA

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_7

117

mailto:steven.gustafson@research.ge.com

118 S. Gustafson et al.

Chemical and compared against the typical statistical approaches. They found that
GP had positive attributes, and where there were weaknesses, they recommended
solutions. That work led to several enhancements to GP and motivated a workshop
series led by this author for 6 years. Whereas that work stemmed out of GP
applied to symbolic regression and modeling work, today, GP is sitting on the ledge
of breaking out of the traditional machine learning communities to much wider
adoption and impact as a potential Data Science tool.

In a recent O’Reilly report (Loukides 2010), the importance of data was stated
as: “The future belongs to the companies and people that turn data into products”.
According to Dhar (2013), Data Science is about extracting knowledge from data,
discovering new relationships between things in this world, their interactions,
outcomes and predictors. Data Science in practice is about speed and the ability
to answer meaningful questions effectively. It is about empowering analysts with
a new skillset to leverage Big Data and analytics to make effective computational
policy and business decisions. Data Scientists are often not computer scientists, and
hence lack formal machine learning or artificial intelligence training. Data Scientists
often come from the physical sciences where domain knowledge is leveraged to turn
data into a meaningful product or outcome.

Genetic Programming is poised to become a significant enabler for Data Science.
But it isn’t today. In this article, we review a recent attempt to use GP for Data
Science and discuss the lessons learned. We identified a novel result that is holding
GP back, the iteration speed at which a Data Scientists can generate new results,
that is not being addressed by existing work. In non-GP systems, iteration speed
is primarily impacted by how fast can someone change the python/R/matlab scripts
and re-run the code. But in GP, iteration speed might mean modifying the source
code, it might mean building extra scripts to work data, or in some cases it
might mean performing novel research into advanced topics like ensemble learning.
Whereas some tools like Data Modeler (Castillo et al. 2004) are currently positioned
well to become a Data Science tool, a new tool like DEAP (De Rainville et al. 2012)
that is based on Python and open source may gain wider adoption. But both tools
need more advanced capabilities in the core system to become a capable GP system
for Data Science. This chapter describes the case study, introduces both methods,
reports the outcomes, lessons learned and recommendations as to how GP could
become a more effective Data Science tool.

2 Background

There are several trends that are enabling artificial intelligence technologies to
increase their value and outcomes. The first trend has been well documented and
publicized: Big Data. As computer storage and compute cycles became cheaper,
new industries have grown and changed around the massive collections of data and
algorithms that run on top of them. Companies like Google, Amazon and Netflix are
good examples of this trend. The second trend started out as Semantic Web and later

Using GP for Data Science 119

became Linked Data, and as the growing Internet began to connect devices, the trend
of the Internet of Things (IoT) became popular. Inside industry, the IoT is being
shaped as the Industrial Internet or The Internet of Everything, and also the Web of
Things, among others (see Gustafson and Sheth (2014) for a brief introduction).
This trend in the massive connection of devices with data and analytic systems
only produces more data, for example from personal devices like iPhones and smart
watches, but provides more sensors and actuators available for artificial intelligence
technologies to sit between. The third trend, Data Science which is in many ways
a direct result of the first two, is the increasing demand to leverage data to direct
outcomes, either in businesses, health, or global/economic policies.

Data Science originally described the study of turning data into insights. How-
ever, more recently, the focus of Data Science has become the training and search
for the skills required to practice Data Science effectively. Today, Data Science has
emerged as a popular topic for students, a workforce reskilling opportunity, a major
focus of national funding agencies, the focus of both private investors and startup
companies, and outcomes delivery mechanism on top of the Big Data initiatives
begun years earlier. The IoT predicts that billions of machines will be connected in
the near future, and all those machines will be producing massive amounts of data,
and algorithms and insights that can be gleaned from them will allow optimization,
new businesses, and understanding that shapes policy and society.

As members of the General Electric Global Research center, we have participated
in many Data Science related activities for finance, healthcare, aviation, oil and
gas, power and water, and media. There are several consistently common activities
shared across these industries in the Data Science tasks: accessing data, learning
domain knowledge, and building descriptive and predictive models. Genetic Pro-
gramming presents a compelling approach as it can both learn nonlinear models,
is relatively easy to insert domain knowledge into, naturally produces a range of
possible solutions, and finds solutions that can be further optimized, inspected and
simplified. The latter characteristics, in particular, are interesting to a Data Scientist
as it means the solution can be communicated to customers and engineers and they
can “understand” how the data is being used. This is in comparison to a forest of
decision trees or a neural network, for example.

Data Science as a discipline is usually described as the combination of several
skills. Firstly, computer science skills are needed to work efficiently with data,
statistical and math skills allow one to find complex patterns within data, a physical
science background helps one to understand how to find and ask meaningful
questions, and creativity is required to elegantly display and communicate results.
Of course, very few people are highly skilled in each area, and thus Data Scientists
are often teams of people working together. Data Scientists are usually embedded
within industries, are measured by their efficiency to work with data and find
patterns, and their ability to find and answer the big, high-valued questions. GP, in
particular the Symbolic Regression branch of GP that deals with learning regression
models, has particular relevance for the Data Science community. There is at least
one GP software explicitly targeted at the Data Science space using symbolic
regression, Eureqa (Schmidt and Lipson 2009; Dubcakova 2011).

120 S. Gustafson et al.

Table 1 Data from various Google queries suggesting low popularity and adoption by Data
Scientists in Data Science competitions on Kaggle.com, as a topic of research in Universities,
on new Data Science courses, within the Government, and also within job market on LinkedIn

Approach Kaggle forums site:edu site edu syllabus site:gov site:linkedin.com

Logistic regression 76 3620 551 50 20,800

Neural network 59 3200 46 34 4710

Random forest 79 773 9 19 2920

Genetic programming 1 92 17 13 497

The queries were constructed as (Data Science + logistic regression + modifier), where
modifier would be site.edu for example

GP is at least 25 years old. Even from its initial days, learning models to fit
data was a focus and is usually referred to as Symbolic Regression. For the past
6 years, the first author on this paper has run a workshop at the annual Genetic
and Evolutionary Computation Conference on the topic of symbolic regression
research and industry tools: the Symbolic Regression and Modeling Workshop. The
workshop produced several interesting papers talks, led to new lines of research,
and enabled new software tools to be highlighted to the community. Symbolic
regression, the identification of a model, its variables, and their relationship (both
linear and nonlinear) is at the heart of Data Science.

While GP has been shown to successfully solve problems in countless papers, it
is still seen as an outsider in the mainstream machine learning and artificial intel-
ligence community. As such, GP is still not widely available in many commercial
analytical tools and Data Scientists have often not received any relevant training
as to how to use the method. In Table 1, we performed several online searches to
understand a rough idea of the popularity of GP as compared to other popular Data
Science tools, namely logistic regression, neural networks, and random forest. One
search was performed on Kaggle.com user forums, which is a popular place for
thousands of Data Scientists competing on the Kaggle.com site in Data Science
challenges to share and discuss the approaches and methods. The forums represent
both a fascinating and educational look into how Data Scientists work. Table 1
shows that GP lags behind all other methods in all but one case. While one shouldn’t
place too much significance on the actual numbers in Table 1, it does support our
belief that GP is not being considered as a Data Science tool.

2.1 Attributes of GP for Data Science

We now look at several requirements of Data Science and how GP can meet them
as a Data Science tool.

1. Data Science leverages Big Data for data-driven decisions and outcomes. GP is
a distributed search algorithm, and countless studies have look at better ways

Using GP for Data Science 121

to distribute the search process. Recent work has shown how GP can directly
leverage Big Data effectively (Arnaldo et al. 2014; Fazenda et al. 2012).

2. Data Science extracts knowledge about a particular problem using data. GP
produces easy-to-inspect solutions, which make it a particularly valuable method
for Data Scientists.

3. Data Science leverages any existing knowledge to get to an answer. GP has
a direct way of encoding knowledge into the algorithm, through functions,
terminals, and objective functions, or indirectly through selection pressure or
operators.

4. Data Science tools are used by many people not necessarily trained in machine
learning. While there are some new tools that have intuitive interfaces (Schmidt
and Lipson 2009; Wagner and Kronberger 2011; De Rainville et al. 2012; Smits
et al. 2010), the core GP system is still quite complex with many parameters.

5. Data Science requires Data Scientists to iterate quickly on building new models,
get feedback, and build more models. GP can often take a significant amount of
time to setup, tune parameters, and search for good models.

6. Data Science tools integrate with other tools, particularly data management and
visualization tools. Data Modeller and DEAP leverage the built-in capability
of Mathematica and Python, whereas tools like FlexGP (Veeramachaneni et al.
2015) and Eureqa are standalone solutions that must provide their own imple-
mentations or leverage external tools.

7. Data Science tools need to perform relatively out-of-the-box. Approaches like
Random Forest and Gradient Boosted Regression have become popular as
they are robust with their default settings. In general, GP requires a lot of
customization to make it perform well. Recent work looks to improve the
basic performance capability of GP by combing it with other machine learning
techniques (Icke and Bongard 2013). In O’Neill et al. (2010), several open issues
are highlighted to further improve GP.

8. Data Science tools produce models that need to be implemented quickly for
client-facing prototypes and demos. GP still exists in many stand alone envi-
ronments, or requires a fair amount of tweaking the source packages.

2.2 Summary of Attributes of Data Science and GP

In Table 2, we summarize the attributes from the previous section and identify which
GP capabilities are potential areas of concern in Data Science. Of the attributes of
GP for Data Science, the inability to iterate and create new models quickly was
the biggest concern for us. Some of the other issues, like integrating with big data
infrastructure or simple to use interfaces, have seen progress with new commercial
tools.

In Data Science, building the first model is usually a very informative and
valuable task by forcing assumptions and data issues out into the open, and
demonstrates a viable end-to-end pipeline of data to insight capability. There are
two main challenges in building the first model. Firstly, the integration of the tool

122 S. Gustafson et al.

Table 2 Data Science tool attributes and intersection with GP

Data Science attribute GP existing capability

1 Handle big data Good (distributed compute and sampling)

2 Extract knowledge Good (inspect solutions)

3 Encode domain knowledge Good (code as functions and built-ins)

4 Easy to use weak (lots of parameters, fewer commercial tools)

5 Iterate quickly Weak (high compute time)

6 Integrate with big data infrastructure Good (initial work demonstrates HDFS integration)

7 Good out of box performance Weak (typically a lot of customization required)

8 Quick prototyping Weak (can application developers do it?)

with data management and data featurization tools. That is, given one or more
data files to build the model out of, the data often needs to be integrated, shaped,
cleaned, and any derived values created. This data set is then used for modeling.
Secondly, the problem specific evaluation method needs to be encoded to create end
to end modeling capability that can then demonstrate incremental improvement in
performance. Sometimes that might mean using an evaluation data set. Other times
it might mean extrapolating on new data coming from a customer. Because this
custom way of evaluating a solution changes, the ease at which it can be captured is
important. We now look at a real-world Data Science activity to inform us on how
GP met expectations as a Data Science tool.

3 Case Study: Operations Optimization

Our application area from industry is operations optimization, which is the improve-
ment of one or more processes given a specific business objective. There are
many different types of data used in an operations optimization problem. First,
there are low-level sensors like temperature, pressure or vibration. Sensors like these
are often measured in multiple places on a machine or in a plant. Secondly, there
are sensors that provide states of inputs, like chemical mixture or composition, and
states of outputs, like the results of a visual inspection system or a non-destructive
testing method. Lastly, there are derived or back-calculated sensors that are often
included in the operations optimization task. These values could be from a physics-
based model or equation, or from some other equation or simulation, and then
assigned back to the operation to assign a probable value. Figure 1 highlights these
different input types and how they flow in the operations optimization problem.

In industrial operations, daily decisions are made regarding various control
settings in order to maintain a targeted flow of product or output. Multiple sensors
from the plant or field are used to understand the current state and predict the future.
Given the various industrial systems encountered, the often extreme environments,
and the failure or drift of sensors, the resulting real-time data is often very noisy

Using GP for Data Science 123

Process Input Types

Temperature

Pressure

Vibration

Chemical Composition

Percentage mix

Output of
upstream process

Physics based model

Simulation

Back-calculation

Inferred or
Calculated Inputs

Inputs from
Low Level
Sensors

“State” of
Input

Derived Inputs

Machine/
Manufacturing
Plant/Process

“product”

Fig. 1 Different input types to the operations optimization problem

and requires significant data processing and cleaning prior to use. Therefore, the
problem at a high-level is one of using real-time sensors and control capability
to understand and improve operations. Automated methods that clean up data or
estimate non-measurable attributes help in providing an accurate, real-time view of
the whole system. In Kordon and Smits (2001), the authors use GP to create soft
sensors, or virtual sensors, that augment more expense sensors.

3.1 The Data Science Challenge at Hand

Our Data Science challenge could be stated as follows: Given historical data of an
operation, is it possible to use data and analytic methods to create accurate sensor
estimators, for those time instants when the sensor is offline? A sensor often changes
from being online (available) or offline (unavailable). A secondary challenge was to
identify instances (time periods) when the sensor of interest is drifting away from its
ideal accuracy level or from its prior relationship with other system sensors. Solving
these challenges would give an operations managers a consistent, real-time stream
of data that characterizes their operation, enabling accurate and timely optimization
decisions.

We defined our problem as having sensors s1: : :sN�1 as available, and sensor sN

as partially available: meaning that for portions of time sensor sN is online, but it
frequently goes offline due to other activities or faults. Our goal was to determine
whether we could build an accurate model using data for sensors s1: : :sN�1 and

124 S. Gustafson et al.

Fig. 2 Schematic illustrating the input Time Series Data, with one sensor that goes offline
periodically

data from sensor sN (when it was available). An operation has many moving parts
and changing system dynamics over time will cause the sensors to drift from their
relationships to each other and various business objectives. In our case, we had data
for 1 year, with measurements consistently every 10 min for all sensors and a binary
value to tell us whether sensor sN was offline or online. A conceptual schematic of
the input data is shown in Fig. 2.

As part of the Data Science study, two different but related methods were used.
The first method, Gradient Boosted Regression (GBR), has been commonly and
successfully employed in multiple Data Science competitions and is available in
several open source packages. The other method is GP for Symbolic Regression. In
particular, a system developed by MIT which is referred to in Arnaldo et al. (2014)
as a competent GP, because it contains many state-of-the-art features. Since this
was an actual Data Science engagement, with real data and a client waiting for the
results, and not a simulated experiment for publication, we could only attempt two
different methods given our deadlines and commitments. To measure and compare
the performance of the two methods, we used the Root Mean Squared Error (RMSE)
over the period of extrapolation as a measure of accuracy.

As mentioned before, sensor sN is available (online) only during certain time
intervals and those periods in the historical data constitute our training and testing
data. On this dataset, with the power of either of the two techniques being compared,
getting very low RMSE was easy if we resorted to interpolation. In other words,
if we used input data that sandwiched the time period of interest (from both the
past and the future) to predict the value of sensor sN , we obtain good predictions.
This is due to the fact that there exist very strong temporal relationships within the
data. Therefore, creating a model using training data that spans the time period of

Using GP for Data Science 125

prediction (and withhold the test points from within that time period), can accurately
interpolate the test data. However, this would not be a true test, since in actual
implementation, future values would never be available to use. We would only
have historical data for model building. In order to address this, and to truly assess
the capabilities of the two methods, we limited both methods to use only training
data that occurred prior in time when making any predictions. Therefore, our test
measure of RMSE is technically a measure of extrapolation (forward looking), as
opposed to interpolation. How do we know if the RMSE that we obtained is really
good, or just good enough? To guide us for this, we can use the raw data variability
from sensor sN . Ideally, the RMSE and the raw data variability should be within
the same magnitude. In our study, using six different periods of testing, we had an
average standard deviation of actual sensor sN value (a percentage) to be around
3.5. The GP system was able to achieve an average RMSE over the same six periods
of 6.0, and the GBR system had 5.5. Thus, both approaches achieved reasonable
extrapolation capabilities.

3.2 Data Management

One aspect that is related to Data Science but often not mentioned in the GP
literature is the common task of managing data. In academic settings, artificial
intelligence and machine learning research is often carried out using pre-cleaned or
benchmark data sets. However, in industry, the challenge of gathering, organizing,
and preparing data is significant. Particularly when collaborating between multiple
people using different approaches, data management done poorly can lead to
significant issues, and in some cases call into question the validity of results. In our
work, we used an approach that is growing interest in industry: ontology-based data
access. We created a model of the domain, link our data to that domain model, and
then employ a suitable query system to shape and access data. Given that the data
we have corresponds to sensor readings, we create models of the different types
of things that have sensors, their properties, and the relationships between those
things. For example, an electric submersible pump may be part of an oil well, or a
high pressure turbine blade may be a part of a gas turbine, and a pump may have
some rotation frequency. The sensor readings typically correspond to the properties
like rotation frequency.

We used the Web Ontology Language (OWL), which is a W3C standard for
representing ontologies, to capture the domain model. Figure 3 (generated using
the OntoGraf plugin in Protégé1) shows a sample ontology describing a part of our
system.

1http://protege.stanford.edu/

http://protege.stanford.edu/

126 S. Gustafson et al.

Fig. 3 A sample of the ontology from our system, showing how a gas turbine is a part, as well
as has a part (compressor), which itself has a part (high pressure turbine blade), that has a sensor
which measures rotation frequency

Fig. 4 The ontology of the system with frequency data added for the frequency concept

With the ontology in place, we then map the sensor data to the domain
model by representing the data as properties of the instances of the corresponding
components. Figure 4 extends the above figure by adding frequency data.

This approach to data management provides an intuitive representation of the
sensor data since it maps the data to the domain model. The queries used to retrieve
the data are also based on the domain model, thus making it easier for different users
to understand and modify the queries. We use SPARQL (SPARQL Protocol and
RDF Query Language), which is a W3C standard for querying the domain model
and data we represent in RDF format (Resource Description Framework). SPARQL
queries were saved and shared between the team to allow easy communication of

Using GP for Data Science 127

the data sets and preparation. In a recent edition of AI Magazine, there are several
articles highlighting the value of Semantic approaches for data management (van
Harmelen et al. 2015).

3.3 Gradient Boosted Regression

We needed another method to compare against and for this we focused on a popular
Data Science technique called Gradient Boosted Regression (GBR). GBR can be
used to build predictive models for regression problems. GBR was first proposed
in Friedman (2001). In brief, GBR uses a weighted ensemble of very simple
classification and regression trees (CART) to estimate a function. After creating
an initial model, GBR then uses gradient descent to find subsequent models that
minimize the errors of the residuals from the previously selected model. This
technique has emerged to become a very powerful and efficient technique for
regression as well as classification problems.

GBR has a way to combine several shallow trees (called learners). Each tree by
itself is fairly weak in its ability to predict, but when combined they ‘grow’ into
a strong predictor. These trees are iteratively modified, based on the residuals, or
model error, the difference between the predicted values and the actuals. In GBR,
the goal is to minimize that difference, or residual, measured by a loss function.
In gradient boosting, we start with an imperfect model, and stage by stage try to
improve it. Each improvement is informed by the residual of the preceding imperfect
model. It turns out that the residuals are the negative gradients of the loss function
(hence the name). In summary, in GBR, we successively reduce the loss function
and thereby generating a better set of parameters. By using a selection of freely
available Python libraries, we were able to very easily import the data, format it to
feed it to the model for training, testing and validation. Specifically, we used Pandas
for data manipulation, and the SciP, NumPy, and Scikit-Learn Python modules for
GBR itself (Jones et al. 2001; van der Walt et al. 2011; Pedregosa et al. 2011).

3.4 Practical Considerations When Implementing the Gradient
Boosting Method

We created the initial GBR scripts in Python. Note that there are excellent and well-
documented GBR implementations available in Python, Matlab and R. The initial
solution script was fairly straightforward to build. Once the experiment setup was
complete (splitting of data into training and testing, and a way to cross validate),
there were numerous online resources available to demonstrate how to easily use
the multiple Python libraries to build a GBR model and to tune its parameters.

128 S. Gustafson et al.

The ways we improved the GBR results were through feature selection, by
increasing the training data, and by re-training on a sliding time-window. Once we
started to obtain acceptable results, the default parameters used for GBR were not
changed. The Python GBR approach was very quick to build, and we used common
and open-source libraries to create the initial Python script. In total, around 400
lines of un-optimized Python code were written to implement the complete GBR
solution.

3.5 Adapting the Model to Handle Sensor Drift

One effect of implementing a predictive model that relies on time series data as its
input is that the model’s accuracy will tend to degrade over time as sensor values
drift. This is because the underlying relationships between the sensors s1: : :sN that
were modeled have themselves changed over time. If we do not account for this,
a model that was accurate at a previous point in time will start to make very poor
predictions. The typical way to fix this is to ‘rebuild’ the model by re-estimating the
predictors. This raises two questions:

1. How do we know when it is time to refresh the existing model?
2. How frequently should we ‘publish’ a new model to the clients such that it causes

minimal disruption?

To prevent this error from growing large over time, we ran two models in parallel.
One model was the existing (published) model, and the other was a new one being
evaluated. In addition to the comparing the prediction errors, we also compared the
actual predictor values and the variable ranks of the two models. If the updated
model was ‘significantly’ different (above the set threshold), it was accepted as time
to switch to the new model and publish it to the clients (Fig. 5).

3.6 Genetic Programming Solution

Genetic Programming is an evolutionary algorithm which provides a heuristic
search alternative to other modeling approaches such as regression (Koza 1992).
A recent special issue provides an up-to-date account of progress and open issues in
the field (O’Neill et al. 2010).

The GP system we used for symbolic regression contains several state-of-the-
art features like multi-objective optimization for selecting for solution accuracy
and complexity the maintenance of a pareto front. The underlying GP system is
the same as described in Veeramachaneni et al. (2015) where additional features
for cloud-based implementation, multiple-regression learning, and factoring—each
learner or individual leverage a different set of parameters and data when learning.
The Java-based system contained several classes implementing specific features

Using GP for Data Science 129

New Input
Dara with
possible

“drift”

Exisiting
Model

Predict using
Updated

Predictors

Compare
The results
of the two

models

Build and Try out
updated modelPredict Using

Existing Model

Significantly
different

Within set threshold

“Publish”
updated model

“Retain”
The existing model

Compare Feature sensitivity
Do Coefficients diff significantly?

Fig. 5 Schematic showing criteria for handling sensor “Drift”

like selection, evaluation, and recombination. The GP system also contains several
configuration files, or parameters file, where things like population size, functions,
initialization method and selection pressure can be specified. The goal of the
configuration files are to allow the customization of the system without modifying
the class files, which would require a recompile of the source files. Like most
systems for EC, there is a decent learning curve to understand how certain
functionality is represented and programmed.

If we look across all existing GP solutions, each provides strengths in various
attributes: user interfaces, cloud and distributed compute support, integration with
data management and visualization solutions like Mathematica or Matlab or R,
or advanced GP features like ensembles like FlexGP, etc. We chose to use a
package that was more mature on the advanced features, but less mature in the user
experience aspects. This choice is suitable for users with a high degree of expertise,
but as we will see later, has its downside for both novice users and integration with
other systems and prototyping. The process used to create a competitive GP solution
for our Data Science task was as follows:

1. Feature selection as in GBR,
2. Simplification of mathematical operators,
3. Increased the training data size. Initial results showed that GP benefited with

more data.

130 S. Gustafson et al.

4. Leveraged the same sliding window approach for training the model. Initial
results showed, that like GBR, GP extrapolation capability greatly reduced as
newer data was received.

5. Added a validation set to first select for better solutions to extrapolate, but then
later to enable an ensemble approach.

6. Added ensembles using a simple averaging of best solutions from the ensemble.

The biggest implication of these steps was that the code had to be changed in the
GP system to output solutions to create the ensemble method, which means that a
prototype system became much more brittle as a custom library as well as more
custom scripts would need to be maintained.

Regarding the infrastructure required to run the GP system as a competitive Data
Science tool, we leveraged our access to a very large cluster of compute nodes with
multiple processors, each with a large amount of dedicated memory. This allowed
us to develop GP solutions in a somewhat reasonable timescale as it took the GBR
method. The GBR could develop models within several seconds on a basic desktop
machine, approximately 17 s on average. For GP, one iteration took approximately 2
to complete one run. We executed this 30 times in parallel. Without parallelization
this would take an hour. Additional parallelization could bring this down to around
5 min. While the compute time puts the GP method at a distinct disadvantage, in
the era of Big Data, this kind of infrastructure difference is less critical: data sets
will become larger and larger, giving easily parallelizable and distributed methods
like GP an advantage, and data sets will natively be stored in massively distributed
storage systems.

We now describe some of the GP settings we used. First we set the population
size to 1000, and used a generation based model with 100 max generations. We used
standard functions (+, �, *, /, sqrt, square, exp) and 32 variables. Other parameters
were set to typical competent GP values: tree initial depth was 15, tournament
selection was 10, crossover rate of 0.7, 10 tries to produce a unique tree in crossover,
mutation rate or 0.2, and replication rate of 0.1. After some brief, initial probing
of hyper parameters in the setup, we determined the following as an effective GP
approach. First we split out training data into five equal sized time sequential groups.
The first three earliest in time periods were used to train our GP system. To train, we
ran our GP system 30 times to produce a selection of best solutions of various sizes
and accuracy. Secondly, we used the fourth training period (the next consecutive
one) as a validation data to select top 15 models (measured according to RMSE and
model complexity) across all the populations and runs. Specifically, for each run we
store the models that had the best accuracy and were the least complex (smallest),
the least complex model, and the most accurate models. So, after 30 runs, we have
approximately 90 possible models. From those models, we test them all against the
fourth training period and score them by their RMSE. Then, we select the top 15
models (we determined 15 by minimal trial and error) and allow them to extrapolate
on each new data point (sensors s1: : :sN�1) to predict sensor sN . The final prediction
is then the average of the predictions from the 15 models, as well as a 1 standard

Using GP for Data Science 131

deviation of confidence bounds using all the predictions. There were approximately
240 lines of scripts created on top of the GP system to create the approach.

3.6.1 Visualization

While it is not common to visualize GBR solutions directly, the GP solutions
can be viewed to understand variable relationships and overall system structure.
Because we used an ensemble approach, it was a little less clear what or how the
final solutions was calculated, but the clients appreciated seeing very clearly how
attributes were used in the ensemble. To accomplish this, because the GP system
we used did not allow easy viewing of the solutions, we created a Matlab script
that converted the parenthesized in-fix notation from the GP system to a more easy
readable one for the user. The matlab code utilizes Matlab symbolic math toolbox
to perform the following actions:

• Replace variable names in equation
• Latex format the strings
• Display the strings as graphs

Our particular GP system works only with the variable name formats such as X1,
X2, . . . XN. An example model generated from the training is:

...exp.....X8 C X27/=.X32/2/ � sqrt.X30// � X10/// � ..X1 C X4//2/.
This makes the equations hard to understand. The first operation performed

using Matlab symbolic toolbox is to replace the variables to their proper names
by specifying the correct symbol names for each variable. This is done as a batch
process for the entire output population at the same time. The resulting output looks
something like this:

..exp.....MotorLoad C TemperatureC/=.TemperatureH/2 � sqrt.TemperatureF// �
MotorTemperature/// C ..MotorSpeed C FlowRate//2/.

In the next step, the built-in Matlab latex() command converts a symbolic
expression string into a latex formatted string as shown below:

e

p

TemperatureF .MotorLoadCTemperatureC/
TemperatureH2 �MotorTemperature C .FlowRate C MotorSpeed/2

The equation can then be displayed by creating text using Matlab Latex
interpreter and then drawing the figure. The Matlab code to do this is very simple
and consists of 33 lines of code.

3.6.2 Diversity

Diversity measures the variation between the population members. In evolutionary
search, it is typically good to have the population be as diverse as possible while still
improving accuracy. Diversity can be analyzed by several methods, for example:

• Variation between the existing terms in programs across the population. If many
different programs have recurring terms, then there is less diversity.

132 S. Gustafson et al.

• Spread of accuracy values for the population. If all programs in the population are
giving similar accuracy, then they are all very similar. However, if the accuracies
range is large, then the population is more diverse.

During typical GP model building, the accuracy stops improving at some point.
As the accuracy improves, the diversity tends to decline before the accuracy has
stopped improving. This is because as the accuracy is increasing, the more fit
member of populations are generating offspring that are similar to them. Eventually
the population becomes less diverse because all the members of the population are
descended from similar fit individuals. So even though the population as a whole
becomes more accurate, it becomes less diverse. In Data Sciences applications,
diversity is a potential indicator of when to stop a run early, which could enable
GP to have faster iteration time. In addition, having diverse sets of models is useful
for creating ensembles of models. After the GP run loses diversity, the models are
likely to have similar errors, or residuals, which when combined with each other in
an ensemble is likely to be less beneficial. Ensemble methods benefit when solutions
are combined that have different errors. Our initial experiments showed promise to
use diversity as an early stopping criterion as well as a way to find better ensembles.

4 Lessons Learned

In the previous section, we described how two methods were used to solve the
operations optimization problem for a real-world Data Science client. We also
discussed several advantages, disadvantages and considerations of each method.
Several lessons were extracted from our experiences that could be useful for future
Data Science engagements as well as for future development of GP as a Data
Science tool.

1. Data Science needs data management, and GP needs better linkage to the ‘data
environment’. Without a strong linkage to data management, GP must rely on
additional tools to prepare data, intermediate data files, extra scripts to manage
those intermediate files, which all create an additional burden on the Data
Scientist and possibly the application developer who will turn the model into
a prototype. GP systems like DEAP and Data Modeler are examples where a
linkage to the data environment is strong.

2. The development of more competent GP systems needs to continue to be
pursued, making the out-of-box performance of GP better. System enhancements
during model development by a Data Scientist should not occur within core
libraries. Elements like ensembles should be made as default.

3. Simplification of understanding and visualization of solutions can differentiate
GP in the Data Science category. While some tools are better than others, the
community should embrace this feature with new and insightful ways to optimize
and visualize solutions—the effort should be very low to query a population of
solutions for “how” they are solving the problem. Current approaches of listing

Using GP for Data Science 133

un-optimized, or un-simplified, postfix expressions, or counting frequent subtrees
or variables, is not effective and could be potentially misleading.

4. GP needs to be able to iterate faster and reduce the time to create a good first
model. Diversity could be an indicator of when to stop the model building
process sooner and return a result. Other code optimization opportunities to
reduce compute time should be pursued.

5. Frequent updating a model or adding new features during model re-training can
confuse the end user and make maintenance difficult. When a new feature is
added by the GP algorithm as a result of retraining the model with new data, the
change should be intuitive to the user. A new direction of research could look
to illuminate what new features used during model retraining might mean for
solving or modeling the system.

6. Open Source implementations that have been matured by communities of users,
as is the case for our GBR approach, are typically high performing out-of-the-
box. When this is the case, it is best not to tweak the runtime parameters that
have been optimized by others over long periods of time. GP should seek such
broad community development to improve method robustness and out-of-the-box
performance.

7. Code optimization should be saved for much later in the development phase.
Giving priority to ‘working scripts’ leads to quick results, which can be shared
with clients and approaches can be altered based on user feedback. Practitioners
should avoid modifying the core GP system in favor of tuning system parameters
contained in configuration files.

In our work, by comparing the two Data Science approaches, GBR and GP, we were
able to see quite clearly the strengths and weaknesses of GP as compared to GBR.
The above lessons learned represent both the positive attributes of GP as well as
places where more work is needed. We see a lot of potential in GP as a new Data
Science tool, particularly for use on Big Data and in complex, nonlinear, and domain
knowledge intense domains. However, to get mainstream adoption, we believe these
lessons learned should help identify future areas of both research and development
of GP systems.

5 Conclusions

This chapter described a case study of applying GP to a real-world Data Science
task in the problem domain of operations optimization. We believe the application
is quite novel in attempting to build an online sensor estimation method to both
validate data quality (it could be used to signal when a sensor is starting to
drift), provide an estimation of a sensor when it fails or goes offline, as well
as provide transparency to dynamic systems when they change by highlighting
how the underlying GP solution changes. While both methods were able to find
acceptable and similar accuracy, the GBR method won out in the client application

134 S. Gustafson et al.

for two reasons. Firstly, the code base of the GBR method consisted of open source
code that could be easily implemented in a prototype environment by application
engineers. The GP system contained too much unsupported code and many scripts
that it required for data management, ensemble learning, diversity measurement,
and visualization. Secondly, the training process was far simpler (both in number of
lines and amount of time) for the GBR system. The GP system required more time to
retrain and many intermediate files had to be managed. This chapter also introduced
Data Science and emphasized the value of having a Data Management solution
tightly coupled with GP. We leveraged an Ontology-Based Data Access approach
using Semantic Web technologies. We hope that these contributions inspire future
work that enable GP to become an effective Data Science tool.

References

Arnaldo I, Veeramachaneni K, O’Reilly UM (2014) Flash: A GP-GPU ensemble learning system
for handling large datasets. In: Nicolau M, et al. (eds.) 17th European conference on genetic
programming. LNCS, vol. 8599. Springer, Granada, pp 13–24

Castillo F, Kordon A, Sweeney J, Zirk W (2004) Using genetic programming in industrial statistical
model building. In: O’Reilly UM, Yu T, Riolo RL, Worzel B (eds.) Genetic programming theory
and practice II, Chap. 3. Springer, Ann Arbor, pp 31–48

De Rainville FM, Fortin FA, Gardner MA, Parizeau M, Gagne C (2012) DEAP: a python
framework for evolutionary algorithms. In: Wagner S, Affenzeller M (eds.) GECCO 2012
evolutionary computation software systems (EvoSoft). ACM, Philadelphia, PA, pp 85–92

Dhar V (2013) Data science and prediction. Commun ACM 56(12):64–73
Dubcakova R (2011) Eureqa: software review. Genet. Program. Evolvable Mach. 12(2):173–178
Fazenda P, McDermott J, O’Reilly UM (2012) A library to run evolutionary algorithms in the

cloud using MapReduce. In: Di Chio C, et al. (eds.) Applications of evolutionary computing,
EvoApplications 2012, LNCS, vol. 7248. Springer, Malaga, pp 416–425

Friedman J (2001) Greedy function approximation: a gradient boosting machine. Ann Stat
29(5):1189–1232

Gustafson S, Sheth A (2014) Web of things. Computing Now 7(3). http://www.computer.org/web/
computingnow/archive/march2014

Icke I, Bongard J (2013) Improving genetic programming based symbolic regression using
deterministic machine learning. In: de la Fraga LG (ed.) 2013 IEEE conference on evolutionary
computation, Cancun, vol. 1, pp 1763–1770

Jones E, Oliphant E, Peterson P, et al. (2001) Scipy: open source scientific tools for python. http://
wwwscipyorg

Kordon AK, Smits GF (2001) Soft sensor development using genetic programming. In: Spector
L, et al. (eds.) Proceedings of the genetic and evolutionary computation conference (GECCO-
2001). Morgan Kaufmann, San Francisco, CA, pp 1346–1351

Koza JR (1992) The genetic programming paradigm: Genetically breeding populations of com-
puter programs to solve problems. In: Soucek B, the IRIS Group (eds.) Dynamic, genetic, and
chaotic programming. Wiley, New York, pp 203–321

Loukides M (2010) What is Data science? OReilly Radar Report. http://cdn.oreilly.com/radar/
2010/06/What_is_Data_Science.pdf

O’Neill M, Vanneschi L, Gustafson S, Banzhaf W (2010) Open issues in genetic programming.
Genet Program Evolvable Mach 11(3/4):339–363 (tenth Anniversary Issue: Progress in Genetic
Programming and Evolvable Machines)

http://www.computer.org/web/computingnow/archive/march2014
http://www.computer.org/web/computingnow/archive/march2014
http://wwwscipyorg
http://wwwscipyorg
http://cdn.oreilly.com/radar/2010/06/What_is_Data_Science.pdf
http://cdn.oreilly.com/radar/2010/06/What_is_Data_Science.pdf

Using GP for Data Science 135

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

Schmidt M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science
324(5923):81–85. doi:10.1126/science.1165893. http://ccsl.mae.cornell.edu/sites/default/files/
Science09_Schmidt.pdf

Smits GF, Vladislavleva E, Kotanchek ME (2010) Scalable symbolic regression by continuous
evolution with very small populations. In: Riolo R, McConaghy T, Vladislavleva E (eds.)
Genetic programming theory and practice VIII. Genetic and evolutionary computation, Chap. 9,
vol. 8. Springer, Ann Arbor, pp 147–160

van der Walt S, Colbert SC, Varoquaux G (2011) The numpy array: a structure for efficient
numerical computation. Comput Sci Eng 13:22–30

van Harmelen F, Hendler JA, Hitzler P, Janowicz K (2015) Semantics for big data. AI Magazine
36(1):3–4

Veeramachaneni K, Arnaldo I, Derby O, O’Reilly UM (2015) FlexGP: Cloud-based ensemble
learning with genetic programming for large regression problems. J Grid Comput 13(3):391–
407

Wagner S, Kronberger G (2011) Algorithm and experiment design with heuristiclab: an open
source optimization environment for research and education. In: Whitley D (ed.) GECCO 2011
tutorials. ACM, Dublin, pp 1411–1438

http://dx.doi.org/10.1126/science.1165893
http://ccsl.mae.cornell.edu/sites/default/files/Science09_Schmidt.pdf
http://ccsl.mae.cornell.edu/sites/default/files/Science09_Schmidt.pdf

The Evolution of Everything (EvE) and Genetic
Programming

W.P. Worzel

Abstract The Internet is entering a new period of growth driven by an increasing
number of processors connected at the edge of the Internet. Many of these
processors are sensors that continuously collect data. By 2020, it is projected
that there may be more than 20 billion (1000 million) devices connected to the
Internet. Collectively these devices are called the Internet of Things (IoT) or the
Internet of Everything (IoE). The sheer volume of the data that will be gathered
creates new problems for an economy that is increasingly driven by data analytics.
It is likely that the devices at the edge of the Internet will take part in the processing
of data for analytics by using distributed computing among edge devices. Genetic
Programming could play a unique role in this environment because of its ability
not only to gather and analyze data, but to control the evolution and use of other
machine learning algorithms. The confluence of unimaginable streams of real-world
data and emergent behaviors may give rise to the question of whether the evolution
of intelligence in the natural world can be recreated using evolutionary tools.

Keywords Internet • Internet of Things • Fog Lifter • Combinators • SKGP
• P2P • AllJoyn • IOx • FRP • Blockchain • Functional relational program-
ming • Data flow design • Evolutionary reinforcement learning

1 Background

Currently data is collected from many devices across the Internet and uploaded to
data centers where the data is processed in the aggregate. The notion of the Internet
of Things (IoT) is characterized by an increasing number of devices at the edge of
the Internet gathering data for focused purposes. Many of these devices are sensors
or packages of sensors. Specialized industrial sensors connected to the Internet are
used for many purposes such as chemical production facilities, the power grid, and
agriculture. Homes and specialized personal devices such as personal fitness and
health devices, entertainment centers, and thermostats are also connected to the

W.P. Worzel (�)
Fog Lifter Inc., 1314 Beechwood Dr., Ann Arbor, MI 48103, USA
e-mail: billwzel@gmail.com

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_8

137

mailto:billwzel@gmail.com

138 W.P. Worzel

Internet. City infrastructure and buildings have an abundance of sensors as well,
including water sensors, traffic sensors, and environmental sensors. As the number
and variety of devices increases, it creates an increasing computational burden to
filter and integrate data in real time. The estimated level of 20 billion new devices
will make the model of sending raw data for processing unsustainable both in terms
of the communications infrastructure and the raw processing power needed at data
centers. In particular, finding, collecting and analyzing data in real time from this
many devices becomes an impossible task. Instead it will be necessary for some
level of data processing to be done at the edge and the results will be integrated
locally and shared globally. Cloud Computing assumes that bulk of computing
done will in ‘The Cloud’ which usually means at distant data servers such as those
provided by Amazon, Google and other providers of computing resources. Most
uses of the Internet of Things rely on The Cloud to process data generated at
the edge. In contrast to Cloud Computing, the term ‘Fog Computing’ is used to
describe a more diffuse form of computing that is closer to the ground and where
analytics is done locally and potentially shared with many users. This approach
is already becoming an important part of the discussion. Cisco has introduced an
operating system called IOx in Cisco (2014a) that is already being used in industrial
applications, including in Smart Grid applications described in Cisco (2014b). The
AllSeen Alliance (2012) has created an open source OS called AllJoyn that is
particularly useful for in-home devices. Meanwhile Google has recently announced
a version of its Android OS called KitKat described in Google (2015) that is
optimized for low memory devices such as is common in Edge Computing. But
while these advances are important, they focus only on the local aspects of Fog
Computing rather than a vision that integrates the Fog with the Cloud; it is assumed
that the Cloud as it exists currently is all that is necessary to take advantage of the
coming data explosion in the Fog.

2 Fog Lifter
TM

The author has been working collaboratively on a suite of open source software that
will facilitate the full integration of Fog Computing into the Internet. Fog Lifter is
built on the assumption that local computation and results will be used for multiple
purposes, allowing geographically dispersed information to be combined with other
data for very different purposes. This may be summarized as “Compute locally,
analyze anywhere” where the results of local computation is made available through
a registry and may be used as part of a larger computation, whether in the Cloud or
at another ‘locality’.

The Evolution of Everything (EvE) and Genetic Programming 139

2.1 Example Uses of Fog Lifter

Some examples of the sort of use cases where Fog Lifter would be advantageous
are shown in Figs. 1 and 2. In Fig. 1, data from agricultural fields are collected from
sensors placed in or near fields and gathered into a model of each field which, when
collected together, produces a model for the entire farm. The data from these models
may be shared with other local farmers, who may be part of the same Farm Coop,
to give a local view of the crops being grown and the state of the soil and water use
in the area. These can then be aggregated regionally to inform local markets, crop
insurance agents and farm machine usage planning. Note that often this is not raw
data but processed results from the raw data collected from the fields.

Figure 2 shows how this approach can be extended to a global scale if the data is
made available to other interested parties, up to, and including global entities. Here
local or regional data is not only used on larger geographical areas, but selected
portions of the analysis done at a local area used for different purposes.

For example, governmental water planners may not be interested in regional
crop production, but are very interested in agricultural water usage as part of
larger forecast of water needs that include industrial and civilian water use. This
information may also be integrated with weather forecasts that influence potential
agricultural water usage as well as the availability and state of water sources such
as aquifers, reservoirs and snow packs.

However, multinational NGOs may be interested not only in water usage and
long range weather models, but agricultural yields and the spread of pests in order
to predict where there are likely to be crop shortages and danger of starvation.

While this kind of planning already exists, by combining data from thousand
or millions of sensor sources related to farming, weather, insect control, and water
source and usage, the quality and accuracy of data and predictions could be greatly
improved.

Fig. 1 Aggregation of local analytics

140 W.P. Worzel

Fig. 2 Aggregated data used for global models

In these scenarios, what does Fog Computing look like? Sensors may be buried
or even plowed into fields and the data can be collected during the growing
season whenever farm machinery or drones pass over the field to collect the
data. Beyond simple collection of data, each sensor, while not connected to a
central data repository such as the farm center, may be connected wirelessly to
other sensors. Since modern sensors have a great deal of processing capacity, but
potentially limited storage capacity (particularly when data is collected 24-7), by
collaboratively processing data using their combined processing capabilities, they
can “compress” the data into a more concise form. In this context, one may consider
data processing as the ultimate compression algorithm.

Similar examples may be found in weather prediction, traffic models, city
infrastructure, the Smart Grid and many manufacturing industries.

2.2 Fog Lifter Platform

In order for Fog Lifter to accomplish this goal, it must meet the following criteria:

1. Organize distributed computing of local data;
2. Support intermittent connectivity;
3. Make locally processed results available globally;
4. Integrate local results with the Cloud (remote data centers) or other fog localities

(local clusters of computational resources).

The Evolution of Everything (EvE) and Genetic Programming 141

To accomplish this, Fog Lifter has the following design components:

1. Functional Relational Programming using combinators as functional
“microcode”;

2. A data registry;
3. Conceptual data flow design;
4. Security and Privacy protections.

Each of these will be described briefly.

2.2.1 Functional Relational Programming (FRP)

Moseley and Marks (2006) stated that with the growing complexity of software, it
was necessary to produce more robust software. Toward this end they suggested
an approach they called functional relational programming that used functional
programming techniques to avoid unintentional side effects, particularly when code
is expected to be distributed between processors. Relational programming structures
are combined with functional programming to embody the idea of immutable data
to avoid unintentional side effects being embedded in the data that is stored from
one result and passed to another program later. They also use logic programming
techniques to constrain possible values of data (e.g., specifying that a value can
never be allowed to reach 0).

This idea is already in use for large scale analytics in data centers and has
been shown to produce fewer errors. This is a large part of why languages such
as Scala as described in Wampler (2014) and Clojure, described in Rochester
(2013) and libraries such as Cascading, described in Nathan (2013) are growing
in popularity. The adoption of this approach to Fog Computing is therefore natural
as it is imperative that programming distributed across hundreds or even thousands
of devices minimize the chance for failure.

To implement FRP, Fog Lifter uses combinators as a way to abstract local
variables based on Turner (1979). This allows any pure functional code to be
compiled into code that can be run on any device and components of the code
can be distributed safely among processors. By applying combinator expressions
to relational data structures, and enforcing strict, temporally limited storage of data
during computation, Fog Lifter adheres to the most important aspects of FRP.

2.2.2 Data Registry

The function of the data registry is to provide both a semantic description of data
that is published on the Internet as well as publishing a data dictionary of the format
of the data. This dictionary takes the form of a relational data dictionary to facilitate
the use of FRP in Fog Lifter.

142 W.P. Worzel

2.2.3 Conceptual Data Flow Design

Data Flow Design is usually used as a documentation tool that explicates the flow
of data and processing within a system, often within a database. However, it can
be used to describe the flow of data in a distributed application as it describes how
and when data is distributed, what processing is done in parallel and how the data is
joined after processing.

An example of a Conceptual Data Flow Design diagram is shown in Fig. 1.
Here the flow of data is shown by the “pipes” connecting computational actions
and the tagged nodes show the processing of relations. Each of the blue ‘M’ labels
denote a map process and the red ‘R’ labels denote a reduce operation. While this
is a graphical diagram, the same information can be rendered in a table format in
a concise form that is easy to process. In Fog Lifter these design elements can be
connected from sources through processors to sinks where the results are stored.
Implicit in this is that a result from one analysis may be made available through the
Registry for other analyses (Fig. 3).

2.2.4 Security and Privacy

Security and privacy issues are already a major topic in the emerging world of the
IoT/ IoE. A key assumption in Fog Lifter is that sharing of data and computing
resources must be an act of permission, not one of omission. To implement this,
a transactional approach via blockchain technology is used. The use of data, or
processors must either be certified by a transaction permitting the use to a specific
entity or paid for by that entity and the owners control whether they are willing to
share with any given user. Details about such approaches may be found in Wood
(2015) and Brody and Pureswaran (2015).

Fig. 3 Data workflow design (from Nathan 2013)

The Evolution of Everything (EvE) and Genetic Programming 143

3 The Evolution of Everything (EvE)

What if we combined the locality and real-world data flow made available by
the Internet of Things with the evolutionary power of genetic programming? How
would we design such a system? What would be the result?

Since GP is usually used with a limited set of inputs and a very focused purpose
as represented in a fitness function, what happens when the inputs are expanded to
include a significant part of the real world and the purpose is broadened to a more
general and less single-valued focus? The IoT makes it possible to conceive of such
a situation and to expand the application of GP to more open-ended problems.

Paradoxically, it is the added constraints of the real world that increase the
usefulness of GP. These include the constraints of physics, resource allocations and
timeliness which may be difficult to capture in an artificial environment but are
intrinsically present in a real-world setting.

3.1 Non-trivial Geography

In Spector and Klein (2005), the authors describe a GP system where they use a very
simple notion of locality only for the purpose of crossover. While many GP systems
use an amorphous breeding population where any individual can combine with any
other, Spector and Klein added a simplistic, linear structure to the geography of
the population to constrain the potential breeding population to a limited number of
individuals within a finite distance from an individual as potential breeding partners.
This simple change produced solutions that were much more effective in outcome
(i.e., better fitness) and more economical (i.e., less computational effort to produce)
than results produced without a notion of geography.

While the notion of geography was not new to evolutionary algorithms since,
as Spector and Klein noted, others had used complex simulation environments with
distinct geographies or sub-populations (demes) that were complex in representation
and difficult to manage, Spector and Klein showed that the use of even a simple
geography seemed to lead to significant improvement at minimal cost. In essence,
they had developed a reductio ad absurdum test to the notion of individual
locality and the result had been a startling increase in performance. Their tentative
conclusion from a GP perspective was that limiting the mating pool increased
diversity among locales. They also point out that because of the simplicity of
implementation, it could easily be adopted in systems that already have a notion of
geography (such as deme based systems) or even in systems where sub-populations
are defined by performance, such as ALPS (Hornby 2006) or other performance
segregated sub-populations.

In the IoT, many devices have a distinct location in the real world. For example,
farms, water sources, power sources and cars all attach great significance to location.
By tying GP selection for crossover to real-world locations, GP would find localized

144 W.P. Worzel

solutions and, when combined with other local solutions, regional solutions emerge.
Conversely, some solutions would be so dependent on a very limited location, that
solutions that were not highly localized would fail. This suggests that a meta-
analysis of geography to solution effectiveness would help “redraw the map” of
a field of study. For example, identifying microclimates could significantly change
weather predictions for an area.

3.2 Evolutionary Reinforcement Learning (ERL)

Ackley and Littman (1991) describe a system that combines neural nets and a
genetic algorithm in a simulated world. The idea was to evolve creatures that
could learn from their environment using neural nets to recognize things in the
environment and then act based on the signals produced. To accomplish this,
there are two sets of neural nets: those that respond to sensory input and those
that take action in response to the inputs. The weights in the sensory neural net
are heritable and fixed. The weights used in the action neural net are refined using
a reinforcement learning algorithm during the life of the individual where weights
are reinforced if the environment is evaluated as being better at time t+1 than it was
at time t.

The genetic algorithm is used to create successive generations of creatures,
mostly by crossover of encoded values that are mapped to weights for the neural
nets. Successful individuals in the environment propagate based on the life or death
of the individuals living in the artificial world. Details of the artificial world and
the behaviors engendered by this system are not described here, but the reader is
encouraged to read the details of the dynamics of the system and the population of
individuals in the above cited paper as they are informative and interesting in their
relationship to population dynamics as described in biological literature.

However, the principles of ERL lend themselves to the IoT as well. Here neural
nets would be used to process data from a sensor, and actions would be taken
based on the inputs from the sensors. The results of the actions taken across groups
of sensors would dictate the evolution of sensor behavior. An example might be
weather prediction where the accuracy of prediction based on present data and past
adaptation could lead to more precise forecasts.

3.3 The SKGP

Worzel and MacLean (2015) described the use of combinators as described in
Turner (1979) as the basis of a GP system that used a Hindley-Milner type system
(Hindley 1997). As detailed in Worzel and MacLean (2015), it has many virtues,
including first class functions, and natural partitioning of functional components
that work well in a map-reduce environment, and (unique to GP) the fact that

The Evolution of Everything (EvE) and Genetic Programming 145

Fig. 4 Particulate genes in GP

components tend to be reused across generations means that the results of an
application to a set of data may be cached for reuse during fitness evaluations. It
also avoids some of the intrinsic limits that are associated with tree-based GP as
described in Daida (2003).

In the context of the IoT, there is an additional extension to the SKGP that
is needed for EvE: the addition of particulate genes. Freeland (2003) strongly
advocated for an adoption of particulate genes in GP. By ‘particulate genes’ what is
meant in this context is the notion that sections of code and/or values are exchanged
as a whole with a section of code (a particulate gene) taken from one parent or the
other intact. Using the SKGP, particulate genes could be developed where each gene
consisted of a combinator function that could be applied to a specific set of data and,
potentially, be applied to one another. Figure 4 shows an example of a particulate
set of genes.

Moreover, one could envision a meta-function applied to a list of particulate
genes in such a way that the meta-function would select and apply some of the
individual gene-expressions to one another based on values produced because of
the context of the values produced in each gene. In this way particulate genes could
mimic the removal of introns during the post-transcription modification of RNA.

Figure 6 shows a function being applied to a list of expressions and data in order
to select and combine elements of the particulate gene, effectively combining the
elements in the list according to the function being applied to it.

From an evolutionary perspective, particulate genes have many advantages.
Crossover can now be particulate, with a complete “gene” from either of two parents
being selected and possibly mutated, leaving the structure of each gene intact and
avoiding the disruption of tree-based crossover. It is also easier to flag individuals
as belonging to a particular species, or gender and allows dominant/recessive genes,
all of which improve population dynamics.

3.4 GP Reinforcement Learning (GPRL)

If the SKGP is combined with the ideas behind ERL, while using particulate genes,
then neural networks can be embodied in a single gene and crossover can proceed in
a manner similar to the way it is done in ERL with parent weights being combined
during crossover. Essentially Evaluation neural nets and Action neural nets become
genes in a particulate gene approach to GP.

146 W.P. Worzel

Fig. 5 Modification of particulate genes from meta-function f

Fig. 6 GPRL with particulate genes

Similarly a function that selects and combines genes based on the values returned
could be implemented. In this scenario, the example in Fig. 5 is extended to the
design shown in Fig. 6.

3.5 Assembling EvE

Putting all these elements together by using Fog Lifter to provide a sense of place for
the functions in a GP population, adapting ERL to work within GP using an SKGP-
like system and a meta-function that selects and combines particulate genes provides
the basis for a continuous learning system. For example, over time, an agricultural
system could continuously refine crop management recommendations as it moves
from passively learning to actively recommending actions, or a city infrastructure
could adapt to new construction, changing economics, or even macro changes such
as climate-change related issues.

The Evolution of Everything (EvE) and Genetic Programming 147

4 Discussion

The Genetic Programming Theory and Practice workshop was designed to encour-
age speculative ideas. Parts of EvE are highly speculative. Fog Lifter is a work
in progress, but much of the code is drawn from open source software that is quite
robust. The SKGP exists and has been applied to commercial and research problems,
particularly in the biotech space. However, it does not yet use particulate genes,
instead relying on directed graphs to replace trees of standard “Koza Style” GP.
While it is safe to say that these graphs can be contained within the conceptual
notion of a particulate gene, this has not yet been implemented.

Similarly, while ERL as described in Ackley and Littman (1991) has been
implemented, the author has not had access to the code base. It is probably a good
idea to revisit ERL in this context.

The adaptation that uses particulate GP with specific genes encompassing the
output of neural nets as part of a “post-transcriptional” removal of “exons.” is
(as far as the author has been able to determine) a wholly new idea in the GP
world though there has been some use of the word ‘exon’ to denote “code bloat”
in the GP literature (see for example Soule 2002). Here, the meta-function may, in
one situation, select one set of genes for use in the overall function and in another
circumstance, select others. In this, it must be confessed, the concept is closer to
epigenetic phenomena or splice variants in biology than simply removing exons.

Beyond the mechanics of how EvE might work, there is the underlying idea that
moving from simulated worlds to real-time, real-world data, creates a sea change for
evolutionary algorithms. Instead of being limited by imprecise models of a world
that evolves for a set number of generations, it is based on continuous, adaptive
evolution. While it is not expected that such a system would instantly create a high-
precision model of the real world, over time it is expected that valuable predictive
models will emerge. Moreover, the failures of such systems can teach us much about
the world. The author has long contended that we learn as much or more from
analyzing the failures of GP to make correct predictions as we do from successes
as described in. Assumptions about the real world are often mistaken and GP often
makes these mistakes clear during runs that incorporate these assumptions.

Beyond simply modeling the world, (Holland 1995, 1998), talk at length about
the property of emergence of new properties and behaviors and describes what
he believes is the key components of such systems: State, Transition Function,
Generators and Agents. EvE maps fairly well onto these elements as follows:

1. State: the internal state of an individual function in response to the current
environment;

2. Transition Function: the application of an evolved function in response to the
environment;

3. Generators: the real world (no need to simulate an environment in the IoT!);
4. Agents: individuals in the environment.

148 W.P. Worzel

Following Holland, this suggests that at a minimum, such a system could evolve
new and unexpected behaviors as it interacts with the environment by prescribing
actions in the real world (e.g., when to plant or harvest a field or what route a car
should take). Taken to the limit, one could speculate that a complex system could
“come alive”—providing, of course, that there is a consensus of what being alive
means! In the realm of pure speculation then, as the IoT grows, and our capacity
to distribute processing of information across devices, one may begin to approach
the question of whether, and how, the Singularity could occur. Perhaps the best way
to approach this is to point out that we have one example of evolution reaching
intelligence in the natural world on earth. If the singularity is reachable in-silico
(a proposition about which the author is skeptical), then our best plan of would
be by mimicking the mechanism of evolution while using inputs from the natural
world.

At this point we reach the end of the known world and the author will end by
repeating an excerpt of a poem by Alice Fulton used in Holland (1995):

. . . Its point of view? One
with the twister in vista glide,

and the cricket in the ditch,
with riverrain, and turbines’ trace.

Inside the flux of
flesh and trunk and cloudy come,

within the latent
marrow of the egg, the amber

traveling waves is where
its vantage lies.

Entering the tornado’s core,
entering the cricket waltzed by storm–

to confiscate the shifting give
and represent the with-

out which.

References

Ackley D, Littman M (1991) Interactions between learning and evolution. In: Langton C, Taylor C,
Farmer C, Rasmussen S (eds) Artificial life II. SFI studies in the science of complexity, vol X.
http://www2.hawaii.edu/nreed/ics606/papers/Ackley91learningEvolution.pdf

AllJoyn (2012) Documentation. Tech. rep., AllSeen Alliancex, https://allseenalliance.org/
developers/learn

Almal AA, Mitra AP, Datar RH, Lenehan PH, Fry DW, Cote RJ, Worzel WP (2006) Using genetic
programming to classify node positive patients in bladder cancer. In: Keijzer M, Cattolico M,
Arnold D, Babovic V, Blum C, Bosman P, Butz VB, Coello C, Dasgupta D, Ficici SG, Foster
J, Hernandez-Aguirre A, Hornby G, Lipson H, McMinn P, Moore J, Raidl G, Rothlauf F, Ryan
C, Thierens D (eds.) GECCO 2006: Proceedings of the 8th annual conference on genetic and
evolutionary computation. ACM, New York, pp 239–246

http://www2.hawaii.edu/nreed/ics606/papers/Ackley91learningEvolution.pdf
https://allseenalliance.org/developers/learn
https://allseenalliance.org/developers/learn

The Evolution of Everything (EvE) and Genetic Programming 149

Brody P, Pureswaran V (2015) The next digital gold rush: How the internet of things will create
liquid, transparent markets

Cisco (2014a) Cisco fog computing with iox. Tech. rep., Cisco. “http://www.cisco.com/
c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-732380.pdf”

Cisco (2014b) Utilities/smart grid. Tech. rep., Cisco. http://www.cisco.com/c/en/us/solutions/
industries/energy/external-utilities-smart-grid.html

Daida JM (2003) What makes a problem GP-hard? A look at how structure affects content.
In: Riolo RL, Worzel B (eds) Genetic programming theory and practice, Chap 7. Kluwer,
Boston, pp 99–118. doi:10.1007/978-1-4419-8983-3_7. http://www.springer.com/computer/ai/
book/978-1-4020-7581-0

Freeland S (2003) Three fundamentals of the biological genetic algorithm. In: Riolo RL, Worzel
B (eds) Genetic programming theory and practice Chap 19. Kluwer, Boston, pp 303–311.
doi:10.1007/978-1-4419-8983-3_19. http://www.springer.com/computer/ai/book/978-1-4020-
7581-0

Google (2015) Android kitkat. https://developer.android.com/about/versions/kitkat.html
Hindley J (1997) Basic simple type theory. Cambridge University Press, Cambridge
Holland J (1995) Hidden order: how adaptation builds complexity. Addison-Wesley, Redwood City
Holland J (1998) Emergence: From chaos to order. Addison-Wesley, Reading
Hornby (2006) ALPS: the age-layered population structure for reducing the problem of premature

convergence. In: GECCO 2006: Proceedings of the 8th annual conference on Genetic and
evolutionary computation, vol 1. ACM, pp 815–822

Moseley B, Marks P (2006) Out of the tar pit. “http://web.mac.com/benmoseley/frp/paper-v101.pdf”
Nathan P (2013) Enterprise data workflows with cascading. O’Reilly Media, Sebastopol
Rochester E (2013) Clojure data analysis cookbook. Packt Publishing, Birmingham
Soule T (2002) Exons and code growth in genetic programming genetic programming. In:

Proceedings of the 5th European conference, EuroGP. LNCS, vol 2278. Springer, pp 142–151
Spector L, Klein J (2005) Trivial geography in genetic programming. In: Yu T, Riolo

RL, Worzel B (eds) Genetic programming theory and practice III, genetic program-
ming, vol 9, Chap 8. Springer, Ann Arbor, pp 109–123. doi:10.1007/0-387-28111-8_8.
http://hampshire.edu/lspector/pubs/trivial-geography-toappear.pdf

Turner D (1979) A new implementation technique for applicative languages. Softw Pract Exp
9:31–49

Wampler D (2014) Why scala is taking over the big data worldwhy scala is taking over the big data
world. http://www.slideshare.net/deanwampler/why-scala-is-taking-over-the-big-data-world

Worzel WP, MacLean D (2015) SKGP: The Way of the Combinator. In: Riolo R, Worzel WP,
Kotanchek M (eds) Genetic programming theory and practice XII. Genetic and evolutionary
computation. Springer, Ann Arbor, pp 53–71.

Wood G (2015) Yellow paper: Ethereum’s formal specification. Tech. rep., Ethereum. https://
github.com/ethereum/yellowpaper

http://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-732380.pdf
http://www.cisco.com/c/en/us/solutions/industries/energy/external-utilities-smart-grid.html
http://www.cisco.com/c/en/us/solutions/industries/energy/external-utilities-smart-grid.html
http://dx.doi.org/10.1007/978-1-4419-8983-3_7
http://www.springer.com/computer/ai/book/978-1-4020-7581-0
http://www.springer.com/computer/ai/book/978-1-4020-7581-0
http://dx.doi.org/10.1007/978-1-4419-8983-3_19
http://www.springer.com/computer/ai/book/978-1-4020-7581-0
https://developer.android.com/about/versions/kitkat.html
http://web.mac.com/benmoseley/frp/paper-v101.pdf
http://dx.doi.org/10.1007/0-387-28111-8_8
http://hampshire.edu/lspector/pubs/trivial-geography-toappear.pdf
http://www.slideshare.net/deanwampler/why-scala-is-taking-over-the-big-data-world
https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper

Lexicase Selection for Program Synthesis:
A Diversity Analysis

Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector

Abstract Lexicase selection is a selection method for evolutionary computation in
which individuals are selected by filtering the population according to performance
on test cases, considered in random order. When used as the parent selection method
in genetic programming, lexicase selection has been shown to provide significant
improvements in problem-solving power. In this chapter we investigate the reasons
for the success of lexicase selection, focusing on measures of population diversity.
We present data from eight program synthesis problems and compare lexicase
selection to tournament selection and selection based on implicit fitness sharing.
We conclude that lexicase selection does indeed produce more diverse populations,
which helps to explain the utility of lexicase selection for program synthesis.

Keywords Lexicase selection • Diversity • Tournament selection • Implicit
fitness sharing

1 Introduction

Lexicase selection is a recently developed parent selection method for evolutionary
computation in which individuals are selected by filtering the population according
to performance on individual fitness cases, considered in random order (Spector
2012). Lexicase selection, when used as the parent selection method in genetic
programming, has been shown to provide significant improvements in terms of
problem-solving power (Helmuth et al. 2014; Helmuth and Spector 2015). In this
chapter we investigate the reasons for the success of lexicase selection, focusing in

T. Helmuth (�)
Computer Science, University of Massachusetts, Amherst, MA, USA
e-mail: helmutht@wlu.edu

N.F. McPhee
Division of Science and Mathematics, University of Minnesota, Morris, MN, USA
e-mail: mcphee@morris.umn.edu

L. Spector
Cognitive Science, Hampshire College, Amherst, MA, USA
e-mail: lspector@hampshire.edu

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_9

151

mailto:helmutht@wlu.edu
mailto:mcphee@morris.umn.edu
mailto:lspector@hampshire.edu

152 T. Helmuth et al.

particular on the ways in which lexicase selection seems to help maintain population
diversity. We present data from eight program synthesis problems and compare
lexicase selection, in terms of problem solving power and diversity, to tournament
selection and selection based on implicit fitness sharing (IFS). IFS distributes reward
among the individuals that solve a test case, giving more reward for cases solved by
fewer individuals (McKay 2000); for more detail see Helmuth et al. (2014).

For each parent selection event lexicase selection randomly orders the test cases
and then removes any individuals that do not have the best performance on the
first case. If more than one individual remains then those that do not have the
best performance on the second case are also removed. This continues until only
one individual remains and is selected, or until all cases have been used, in which
case one of the remaining individuals is selected randomly. Key properties of
lexicase selection are that (a) it avoids combining all errors into a single scalar fitness
value, (b) because of the random ordering of test cases, every test case will be most
important (first to be considered) at least occasionally, and (c) similarly, each pair
of test cases, and each triple, etc., will be most important at least occasionally.

We investigate the relations between selection methods and population diversity
using two measures of diversity: error diversity and cluster counts. We find that
lexicase selection runs have consistently higher error diversity than tournament
selection and IFS across all generations and all problems. The cluster counts for
lexicase selection are also generally higher, but less consistently. We conclude that
lexicase selection does indeed produce more diverse populations, which helps to
explain the utility of lexicase selection for program synthesis.

2 Diversity Measures

To evaluate a program in program synthesis, we run it on a set of test cases composed
of input/output pairs, creating a behavior vector of its outputs. Then, we apply one
or more error functions to each desired output and the program’s output, creating
an error vector for each individual. We define error diversity to be the percentage
of distinct error vectors in the population. Error diversity is similar to behavioral
diversity, which is the percentage of distinct behavior vectors in the population
(Jackson 2010). The error diversity of a population will be less than or equal to
its behavioral diversity, since two different behavior vectors may produce the same
error vector, but two different error vectors must come from different behavior
vectors. Helmuth et al. (2014) showed that lexicase selection maintained higher
diversity than tournament and IFS selection on three problems.

One hypothesis we have put forth regarding the improved performance of
lexicase selection is that it enables groups of specialists for solving different parts
of the problem to evolve side-by-side, implicitly maintaining the kind of niches that
are maintained more explicitly by island models and related methods. We expect
that evolution may sometimes progress when individuals from different groups
mate, producing a child that combines the abilities of its parents. The hope is that

Lexicase Selection for Program Synthesis: A Diversity Analysis 153

this process, iterated, will eventually produce an individual that solves the entire
problem. Here we explore the effects of different parent selection methods on the
development of clusters of individuals that perform similarly across the test cases.
We expect that using lexicase selection will result in relatively larger numbers of
clusters, since it selects individuals on the basis of specific cases and groups of
cases, rather than on overall performance.

To examine this idea, we must be able to measure the clustering of a population
with respect to the training cases. We base the clustering of the population on the
individuals’ error vectors across the training cases. Since we are primarily interested
in whether an individual performs at least as well as every other individual in the
population, we convert the error vectors into binary “elitized” error vectors that
indicate whether an individual achieved the best error on each test case in that
generation. More formally, if each individual j in the population P has error vector
errorj containing error values on the test cases T , then the elitized error vector for
individual i is defined by

elitizediŒt� D
8
<

:
0; if erroriŒt� D min

j2P
.errorjŒt�/

1; otherwise

for t 2 T . By elitizing the error vectors, we can ignore the differences between
individuals that perform poorly on cases in different ways, and concentrate on how
individuals cluster based on the cases on which they perform well.

In this work we use agglomerative clustering1 to count how many clusters
there are in the population at each generation. Agglomerative clustering creates a
hierarchical clustering model by first placing each individual into its own cluster.
It then iteratively combines the two closest clusters into a single cluster, until all
clusters have been combined into a single cluster, recording at each step the distance
between the clusters in each merged pair. We can then break the single cluster into
smaller clusters by “cutting” the merge between any two clusters whose distance
exceeds some threshold. Since we are using binary error vectors, we use the
Manhattan distance as our distance metric, which makes the distance between two
error vectors a count of the number of test cases on which those two individuals have
different “eliteness” results. We chose to count the number of clusters that differed
on at least 10 % of the training cases; for example, if a problem has 200 training
cases, we count the number of clusters that differ in binary eliteness on at least
20 training cases. While this distance is somewhat arbitrary, it gives a reasonable
and consistent estimate of how many groups of individuals are doing significantly
different things in a given generation.

1We used the agnes (Maechler et al. 2014) implementation of agglomerative clustering in
R (R Core Team 2014), using the average linkage when combining clusters.

154 T. Helmuth et al.

3 Experiment and Results

We collected data from 100 runs each on eight different problems described by
Helmuth and Spector (2015). All of these are basic programming problems taken
from introductory programming texts; several are readily solved, while others
remain unsolved using this study’s tools. Table 1 lists the problems, a brief
description, and the length of the error vectors2; other details of the runs can be
found in Helmuth and Spector (2015). In Table 2 we’ve also provided the number of
successes, i.e., runs in which a program was evolved with total error of 0 across
all the training cases. Success rates aren’t the focus of this chapter, but these
numbers give a sense of the relative difficulty of the problems and illustrate the
substantial improvements that lexicase selection provides over both tournament
selection and IFS.

Table 1 Short descriptions of the eight test problems used here, along with the number of errors
in each error vector

Problem name Description # errors

Replace space with newline Print the input string, replacing spaces with newlines.
Also, return the number of non-whitespace characters

200

Syllables Count the number of occurrences of vowels (a, e, i, o,
u, y) in the given string and print that number as X in
The number of syllables is X

200

String lengths backwards Given a vector of strings, print the length of each
string in reverse order (starting with last and ending
with first)

100

Negative to zero Given a vector of integers, return the vector where all
negative integers have been replaced by 0

200

Double letters Given a string, print the string, doubling every letter
character, and tripling every exclamation point. All
other non-alphabetic and non-exclamation characters
should be printed a single time each

100

Scrabble score Given a string of visible ASCII characters, return the
Scrabble score for that string

200

Checksum Given a string, compute the integer ASCII values of
the characters in the string, sum them, take the sum
modulo 64, add the integer value of the space
character, and then convert that integer back into its
corresponding character (the checksum character).
Then print Check sum is X, where X is replaced
by the correct checksum character

200

Count odds Return the number of odd numbers in a vector of
integers

200

See Helmuth and Spector (2015) for more details on each problem

2For some of these problems, each test case generates multiple error values because we apply more
than one error function.

Lexicase Selection for Program Synthesis: A Diversity Analysis 155

Table 2 Number of
successes (out of 100 runs)
for each of the eight test
problems used here. These
numbers are similar but not
identical to those reported in
Helmuth and Spector (2015)
because new runs were
performed for this chapter

Problem name Lexicase Tournament IFS

Replace space with newline 57 13 17

Syllables 24 1 2

String lengths backwards 75 18 12

Negative to zero 72 15 9

Double letters 5 0 0

Scrabble score 0 0 0

Checksum 0 0 0

Count odds 4 0 0

We used the Clojush implementation3 of the PushGP system (Spector and
Robinson 2002; Spector et al. 2005) for all runs. Each run used a population size of
1,000 individuals, and runs continued for either 300 generations or a until solution
was found, whichever came first.

Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16 show error diversity
and cluster counts over time for each of the test problems. Below each plot is a
smaller sub-plot showing the number of successes over time for each selection;
since runs end when a solution is found, the successes plot gives a sense of how
many runs are still being represented in the primary plot at a given generation. In
Fig. 1, for example, the number of lexicase successes is nearly 25 by generation 50,
and nearly 50 by generation 150. Thus there are slightly more than 75 data points
still represented in the lexicase data at generation 50, but only about 50 data points
represented from generations 150 to 300. Each plot includes a line indicating the
median error diversity or median cluster count across whichever of the 100 runs was
still running at that generation. We also indicate the range from the 25th percentile
to the 75th percentile with a gray band around the median line; unfortunately the
tournament and IFS results are often very similar and strongly overlap, making them
difficult to differentiate.

In general the error diversity numbers for lexicase selection are substantially and
significantly higher than those for either tournament selection or IFS, which tend to
be extremely similar. The String Lengths Backwards problem was the only problem
for which there was any substantial overlap between the range of values for lexicase
and the other two selection mechanisms (see Fig. 5). Typically the lexicase error
diversity rises very sharply in the early generations leveling off somewhere between
0.75 and 1.0, meaning that 3

4
or more of the individuals in the lexicase runs have

unique error vectors. This is in contrast to the tournament selection and IFS results,
in which the median error diversity values rarely rise above 0.5; the two exceptions
are on the Scrabble Score and Count Odds problems (Figs. 11 and 15), which neither
ever solved, where the error diversity values approach or exceed 0.75.

The cluster count results are more mixed. Lexicase selection has clearly higher
cluster counts for half of the problems (Replace Space With Newline, Syllables,

3https://github.com/lspector/Clojush

https://github.com/lspector/Clojush

156 T. Helmuth et al.

Fig. 1 Replace space with newline—error diversity

Fig. 2 Replace space with newline—cluster counts

Lexicase Selection for Program Synthesis: A Diversity Analysis 157

Fig. 3 Syllables—error diversity

Fig. 4 Syllables—cluster counts

158 T. Helmuth et al.

Fig. 5 String lengths backwards—error diversity

Fig. 6 String lengths backwards—cluster counts

Lexicase Selection for Program Synthesis: A Diversity Analysis 159

Fig. 7 Negative to zero—error diversity

Fig. 8 Negative to zero—cluster counts

160 T. Helmuth et al.

Fig. 9 Double letters—error diversity

Fig. 10 Double letters—cluster counts

Lexicase Selection for Program Synthesis: A Diversity Analysis 161

Fig. 11 Scrabble score—error diversity

Fig. 12 Scrabble score—cluster counts

162 T. Helmuth et al.

Fig. 13 Checksum—error diversity

Fig. 14 Checksum—cluster counts

Lexicase Selection for Program Synthesis: A Diversity Analysis 163

Fig. 15 Count odds—error diversity

Fig. 16 Count odds—cluster counts

164 T. Helmuth et al.

Scrabble Score, and Count Odds; Figs. 2, 4, 12 and 16). It also starts with much
higher counts on the Double Letters problem (Fig. 10), but those numbers drop
again quickly, matching the other two approaches by around generation 100. On the
Negative To Zero problem (Fig. 8), the lexicase cluster counts remain small (about
the same as for both tournament and IFS) throughout the runs. Particularly striking
are lexicase cluster counts for String Lengths Backwards (Fig. 6) and Checksum
(Fig. 14), where the number of clusters with lexicase selection is actually lower
earlier in the run.

4 Discussion

As in Helmuth and Spector (2015), lexicase selection produced more successes than
either tournament selection or IFS on any problem in which a solution was found.
The error diversity for the lexicase runs was much higher than for tournament
and IFS for most problems, which is consistent with the hypothesis that lexicase
selection helps maintain diversity. The lexicase error diversity values tended to
plateau at or above 0.75, meaning that in a population of 1000 individuals there
were over 750 distinct error vectors. This doesn’t mean that different individuals
were solving different test cases; it could just be that many had different incorrect
answers and error values. From a search perspective, though, this still seems useful,
as those different error values may represent different starting points for subsequent
search.

For four of the eight problems, the cluster counts were also much higher for
lexicase than for the other two selection mechanisms. For some of these problems
(e.g., Count Odds) there are over 100 clusters, and for Syllables the median cluster
count is over 400 from generation 100 forward. This suggests that lexicase selection
is maintaining large numbers of sub-groups of the population that are capable of
solving different parts of the problem. For problems with no solutions found, this
might indicate that the genetic operators are not able to act on the structure of the
programs in those sub-populations in ways that allow progress.

Interpretation of the cluster count results on the other four problems is more
difficult. Analysis of the lexicase Checksum runs suggests that the lack of clustering
might be a function of structural issues with the test cases; there are 100 test cases,
with two error functions per test case: the Levenshtein edit distance on the printed
string, and the integer difference between the ASCII values of the last character of
the printed string and the correct checksum character. It appears that populations
quickly evolve the ability to print Check sum is, but then stall, with each
program printing different final characters. This allows for fairly high error diversity
(over 0.75), but any given program tends to get at most two or three test cases
right by guessing. This means that the Manhattan distance between any two elitized
error vectors is typically only 5 or 6 at most, shy of the 10 % threshold of 20 for

Lexicase Selection for Program Synthesis: A Diversity Analysis 165

this problem, resulting in only one or two clusters. Additional test cases exploring
different inputs might allow evolution to first stumble upon and then exploit code
that produces actual checksums.

On problems for which solutions were discovered, lexicase selection runs found
solutions throughout the 300 generations. This, combined with the high levels of
error diversity and the often high number of clusters, gives one hope that meaningful
search can still occur late in a lexicase selection run. The plots of successes over time
under the primary plots typically appear to have positive slope even at generation
300, so it would be interesting to extend these runs to 500 or 1000 generations and
see how many additional solutions are discovered. If lexicase selection is indeed
maintaining meaningful diversity then we would expect to see continued discovery
of solutions, at a higher rate than for either tournament selection or IFS. This might
be particularly interesting for problems for which solution discovery is rare but
possible, such as Double Letters and Count Odds, which are solved using lexicase
selection 5 and 3 times respectively, but not at all using tournament selection or IFS.
Solutions for these two problems tended to be discovered later in the run (Double
Letters in generations 109, 122, 192, 275, and 291; Count Odds in 65, 233, 279), so
letting runs on those problems go longer might be revealing.

On the set of problems explored here, error diversity seems to be a better
predictor of performance than cluster counts. In fact, on two of the problems for
which solutions were found in over half the runs (String Lengths Backwards and
Negative To Zero), lexicase selection maintained very small numbers of clusters,
similar to tournament and IFS. On the other hand, lexicase selection consistently
maintained higher error diversity than other methods, and found more solutions on
every problem that was solved. This may indicate that the ability to form clusters on
a problem is more indicative of the problem itself than the parent selection method
and its ability to solve the problem. This provides evidence against our hypothesis
that lexicase selection performs better because it maintains clusters of individuals
that genetic operators can combine to solve increasingly large numbers of test cases.

5 Conclusions

In this chapter we used two different measures of diversity (error diversity and
cluster counts) to try to better understand the impact of lexicase selection, and
why it seems to consistently outperform tournament selection and implicit fitness
sharing (IFS) on a range of software synthesis problems (Helmuth and Spector
2015). The error diversity was generally much higher for lexicase selection than for
either tournament selection or IFS, with lexicase selection maintaining a broad range
of distinct behaviors. Cluster counts were typically higher with lexicase selection,
and the instances in which they weren’t may say more about the problem or test
case structure than about the selection mechanism. This suggests that error diversity

166 T. Helmuth et al.

is indeed a valuable metric for studying the impact of system design decisions. The
value of cluster counts is less clear, but it seems likely that understanding why the
cluster counts were so low on certain problems could be informative.

Given that the lexicase selection runs maintain error diversity all across the 300
generations, it seems plausible that extending the length of the runs would generate
additional solutions. It would be illuminating to extend these runs to 500 or 1000
generations and see whether lexicase selection is able to make “better” use of those
additional computational resources.

While the focus of this chapter was to better understand the behavior of lexicase
selection, the results also show that tournament selection and IFS behave very
similarly with respect to the diversity measures used here. This is unfortunate
because IFS was specifically designed to maintain diversity. Both tournament
selection and IFS aggregate test case errors into a single value, with IFS just
weighting the components differently; this may be partially responsible for the
similar rates in diversity.

Acknowledgements Thanks to the members of the Hampshire College Computational Intelli-
gence Lab for discussions that helped to improve the work described in this chapter, to Josiah
Erikson for systems support, and to Hampshire College for support for the Hampshire College
Institute for Computational Intelligence. This material is based upon work supported by the
National Science Foundation under Grants No. 1017817, 1129139, and 1331283. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

References

Helmuth T, Spector L (2015) General program synthesis benchmark suite. In: Silva S, Esparcia-
Alcazar AI, Lopez-Ibanez M, Mostaghim S, Timmis J, Zarges C, Correia L, Soule T, Giacobini
M, Urbanowicz R, Akimoto Y, Glasmachers T, Fernandez de Vega F, Hoover A, Larranaga
P, Soto M, Cotta C, Pereira FB, Handl J, Koutnik J, Gaspar-Cunha A, Trautmann H, Mouret
JB, Risi S, Costa E, Schuetze O, Krawiec K, Moraglio A, Miller JF, Widera P, Cagnoni S,
Merelo J, Hart E, Trujillo L, Kessentini M, Ochoa G, Chicano F, Doerr C (eds) GECCO ’15:
Proceedings of the 2015 on genetic and evolutionary computation conference. ACM, Madrid,
pp 1039–1046. doi:10.1145/2739480.2754769. http://doi.acm.org/10.1145/2739480.2754769

Helmuth T, Spector L, Matheson J (2014) Solving uncompromising problems with lexicase
selection. IEEE Trans Evol Comput. doi:10.1109/TEVC.2014.2362729

Jackson D (2010) Promoting phenotypic diversity in genetic programming. In: Schaefer R,
Cotta C, Kolodziej J, Rudolph G (eds) PPSN 2010 11th international conference on parallel
problem solving from nature. Lecture notes in computer science, vol 6239. Springer, Krakow,
pp 72–481. doi:10.1007/978-3-642-15871-1_48

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2014) Cluster: Cluster Analysis Basics
and Extensions. R package version 1.15.3

McKay RI (2000) Fitness sharing in genetic programming. In: Proceedings of the genetic and
evolutionary computation conference. Morgan Kaufmann, Las Vegas, pp 435–442

R Core Team (2014) R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna. http://www.R-project.org/

http://dx.doi.org/10.1145/2739480.2754769
http://doi.acm.org/10.1145/2739480.2754769
http://dx.doi.org/10.1109/TEVC.2014.2362729
http://dx.doi.org/10.1007/978-3-642-15871-1_48
http://www.R-project.org/

Lexicase Selection for Program Synthesis: A Diversity Analysis 167

Spector L (2012) Assessment of problem modality by differential performance of lexicase selection
in genetic programming: a preliminary report. In: 1st workshop on understanding problems
(GECCO-UP). ACM, Philadelphia, pp 401–408. doi:10.1145/2330784.2330846

Spector L, Robinson A (2002) Genetic programming and autoconstructive evolution
with the push programming language. Genet Program Evolvable Mach 3(1):7–40.
doi:10.1023/A:1014538503543

Spector L, Klein J, Keijzer M (2005) The push3 execution stack and the evolution of control. In:
GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation,
vol 2. ACM, Washington, pp 1689–1696. doi:10.1145/1068009.1068292

http://doi.acm.org/10.1145/2330784.2330846
http://doi.acm.org/10.1023/A:1014538503543
http://doi.acm.org/10.1145/1068009.1068292

Behavioral Program Synthesis:
Insights and Prospects

Krzysztof Krawiec, Jerry Swan, and Una-May O’Reilly

Abstract Genetic programming (GP) is a stochastic, iterative generate-and-test
approach to synthesizing programs from tests, i.e. examples of the desired input-
output mapping. The number of passed tests, or the total error in continuous
domains, is a natural objective measure of a program’s performance and a com-
mon yardstick when experimentally comparing algorithms. In GP, it is also by
default used to guide the evolutionary search process. An assumption that an
objective function should also be an efficient ‘search driver’ is common for all
metaheuristics, such as the evolutionary algorithms which GP is a member of.
Programs are complex combinatorial structures that exhibit even more complex
input-output behavior, and in this chapter we discuss why this complexity cannot
be effectively reflected by a single scalar objective. In consequence, GP algorithms
are systemically ‘underinformed’ about the characteristics of programs they operate
on, and pay for this with unsatisfactory performance and limited scalability. This
chapter advocates behavioral program synthesis, where programs are characterized
by informative execution traces that enable multifaceted evaluation and substantially
change the roles of components in an evolutionary infrastructure. We provide a
unified perspective on past work in this area, discuss the consequences of the
behavioral viewpoint, outlining the future avenues for program synthesis and the
wider application areas that lie beyond.

Keywords Genetic programming • Program behavior • Program semantics •
Multiobjective evaluation • Search driver • Evaluation bottleneck

K. Krawiec (�)
Computational Intelligence Group, Institute of Computing Science, Poznan University
of Technology, Poznań, Poland
e-mail: krawiec@cs.put.poznan.pl

J. Swan
Department of Computer Science, University of York, York, UK

York Centre for Complex Systems Analysis, University of York, York, UK

U.-M. O’Reilly
ALFA, Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts
Institute of Technology (MIT), Cambridge, MA, USA

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_10

169

mailto:krawiec@cs.put.poznan.pl

170 K. Krawiec et al.

1 Introduction and Motivations

Program synthesis is a challenging task due to the size of the search space,
its multimodality, externalized semantics of instructions, and complex contextual
interactions between them. These characteristics are intrinsic to the nature of this
task and cannot be evaded. However, some difficulties faced by contemporary
genetic programming (GP), in particular the far from satisfactory scalability, result
from the particular model of evaluation of candidate solutions adopted in this
generative, trial-and-error metaheuristic.

As in the majority of genres of evolutionary computation (EC), the candidate
solutions (programs) in GP are conventionally evaluated using scalar, generic
performance measures. Such a measure will usually capture program error, e.g.
represented either as the number of failed tests (for discrete domains) or the total
error committed on them (for the continuous domains).

The practice of measuring the quality of candidate programs using a scalar per-
formance measure has several merits. It allows for strict and elegant formulation of a
program synthesis task as an optimization problem, and is thus compatible with the
conventional way of posing problems in artificial intelligence, operational research,
and machine learning. It also eases the separation of generic search algorithms
from a domain-specific evaluation function, which is so vital for metaheuristics.
No wonder that this ‘design pattern’ is so common that we rarely ponder its other
consequences.

Unfortunately, there is a price to pay for all these conveniences, which arises from
the inevitable loss of information that accompanies the process of scalar evaluation.
That loss is particularly high in generate-and-test program synthesis like GP, where
not only a program itself is a complex combinatorial entity, but also its execution
is an intricate iterative process. In consequence, the spectrum of possible behaviors
exhibited by programs is enormously rich. For example, even when looking only
at program output, the number of all possible behaviors of programs that attempt
to solve the (trivial for contemporary GP) problem of 6-bit multiplexer is the
staggering 264. Yet, in conventional GP all that is left of that process is a single
number (in the interval Œ0; 64� for the above example). The conventional scalar
evaluation denies a search algorithm access to the more detailed information on
program’s behavioral characteristics, while that information could help to drive
the search process more efficiently.

This observation can be alternatively phrased using the message-passing
metaphor typical in information theory. A search algorithm and an evaluation
function can be likened to two parties that exchange messages. The message the
algorithm sends to the evaluation function encodes the candidate solution to be
evaluated. In response, the algorithm receives a return message—the evaluation. In
a sense, the evaluation function compresses a candidate solution into its evaluation.
If one insists on compressing all the information about program behavior into a
scalar fitness that aggregates various aspects of that behavior, then one also has to
accept the fact that such compression is inevitably lossy.

Behavioral Program Synthesis:Insights and Prospects 171

This evaluation bottleneck has detrimental consequences. The outcomes on
particular tests compensate each other and may render programs indistinguishable in
a selection phase, leading to loss of diversity and premature convergence. Also, tests
may vary with respect to objective difficulty (the probability of a random program
passing a test), subjective difficulty (measured by search algorithm’s likelihood
to find a program that passes the test), or both. In consequence, evolution often
tends to greedily synthesize programs that pass the easiest tests, and such programs
may correspond to local minima in the search space. These and other properties
of conventional evaluation cause it to exhibit low fitness-distance correlation
(Tomassini et al. 2005), i.e. to not reflect well the number of search steps required
to reach the optimal solution. As a result, guiding search by a fitness function
defined in this way may be not particularly efficient. In other words, the fitness
function, despite embodying the objective quality of candidate solutions (considered
as prospective outcomes of program synthesis process), is not necessarily the best
driver to guide the search.

The parsimony of conventional evaluation is also awkward in architectural terms,
i.e. when looking at a program synthesis system as a network of interconnected
components. Why would one component (fitness function) compress the evaluation
outcomes and then force another component (search algorithm) to reverse-engineer
them, knowing that this incurs loss of information? There are no reasons for this
other than the convention inherited from metaheuristic optimization algorithms and
evolutionary metaphor.

Arguably, there are domains where an evaluation function is by definition
‘opaque’ and makes this bottleneck inevitable. For instance, in Black Box Opti-
mization, fitness is the only information on a candidate solution available to a search
algorithm. However, it might be the case that the need of such separation is more
an exception than a rule when considering the whole gamut of problems we tackle
with metaheuristics. In many domains, there are no principal reasons to conceal the
details of evaluation, which is often complex and an abundant source of potentially
useful information. This is particularly true for program synthesis, where the act of
evaluating a candidate program is rich at least in two respects. Firstly, a program
interacts with multiple tests, and will often perform differently on each. Secondly, a
program’s confrontation with a single test involves executing multiple instructions.

The main motivation for this chapter is the observation that the habit of driving
search using a conventional, scalar evaluation function cripples the performance
of stochastic program synthesis as implemented by GP. In response, we posit the
necessity of broadening the evaluation bottleneck and providing search algorithms
with more detailed information on program behavior. This leads to a new paradigm
of behavioral program synthesis. In this chapter, we demonstrate a particular means
to this end, presented earlier in preliminary forms in Krawiec and Swan (2013)
and Krawiec and O’Reilly (2014), which relies on the concept of information-rich
search drivers, alternative quasi-objectives that may be capable of guiding program
synthesis process more efficiently than the conventional objective function.

172 K. Krawiec et al.

2 Behavioral Program Synthesis

In this section we sketch the vision of behavioral program synthesis, a methodology
for program synthesis that prioritizes program behavior.

Several existing extensions of the traditional GP paradigm involve broadening
of the evaluation bottleneck, in a more or less explicit way. For instance, program
semantics in GP is the vector of program outputs for particular tests (Moraglio
et al. 2012) and thus provides more information about program behavior than the
conventional scalar fitness. Behavioral characterizations like program semantics are
tailored to the needs of a particular approach: a semantics of a program holds
program output for every test, because this is the information required by (most)
semantic-aware search operators.

Contrary to this model, we propose that evaluation provides a complete account
of program behavior, and to leave it up to the other components of a search
algorithm to decide which pieces of that information to use. The means for this
are program trace, which reports the detailed, instruction-by-instruction effects of
program execution for a given input, and execution record that gathers and aligns
such traces for all considered tests.

Both these concepts can be conveniently explained with an example. Figure 1
presents an integer-valued symbolic regression task (‘Problem’) defined by four
tests, each of them comprising two input variables x1 and x2 and the desired
output y. Assume the tree-based GP program p shown there (‘GP Individual’)
needs to be evaluated. The colored lists present the outcomes of intermediate
execution stages, produced by p at particular instructions for consecutive tests.
When gathered together, they form the execution record (labeled ‘ML dataset’ in
Fig. 1, for the reasons explained later). A single row in an execution record captures
the behavior of p on the corresponding test in the set of tests; for instance, the
first row does so for x1 D 2 and x2 D 3. For this input, the intermediate values
generated by p at consecutive instructions are 2; 2; 3; 2; 4; 5, when executing p in
the bottom-top, left-to-right manner (the ordering could be different for this side
effect-free programming language). The corresponding first row of the execution
record presents this in an abridged form, where the duplicates are omitted: 2; 3; 4; 5

(the second and the fourth leaf in the tree refer to the input variable x1 that has been
already recorded in the first element of the trace).

A trace is thus a sequence of intermediate computation states, and can be
harvested from a running program by interrupting its execution after every instruc-
tion, and taking a ‘snapshot’ of the execution environment. In the above example
with functional tree-based GP, a state is simply the working value returned by
the currently executed node of an expression tree. Other representations used in
GP require different implementations of this concept. In linear GP (Brameier and
Banzhaf 2007), statements operate via side-effects i.e. by changing the values stored
in registers; the environment there would be the states of all registers. In the PushGP
system (Spector and Robinson 2002), where the working memory is the code

Behavioral Program Synthesis:Insights and Prospects 173

Fig. 1 The workflow of behavioral evaluation in Pattern-guided Program Synthesis (PANGEA,
Krawiec and Swan 2013), valid also for behavioral programming presented in Krawiec and
O’Reilly (2014)

stacks and data stacks, all these data structures taken together form the execution
environment. Nevertheless, in both these cases recording traces is straightforward,
as demonstrated by our use of PushGP in Krawiec and Swan (2013).

Differences between program representations notwithstanding, an execution
record captures the entirety of effects of program’s interactions with the input data
provided in tests. As such, it is obviously possible to derive from it the conventional
fitness (by comparing the last column with the vector of desired outputs), the
outcomes of interactions with individual tests [which opens the door to posing a
program synthesis task as a test-based problem (Popovici et al. 2011)], or program
semantics [in the sense of semantic GP (Moraglio et al. 2012)]. The arguably most
exciting possibility (which has been little explored to date) lies in investigating
‘internal’ program behavior, which we attempt in the following.

For expressions like the one in the above example, the execution record is
by definition aligned, i.e. the states recorded in the same column correspond to
the same instruction in the program. For programs containing loops, conditional
statements, or involving recursion, traces may have different length and alignment
is not guaranteed. Nevertheless, this does not invalidate our hypothesis that certain
regularities present in an execution record can be valuable telltales of program’s
actual or prospective performance. The particular approach presented in the next
section exemplifies this claim.

174 K. Krawiec et al.

3 Pattern-Guided Program Synthesis

In conventional GP (and other conceivable generate-and-test program synthesis
techniques), candidate programs are normally judged by their outputs. However in
GP, arguably more than in many other domains, the ultimate program output is an
effect of collective effort of constituent instructions. One reason for this state of
affairs is the sequential nature of programs. The other is the particularly complex
mapping from program code to behavior: a minute modification of the former may
cause a dramatic change in the latter. On the other hand, a major change in a program
can turn out to be behaviorally neutral, due to the multimodality mentioned above.

It is thus likely that programs emerge in an evolving population that feature
potentially useful components (subprograms, code fragments) yet that usefulness is
not leveraged by the final instructions. Such programs will usually perform poorly
in terms of conventional fitness and likely get lost in selection phase. Conventional
GP has no means to counteract that loss. However, traces and execution records
introduced in the previous section may reveal such intermediate behavioral patterns.
Given that, it seems tempting to look for them in order to identify the subprograms
that ‘relate’ to the task in question. Programs that feature such subprograms could
be then promoted, to allow the search operators to turn them into better-performing
candidate solutions. For instance, a fortunate crossover may mate such a promising
subprogram with a piece of code that together leads to optimal solution. This
acquired knowledge could be alternatively used more explicitly, for instance by
archiving the subprograms and then reusing them via search operators.

A skilled human programmer may discover behavioral patterns and exploit them
to design a program that meets the specification of a program synthesis task.
Humans in general are known to be incredibly good at spotting and thinking in
patterns when solving all sorts of problems—for this reason they have been termed
informavores (Miller 1983). A sizeable part of AI research is about mimicking such
capabilities (Hofstadter 1979). Moreover, humans can anticipate the patterns that
are desirable in a given problem and often use domain and commonsense knowledge
for that purpose. Consider the task of synthesizing a program that calculates the
median of a list of numbers. The background knowledge tells us that a reasonable
first stage of solving this task is to sort the list. In terms of execution records,
reaching an intermediate execution state that contains the sorted elements of the
list is desirable in this task.

To realize these opportunities, an efficient detector of ‘interesting’ (relevant for a
given program synthesis task) behavioral patterns is necessary. One may for instance
analyze how execution traces converge between tests, because this to some extent
determines program output—if two or more traces arrive at the same execution
state, their further courses must be the same, assuming that an execution state
captures everything about the execution environment (by including, for instance,
instruction pointer). In Krawiec and Solar-Lezama (2014), we proposed an approach
that quantified program quality with respect to such convergences of traces, using
concepts from information theory.

Behavioral Program Synthesis:Insights and Prospects 175

Nevertheless there exists a wider class of behavioral patterns of potentially
greater interest, namely the patterns that are detectable by conventional knowledge
discovery and machine learning (ML) algorithms. Such patterns are perused by the
method described in the following, termed PANGEA (PAtterN Guided Evolutionary
Algorithms), originally proposed in Krawiec and Swan (2013) and then extended in
Krawiec and O’Reilly (2014). Technically, behavioral patterns are being revealed
there by a ML algorithm trained on execution traces. Information on the resulting
classifier is then used to augment the fitness function. By relying on generic ML
tools, this process does not rely on domain knowledge (as is common for humans).
Rather, it seeks abstract regularities that can be used to predict the correct output of a
program. If this approach is able to reveal meaningful dependencies between partial
outcomes and the desired output, we may hope to thereby promote programs with
the potential to produce good results in future, even if at the moment of evaluation
the output they produce is incorrect.

The ML perspective on behavioral program synthesis originates in the observa-
tion that an execution trace bears some similarity to an example in ML. Assuming
the execution record resulting from applying p to all tests is aligned, i.e., the states in
particular traces correspond to each other, the columns of the record can be likened
to attributes in ML. The desired program output y corresponds in this context to the
desired response of a classifier (or regressor, depending on the nature of the task).
And crucially, a ML induction algorithm (inducer for short), given a set of such
examples, can be used to produce a classifier that predicts the desired output of the
program based on the attributes describing execution traces.

The method proceeds in the following steps, exemplified in Fig. 1:

1. An execution record is built by running the program on the tests.
2. The execution record is transformed into a conventional ML dataset D.
3. A ML induction algorithm is applied to D, resulting in a classifier C.
4. Program evaluation is calculated from the properties of C.

The record built in Step 1, as explained in the example in Sect. 2 (Fig. 1), is
subsequently transformed in Step 2, resulting in the training set labeled as ‘ML
dataset’ in the figure. In this case of simple tree-based GP, the attributes correspond
one-to-one to the columns of the execution record, so the only essential change
is the addition of the program output y as a dependent variable (class label) in
the dataset. Transformation of an execution record into a ML dataset could be
more sophisticated, for instance if states represent compound rather than elementary
data types. More advanced transformation could facilitate discovery of behavioral
patterns, for instance when representation biases of a ML classifier prevent it from
capturing certain classes of pattern. Yet another motivation is to allow discovery
of higher-order patterns that are unobservable when each attribute reflects a single
execution state. Though these options deserve future research, here we focus on
tree-based GP and the straightforward, one-to-one transformation of the columns of
execution record into ML attributes.

Given the training set D, in Step 3 we train a ML classifier C on it. In Krawiec and
Swan (2013) and Krawiec and O’Reilly (2014), we used the decision tree inducers

176 K. Krawiec et al.

(C4.5 (Quinlan 1992) and REP-tree, respectively). For the example in Fig. 1, a
decision tree induction algorithm produced the classifier labeled ‘Decision tree’,
considering attributes xi as well as the decision class y as nominal variables. The tree
comprises five nodes, uses attributes x4 and x1 to predict the output of the program,
and commits no errors on D.

3.1 Search Drivers

The classifier maps the attributes derived from intermediate execution states onto the
desired output of the program. In a sense, it attempts to complement the program’s
capability for solving the problem (i.e. producing the desired output value). This
observation motivates the design of specific evaluation functions. If the traces reveal
regularities that are relevant for predicting the desired output, then the induction
algorithm should be able to build a classifier that is (1) compact and (2) commits
relatively few classification errors. These aspects are strongly related to each other,
which we illustrate in the following.

Consider first the case of an optimal program p. p solves the task, i.e. produces
the desired output yi D p.xi/ for all tests .xi; yi/ 2 T . Since each trace ends with
a final execution state, and the attributes are collected from all states, then the last
attribute in D will be among them. Because p solves the task, that attribute will be
identical to the desired output. In such a case, the induction algorithm may produce
a classifier of C that involves only that attribute, e.g. a decision tree composed of
a single decision node and k leaves corresponding to the k unique desired outputs.
Such a decision tree is thus quite compact and commits no classification errors.

Now consider a non-optimal program. Assume its output diverges so much from
the desired output that the corresponding attribute is useless for prediction. In such a
case, it is likely for the induced classifier to rely on the other attributes, derived from
the intermediate execution states. Individually, such attributes have usually limited
predictive power, unless the corresponding column in an execution record happens
to capture some key aspect of the task. In consequence, the resulting classifier of C
needs to rely on many such attributes and thus may be quite complex. In the case
of decision trees, the tree will feature many decision nodes. In general, the size and
predictive accuracy of the classifier depend on the degree to which the intermediate
states relate to the desired output.

These examples illustrate that complexity and predictive capability of a classifier
are related to each other in a nontrivial manner. Aggregating them would involve
unnecessary loss of information, as we argued earlier. This motivated us to define
two evaluation functions: the classification error and classifier complexity. The
technical definition of the latter depends on classifier representation; for decision
trees, it will be the number of tree nodes. Clearly, neither of these evaluation
functions alone captures fully the relatedness of attributes to the desired output.
It becomes natural to use them side-by-side. In Krawiec and Swan (2013), we
aggregated them into a single evaluation function. In Krawiec and O’Reilly (2014),

Behavioral Program Synthesis:Insights and Prospects 177

we kept them separate and relied on multiobjective approach, employing the Non-
dominated Selection Genetic Algorithm (NSGA-II, Deb et al. 2002). NSGA-II relies
on tournament selection on Pareto ranks to make the choices. To break the ties
on ranks, it employs sparsity, a measure that rewards the candidate solutions that
feature less common scores on criteria. The method is also elitist in selecting from
the combined set of parents and offspring (rather than from parents alone).

We postulate that quantities like classifier error and classifier complexity (as well
as the information-theoretical measures we proposed in Krawiec and Solar-Lezama
2014) share certain features in common and exemplify a new class of evaluation
functions, which we refer to as search drivers. A search driver can be considered
as a ‘quasi’ evaluation function. It is expected to provide a certain search gradient
towards the global optima, but not necessarily a strong one—we posit that what
matters is the direction of that gradient rather than its magnitude. We are particularly
interested in search drivers that are uncorrelated with the original objective function,
as this opens the possibility of using them (or multiple search drivers) together,
preferably in a multiobjective setup. Also, we do not expect search drivers to be
minimized at the optima—we find this requirement unnecessarily constraining when
designing search drivers, while in GP program correctness can be easily verified in
abstraction from evaluation function.

In EC, the concept that arguably most resembles that of search driver is surrogate
fitness. Also known as approximate fitness function or response surface (Jin et al.
2002), a surrogate function provides a computationally cheaper approximation of
the original objective function that comes with a given problem. Search drivers
diverge however from surrogate fitness in several respects. Firstly, surrogate func-
tions are by definition meant to approximate the original objective function. Search
drivers lack this intent. Given the challenges plaguing conventional objective
functions (see Introduction), why would one want to approximate them? Secondly,
search drivers are intended to aid GP meant as a search, not optimization problem.
This leaves more freedom in their design, which do not have to ‘mimic’ the objective
function across the entire search space. Thirdly, in a program synthesis task, a
search driver is not required to be consistent with the objective function in attaining
minimal values at global optima. In surrogate fitness, such consistency is essential.
And last but not least, a primary rationale for surrogate fitness is high computational
cost of the objective function, while the role of search drivers is to help navigate
more effectively in the search space.

These differences justify the conceptual distinctness of search drivers. In an
ongoing work, we hope to provide a more sound formalization of this concept and
come up with guidelines for principled design of search drivers.

3.2 Experimental Evidence

In Krawiec and Swan (2013) and Krawiec and O’Reilly (2014) we applied
PANGEA to PushGP (Spector and Robinson 2002) and tree-based GP respectively
(Fig. 2). In both cases, the behavioral approach systematically outperformed the

178 K. Krawiec et al.

Fig. 2 As a side-effect of behavioral evaluation, evaluation can identify useful subprograms in
programs being evaluated. Such subprograms can be gathered in an archive, maintained throughout
the entire evolutionary run, and reused by search operators (here: archive-based mutation).
Empirical evidence shows that such code reuse can substantially improve search performance
(Krawiec and O’Reilly 2014)

configurations driven by conventional fitness functions and control configurations
devised to test more specific hypotheses (e.g., which of the abovementioned search
drivers is more essential for performance). In the case of tree-based GP, we also
extended the approach with code reuse: the subprograms indicated as potentially
valuable in the process (i.e., corresponding to the attributes used by a decision
tree) were retrieved from the evaluated programs, stored in a carefully maintained
archive, and reused by an appropriately designed mutation operator. Code reuse lead
to further dramatic boosts of performance, measured in terms of success rate, error
rate, predictive accuracy, and, interestingly, program size. For instance, on the suite
of 35 benchmarks used in Krawiec and O’Reilly (2014), the average rank on success
rate was 2.43 for PANGEA with code reuse, compared to 3.10 for conventional GP
working with ten times larger population, and 3.86 for GP working with same-sized
population (100). Two other PANGEA-based setups, one of them using only two
objectives and the other one without archive, ranked third and fourth with average
ranks of 3.36 and 3.43, respectively. Two-objective GP working with program error
and program size as objectives came last, with the average rank of 4.83. Other
performance indicators, like program error and predictive accuracy, were also in
favor of behavioral approach. For detailed account on experimental results, see
Krawiec and Swan (2013) and Krawiec and O’Reilly (2014).

Behavioral Program Synthesis:Insights and Prospects 179

4 Consequences of Behavioral Perspective

Complete characterization of program behavior can be a natural means for assessing
and controlling the diversity of programs. For instance, a selection operator can be
easily designed that, given two programs that pass the same number of tests but vary
in execution record, allows them co-exist in an evolving population (by, e.g., select-
ing them both). No dedicated mechanism for controlling or inducing diversity may
be necessary—behavioral evaluation implicitly provides for phenotypic diversity.
This property may help mitigate the risk of premature convergence and overfo-
cusing on local optima. The positive experimental evidence on the performance
of behavioral approaches (Sect. 3.2) can be in part attributed to this characteristic.
The importance of behavioral diversity has been also corroborated by methods like
implicit fitness sharing (Smith et al. 1993; McKay 2000), co-solvability (Krawiec
and Lichocki 2010), or more recently lexicase selection (Helmuth et al. 2015), where
the last one seems to be particularly effective at trading-off diversity maintenance
and selective pressure on an evolving population (Liskowski et al. 2015).

Behavioral characterization of programs may also facilitate task decomposition.
Automatic detection of a task’s internal modularity and performing appropriate
decomposition has been for long considered one of the main challenges in designing
intelligent systems, and is an important area of research in computational and
artificial intelligence (Watson 2006). In behavioral program synthesis, there are at
least two alternative avenues to decomposition, both of which can be conveniently
explained by means of the execution record.

Firstly, by providing a separate account of program execution for every test,
execution records open the door to ‘horizontal’, ‘test-wise’ task decomposition.
This capability is essential also for semantic GP (and indeed other traditional
approaches), where some crossover operators combine the behaviors of parents
on particular tests. This is most evident for exact geometric semantic crossover,
especially for the Boolean domain. That operator, when applied to parent programs
p1; p2, generates a random Boolean subprogram pr and produces an offspring that
combines p1; p2 with pr in a straightforward expression .p1 ^ pr/ _ .p2 ^ pr/. In the
offspring, pr works as a mask: it ‘mixes’ parents’ behaviors by deciding, for each
test individually, which parent to copy the output from. For the tests for which pr

returns true, the offspring behaves like p1, and if pr returns false, it behaves like p2.
The presence of complete execution traces in an execution record also facilitates

the less obvious ‘vertical’ task decomposition. What we mean here is the stage-
wise structure of a task, as explained on the example of calculating the median in
Sect. 3. In that example, the desired decomposition consists of splitting the original
programming task into two separate subtasks of (1) sorting the list and (2) retrieving
the central element of the sorted list. Arguably, solving each of these subtasks
separately can be expected to be easier than synthesizing a complete program that
calculates the median. We posit that such desired decompositions can be, at least
for some programming tasks, automatically derived from a working population of
programs by analyzing execution records. In Krawiec (2012), we provided some

180 K. Krawiec et al.

experimental evidence for this hypothesis: ‘behavioral trajectories’ tend to cluster,
thereby revealing the internal structure of a task.

In this chapter, we considered methods that use behavioral information primarily
to drive the selection process: an alternative evaluation function characterizes
(possibly in a multi-objective fashion) the candidate solutions, and that informa-
tion is used to select the most promising of them. The above remarks on task
decomposition point to the alternative ways of exploiting behavioral information,
in particular by redefining search operators. The code reuse mutation operator
described in Sect. 3.2 and in Krawiec and O’Reilly (2014) is an example of such
functionality. However, that operator implants the valuable code fragments in the
offspring at random locations. Given execution records of mutated/recombined
programs, search operators can be even more sophisticated in behavioral terms. For
instance, a behaviorally-aware crossover operator could recombine the parents so as
to achieve the desired behavioral effect (e.g. by combining a list-sorting subprogram
with a subprogram that retrieves the central element from a list in the median
problem mentioned earlier).

The behavioral perspective adopted in this chapter in the context of GP has inter-
esting implications beyond program synthesis. One can draw immediate parallels
between the trace of stepwise execution of a GP program on a fitness case and the
search trajectory of a metaheuristic solver acting on a problem instance. The ‘state’
of a metaheuristic could of course also include other variables of relevance. For
example, the state of Simulated Annealing would include current temperature. In
the PANGEA approach described above, a search driver is induced (via a decision
tree) from the executable structure. The essential difference in the extension to
metaheuristics is that with the GP approach, the executable structure is the candidate
solution, whereas in this extended approach it is the means by which solutions
are found (i.e. the particular way in which temperature is modified throughout a
Simulated Annealing run). It may nonetheless be possible to obtain search drivers in
this more general context by correlating solver state against the candidate solutions
representing its current search progress, using any of the gamut of ML techniques
mentioned above.

There is much emphasis in the optimization research community on provid-
ing solutions for individual problem instances which are ‘good enough, quickly
enough’. It must not be forgotten that the most significant improvements have
arisen from analytical and scientific activity, rather than the engineering activity
of ‘manual tweaking’ of operators and parameters. It is therefore vital to build
tools to help distinguish ‘universal’ features of solvers from ‘parochial’ ones. The
primary strength of GP above other regression techniques is as a model-agnostic
mechanism for knowledge discovery. A wider research agenda towards ‘robot
scientists’ (Sparkes et al. 2010) that actively seek correlates between effectors
(e.g. generated metaheuristic search operators) and their observed effects allows
these strengths to be directed back into the optimization process itself. This wider
agenda of an autonomous search agent capable of metacognitive activity invites
contribution from areas such as developmental robotics (Lungarella et al. 2003)
and pattern theory (Grenander 1989). This is of course a different class of activity

Behavioral Program Synthesis:Insights and Prospects 181

from optimizing an individual problem instance, but architectures of this general
nature (e.g. Swan et al. 2014) are necessary in order to automate that which currently
requires the labour of skilled researchers.

5 Conclusions

The behavioral perspective on program synthesis urges us to rethink the structure
and workflow of typical GP algorithm and generic evolutionary methods. A typical
iterative optimization algorithm can be visualized as a loop of evaluation phase,
selection phase, and the phase of applying search operators (‘variation’ in evolution-
ary terms). An evaluation function is typically externalized as a separate component,
and communicates only with selected stages of the loop. For the behavioral approach
‘in the large’, it may be more appropriate to visualize the workflow as a network of
interconnected components that exchange information about the search process. By
having access to behavioral characteristics of candidate solutions, the components
in such an architecture would be more empowered when making decisions about the
fate of particular candidate solutions.

To an extent, the behavioral approach can be seen as a means for making search
process more ‘intelligent’ while keeping it relatively ignorant about the domain-
specific aspects. By observing program behavior as captured in an execution record,
a search algorithm gains better insight into program specifics, while abstracting from
characteristics of the underlying program representation, programming language,
etc. For instance, PANGEA may observe similar or even the same execution records
whether the evolving programs implement imperative or functional programming
paradigms.

The fascinating realization is that there are probably many potentially useful
search drivers beyond the conventional ones, and beyond the ones discussed in this
chapter. It is even possible to that some of them may provide better performance
of search algorithms than anything known to date. In this chapter and previous
works on this topic, we have only scratched the surface of how search drivers can
be defined [or automatically derived from a problem (Kocsis and Swan 2014)]. In
a longer-term research perspective, it would be highly desirable to come up with a
principled approach to the design of search drivers.

Acknowledgements Krzysztof Krawiec acknowledges support from grant 09/91/DSPB/ 0572 and
National Science Centre grant 2014/15/B/ST6/05205. Una-May O’Reilly acknowledges support
from Li Ka Shing Foundation.

182 K. Krawiec et al.

References

Brameier M, Banzhaf W (2007) Linear genetic programming. Genetic and evolutionary compu-
tation, vol XVI. Springer, New York. http://www.springer.com/west/home/default?SGWID=4-
40356-22-173660820-0

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. doi:10.1109/4235.996017

Grenander U (1989) Advances in pattern theory. Ann Stat 17(1):1–30.
doi:10.1214/aos/1176347002. http://dx.doi.org/10.1214/aos/1176347002

Helmuth T, Spector L, Matheson J (2015) Solving uncompromising problems with lexicase
selection. IEEE Trans Evol Comput 19(5):630–643. doi:10.1109/TEVC.2014.2362729. http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6920034

Hofstadter DR (1979) Godel, Escher, Bach: an eternal golden braid. Basic Books, New York
Jin Y, Olhofer M, Sendhoff B (2002) A framework for evolutionary optimization with approximate

fitness functions. IEEE Trans Evol Comput 6:481–494
Kocsis ZA, Swan J (2014) Asymptotic genetic improvement programming with type functors and

catamorphisms (extended abstract). In: Johnson C, Krawiec K, Alberto Moraglio MO (eds)
Semantic methods in genetic programming (SMGP) at parallel problem solving from nature
(PPSN XIV), Ljubljana

Krawiec K (2012) On relationships between semantic diversity, complexity and modularity of
programming tasks. In: Soule T, Auger A, Moore J, Pelta D, Solnon C, Preuss M, Dorin A,
Ong YS, Blum C, Silva DL, Neumann F, Yu T, Ekart A, Browne W, Kovacs T, Wong ML,
Pizzuti C, Rowe J, Friedrich T, Squillero G, Bredeche N, Smith SL, Motsinger-Reif A, Lozano
J, Pelikan M, Meyer-Nienberg S, Igel C, Hornby G, Doursat R, Gustafson S, Olague G, Yoo S,
Clark J, Ochoa G, Pappa G, Lobo F, Tauritz D, Branke J, Deb K (eds) GECCO ’12: Proceedings
of the fourteenth international conference on Genetic and evolutionary computation conference.
ACM, Philadelphia, pp 783–790. doi:10.1145/2330163.2330272

Krawiec K, Lichocki P (2010) Using co-solvability to model and exploit synergetic effects in
evolution. In: Schaefer R, Cotta C, Kolodziej J, Rudolph G (eds) PPSN 2010 11th international
conference on parallel problem solving from nature. Lecture notes in computer science,
vol 6239. Springer, Krakow, pp 492–501. doi:10.1007/978-3-642-15871-1_50

Krawiec K, O’Reilly UM (2014) Behavioral programming: a broader and more detailed take on
semantic GP. In: Igel C, Arnold DV, Gagne C, Popovici E, Auger A, Bacardit J, Brockhoff
D, Cagnoni S, Deb K, Doerr B, Foster J, Glasmachers T, Hart E, Heywood MI, Iba H, Jacob
C, Jansen T, Jin Y, Kessentini M, Knowles JD, Langdon WB, Larranaga P, Luke S, Luque
G, McCall JAW, Montes de Oca MA, Motsinger-Reif A, Ong YS, Palmer M, Parsopoulos KE,
Raidl G, Risi S, Ruhe G, Schaul T, Schmickl T, Sendhoff B, Stanley KO, Stuetzle T, Thierens D,
Togelius J, Witt C, Zarges C (eds) GECCO ’14: Proceedings of the 2014 conference on Genetic
and evolutionary computation. ACM, Vancouver, pp 935–942. doi:10.1145/2576768.2598288.
http://doi.acm.org/10.1145/2576768.2598288, best paper

Krawiec K, Solar-Lezama A (2014) Improving genetic programming with behavioral consistency
measure. In: Bartz-Beielstein T, Branke J, Filipic B, Smith J (eds) 13th international conference
on parallel problem solving from nature. Lecture notes in computer science, vol 8672. Springer,
Ljubljana, pp 434–443. doi:10.1007/978-3-319-10762-2_43

Krawiec K, Swan J (2013) Pattern-guided genetic programming. In: Blum C, Alba E, Auger A,
Bacardit J, Bongard J, Branke J, Bredeche N, Brockhoff D, Chicano F, Dorin A, Doursat R,
Ekart A, Friedrich T, Giacobini M, Harman M, Iba H, Igel C, Jansen T, Kovacs T, Kowaliw
T, Lopez-Ibanez M, Lozano JA, Luque G, McCall J, Moraglio A, Motsinger-Reif A, Neumann
F, Ochoa G, Olague G, Ong YS, Palmer ME, Pappa GL, Parsopoulos KE, Schmickl T, Smith
SL, Solnon C, Stuetzle T, Talbi EG, Tauritz D, Vanneschi L (eds) GECCO ’13: Proceeding
of the fifteenth annual conference on genetic and evolutionary computation conference. ACM,
Amsterdam, pp 949–956. doi:10.1145/2463372.2463496

http://www.springer.com/west/home/default?SGWID=4-40356-22-173660820-0
http://www.springer.com/west/home/default?SGWID=4-40356-22-173660820-0
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1214/aos/1176347002
http://dx.doi.org/10.1214/aos/1176347002
http://dx.doi.org/10.1109/TEVC.2014.2362729
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6920034
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6920034
http://dx.doi.org/10.1145/2330163.2330272
http://dx.doi.org/10.1007/978-3-642-15871-1_50
http://dx.doi.org/10.1145/2576768.2598288
http://doi.acm.org/10.1145/2576768.2598288
http://dx.doi.org/10.1007/978-3-319-10762-2_43
http://dx.doi.org/10.1145/2463372.2463496

Behavioral Program Synthesis:Insights and Prospects 183

Liskowski P, Krawiec K, Helmuth T, Spector L (2015) Comparison of semantic-aware selection
methods in genetic programming. In: Proceedings of the seventeenth annual conference on
genetic and evolutionary computation companion, GECCO Comp (accepted)

Lungarella M, Metta G, Pfeifer R, Sandini G (2003) Developmental robotics: a survey. Conn Sci
15:151–190

McKay RIB (2000) Fitness sharing in genetic programming. In: Whitley D, Goldberg D, Cantu-
Paz E, Spector L, Parmee I, Beyer HG (eds) Proceedings of the genetic and evolutionary
computation conference (GECCO-2000). Morgan Kaufmann, Las Vegas, pp 435–442. http://
www.cs.bham.ac.uk/~wbl/biblio/gecco2000/GP256.pdf

Miller GA (1983) Informavores. Wiley, New York, pp 111–113
Moraglio A, Krawiec K, Johnson CG (2012) Geometric semantic genetic programming. In: Coello

CA, Cutello V, Deb K, Forrest S, Nicosia G, Pavone M (eds) Parallel problem solving from
nature, PPSN XII (part 1). Lecture notes in computer science, vol 7491. Springer, Taormina,
pp 21–31. doi:10.1007/978-3-642-32937-1_3

Popovici E, Bucci A, Wiegand RP, de Jong ED (2011) Coevolutionary principles. In: Handbook of
natural computing. Springer, Heidelberg

Quinlan J (1992) C4.5: programs for machine learning. Morgan Kaufmann, San Mateo
Smith R, Forrest S, Perelson A (1993) Searching for diverse, cooperative populations with genetic

algorithms. Evol. Comput. 1(2):127–149
Sparkes A, Aubrey W, Byrne E, Clare A, Khan M, Liakata M, Markham M, Rowland J, Soldatova

L, Whelan K, Young M, King R (2010) Towards robot scientists for autonomous scientific
discovery. Autom Exp 2(1):1. doi:10.1186/1759-4499-2-1. http://www.aejournal.net/content/
2/1/1

Spector L, Robinson A (2002) Genetic programming and autoconstructive evolution
with the push programming language. Genet Program Evolvable Mach 3(1):7–40.
doi:10.1023/A:1014538503543. http://hampshire.edu/lspector/pubs/push-gpem-final.pdf

Swan J, Woodward J, Özcan E, Kendall G, Burke E (2014) Searching the hyper-heuristic design
space. Cogn Comput 6(1):66–73. doi:10.1007/s12559-013-9201-8

Tomassini M, Vanneschi L, Collard P, Clergue M (2005) A study of fitness distance cor-
relation as a difficulty measure in genetic programming. Evol Comput 13(2):213–239.
doi:10.1162/1063656054088549

Watson RA (2006) Compositional evolution: the impact of sex, symbiosis and modularity on the
gradualist framework of evolution. Vienna series in theoretical biology, vol NA. MIT Press,
Cambridge. http://eprints.ecs.soton.ac.uk/10415/

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2000/GP256.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2000/GP256.pdf
http://dx.doi.org/10.1007/978-3-642-32937-1_3
http://dx.doi.org/10.1186/1759-4499-2-1
http://www.aejournal.net/content/2/1/1
http://www.aejournal.net/content/2/1/1
http://dx.doi.org/10.1023/A:1014538503543
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://dx.doi.org/10.1007/s12559-013-9201-8
http://dx.doi.org/10.1162/1063656054088549
http://eprints.ecs.soton.ac.uk/10415/

Using Graph Databases to Explore
the Dynamics of Genetic Programming Runs

Nicholas Freitag McPhee, David Donatucci, and Thomas Helmuth

Abstract For both practical reasons and those of habit, most evolutionary
computation research is presented in highly summary form. These summaries,
however, often obscure or completely mask the profusion of specific selec-
tions, crossovers, and mutations that are ultimately responsible for the aggregate
behaviors we’re interested in. In this chapter we take a different approach and use
the Neo4j graph database system to record and analyze the entire genealogical
history of a set of genetic programming runs. We then explore a few of these runs in
detail, discovering important properties of lexicase selection; these may in turn help
us better understand the dynamics of lexicase selection, and the ways in which it
differs from tournament selection. More broadly, we illustrate the value of recording
and analyzing this level of detail, both as a means of understanding the dynamics
of particular runs, and as a way of generating questions and ideas for subsequent,
broader study.

Keywords Graph database • Neo4j • Ancestry • Genealogy • Lexicase selec-
tion • Tournament selection

1 Introduction

It is common practice in empirical evolutionary computation (EC) research to
perform a substantial number of runs, and then report a handful of aggregate
statistics that summarize and (hopefully) represent the complex dynamics of those
many runs. Tables present values such as mean or median best fitnesses at the end
of runs, collapsing the complexities of dozens or hundreds of runs into a single
number, possibly with a standard deviation or a confidence interval to give a sense
of the distribution. Plots can often be more informative, showing how these numbers
change over time during the runs, possibly giving a sense of the system dynamics

N.F. McPhee (�) • D. Donatucci
Division of Science and Mathematics, University of Minnesota, Morris, MN, USA
e-mail: mcphee@morris.umn.edu

T. Helmuth
Computer Science, University of Massachusetts, Amherst, MA, USA

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_11

185

mailto:mcphee@morris.umn.edu

186 N.F. McPhee et al.

and the range of behaviors. These plots, however, are typically still aggregate
representations that obscure or completely hide important moments that, if explored,
might reveal valuable insight into the evolutionary dynamics being reported.

An alternative would be to collect, store, and analyze at least some of the rich
panoply of evolutionary and genealogical events that make up the low-level details
of these runs. Databases provide a natural tool for storing and accessing large data
sets, but traditional relational databases are poorly suited for many of the queries that
are important for genealogical analysis. In this chapter, we illustrate the use of graph
databases as an alternative storage and analysis tool for evolutionary computation
runs. We have previously demonstrated that graph databases can be an effective tool
for analyzing complex genetic programming (GP) dynamics (Donatucci et al. 2014),
which led directly to a proposed change to standard sub-tree crossover in tree-based
GP (McPhee et al. 2015). Here we will use the open source Neo4j graph database
tool1 to explore data from a collection of PushGP runs (Helmuth et al. 2015a) on
several problems drawn from a benchmark collection of introductory programming
problems (Helmuth and Spector 2015).

Note that this is not going to be a presentation of “traditional hypothesis-driven
research”. It will be based on an assumption, namely that something interesting
happens in these runs, and that we can learn useful things by exploring them in more
detail, but the presentation will be fairly discursive, reflecting our back-and-forth
experience of wrestling with the data. Our initial queries start from fairly obvious
questions (e.g., “Why did we succeed here?”), but from there we engage in a dialog
with data, letting the answers to early questions shape and guide our subsequent
exploration. We are not presenting a tidy, sterile summary of our adventures, but the
messier (but we think more informative in this context) journal of what Pickering
might call our “mangle of practice” (Smith et al. 2008; Pickering 1993).

Here we explore the impact of lexicase (Spector 2012) and tournament selection
on the dynamics of runs whose aim is to solve a basic software synthesis problem.
In the process we are able to discover surprising and likely important properties
of lexicase that suggest areas of additional exploration and indicate reasons for the
substantially better performance seen when using lexicase on a variety of software
synthesis problems (Helmuth and Spector 2015).

We’re not the first people to recognize the potential value of exploring lineages
and ancestry graphs. The HeuristicLab team has been working for several years on a
set of tools to analyze at least small genealogical run histories (Burlacu et al. 2013,
2015); hopefully these exciting features will be in an upcoming release. Burlacu
et al. (2013) also has an excellent survey of a variety of work that uses genealogical
information in EC work; none of this, however, appears to save and analyze
full genealogical histories, but instead tends to use local ancestry information for
purposes such as diversity promotion. Recent work (Kuber et al. 2014) applies
network theory to ancestry graphs, looking for things like cliques as a way of better

1http://neo4j.com/

http://neo4j.com/

Using Graph Databases to Explore the Dynamics of Genetic Programming Runs 187

understanding EC dynamics; that work is similar in spirit to this chapter, but differs
in the kinds of graphs that are built and the tools used to analyze them.

Because we’re going to focus on the use of graph databases, there will on
occasion be avenues of exploration that we won’t pursue because they would
properly involve different tools. This exploration, for example, raises important
questions about the relationships between parent and child genomes. These could
be addressed using, e.g., difference-merge tools from software engineering, or
sequence alignment tools from genomics; see, e.g., Burlacu et al. (2013) for an
excellent example of this kind of analysis. We will, however, consider that beyond
the scope of this chapter. A key value of our graph database results will be in
providing focus for our use of those other tools, identifying key moments and
individuals in the course of a run that deserve additional attention. There are
thousands of potential genome comparisons to make in a single run, for example,
but our graph databases analysis helps identify some of the critical individuals,
crossovers, and mutations in the run, allowing us to concentrate on the steps that
are likely to have mattered most.

We’ll provide expanded motivation for this work in Sect. 2, and background
on relevant tools and concepts in Sect. 3. In Sect. 4 we explore in some detail a
successful lexicase selection run, identifying several properties of lexicase selection
that distinguish it from other, more traditional selection methods. We then explore
a successful tournament selection run in Sect. 5, comparing those results to the
earlier lexicase results. In Sect. 6 we step back a little and look at the results of
expanding some of our queries across hundreds of runs, and then wrap up with
some conclusions in Sect. 7.

2 Motivation

Consider the job of a paleontologist, who regularly reconstructs not just individuals
but also species and entire phylogenetic trees on the basis of a handful of teeth and
bones, or even just impressions left in prehistoric mud. They rarely have DNA, so
any evolutionary relationship is inherently speculative, subject to constant debate
and revision. Even with detailed DNA sequences, the construction of phylogenetic
trees for existing species is non-trivial.

In evolutionary computation, however, we have access to everything, at least in
principle. We could gather every selection, every mutation, and every crossover
as they play out in our systems. Yet we typically throw almost all that data
away, reporting just aggregate statistics and summary plots, completely failing to
take advantage of our privileged position, a position most paleontologists would
presumably eye with considerable envy. Not only does this seem an inherent waste,
these aggregations typically obscure critical moments in the dynamics of runs which
might speak volumes if explored.

188 N.F. McPhee et al.

While this sort of aggregate reporting is often valuable, allowing for important
comparative analysis, it typically fails to provide any sense of the why. Yes,
Treatment A led to better aggregate performance than Treatment B—but what
happened in the runs that led to that result? Any end result is ultimately the intricate
combination of thousands or millions of selections, recombinations, and mutations,
and if Treatment A is in some sense “better” than Treatment B, it must ultimately
be because it affected all those genealogical and genetic events in some significant
way, biasing them in a way that improved performance.

Unfortunately, published research rarely includes information that might shed
light on these why events. We rarely see evolved programs, for example, or any
kind of post-run analysis of those programs, and there is almost never any data
or discussion of the genealogical history that might help us understand how a
successful program actually came to be. Sometimes these events and details aren’t
included for reasons of space and time; evolved programs, for example, are often
extremely large and complex, and a meaningful presentation and discussion of
such a program could easily take up more space than authors have available. We
suspect, however, that another reason this sort of why analysis often isn’t reported
is because it isn’t done, in no small part because it’s hard. As EC researchers we’re
in the “privileged” position of being able to collect anything and everything that
happens in a run, but that’s a potentially huge amount of data, and leaves us with two
substantial problems: How to store the data, and how to analyze the data after it’s
stored. Decreasing data storage costs have done much to mitigate the first problem,
but one still needs good tools to process and explore what could quickly run into
terabytes of data.

Assuming one has access to the necessary storage, databases are the obvious
tool for the collection of the data. Most common database tools, however, don’t
lend themselves to the kinds of analysis that we need in evolutionary computation
work. Most relational and document-based databases, for example, require complex
and expensive recursive joins to trace significant hereditary lines. In exploring the
dynamics of an EC run, it may be necessary to make connections across dozens or
even hundreds of generations, which simply isn’t plausible with a relational database
(Robinson et al. 2013). While we use Neo4j as our graph database in this work,
there are numerous other graph databases that could potentially be effective tools
(Wikipedia 2015a). We make no claims to have exhaustively explored the range of
possible database tools for this sort of work.

3 A Little Background on Tools and Problems

This section provides some background on some of the key subjects of this work:
The Neo4j graph database and its query language Cypher; the PushGP system;
lexicase selection; and the replace-space-with-newline test problem.

Using Graph Databases to Explore the Dynamics of Genetic Programming Runs 189

3.1 Neo4j and Cypher

Graph databases (Robinson et al. 2013) are a relatively new database tool, where
data is stored as a collection of nodes and relationships in a graph, with a specialized
query language that makes it easy to ask questions about complex relationships. In
our work, nodes typically represent individuals, and :PARENT_OF relationships
capture the central genealogical connections. We store important data such as the
total error as properties of individual nodes, and genetic operators as properties on
:PARENT_OF edges.

The Neo4j query language, Cypher, allows patterns in this data to be readily
extracted. A detailed description of Cypher is beyond the scope of this chapter, but
Cypher’s central feature is the ability to describe sub-graph patterns. The Neo4j
engine can then search for subgraphs matching these patterns. Cypher also provides
the ability to filter results based on properties in a manner quite similar to more
traditional SQL queries.

3.2 PushGP

PushGP (Spector and Robinson 2002; Spector et al. 2005) is a stack-based genetic
programming system. The details of PushGP aren’t crucial for this analysis, but it is
useful to know a few things:

• PushGP uses a linear genome, which is then converted into a program.
• PushGP supports a variety of typed stacks, with corresponding typed instructions.

The integer-add instruction takes the top two items from the integer
stack, adds them, and pushes the result back onto the integer stack.

• There is an exec stack which can hold blocks of instructions. This is what allows
PushGP programs to loop or recurse, as pushing a block of instructions onto the
exec causes those instructions to be executed next.

While traditionally PushGP has evolved Push programs themselves, the most
recent version of PushGP instead evolves linear Plush genomes consisting of
instructions paired with close counts. The Plush genomes are manipulated by
genetic operators, but are translated into Push programs prior to execution. During
translation, any instruction that uses code from the exec stack implicitly opens a
code block; the close counts are natural numbers indicating how many open code
blocks should be closed after a given instruction.

In the runs explored here, there are three genetic operations: Alternation,
uniform-mutation, and uniform-close-mutation. Alternation is based on the earlier
ULTRA operator (Spector and Helmuth 2013), and is similar to an N-point
crossover in genetic algorithms. The two parent genomes are traversed from left
to right, copying instructions from the source parent to the child. There’s a small
probability at each instruction of an alternation event, which switches which parent

190 N.F. McPhee et al.

is being used as the instruction source. For every alternation event there’s a small
chance of slightly shifting the instruction location in the source parent; how much
deviation is possible is controlled by an alignment deviation parameter. Uniform-
mutation simply replaces each instruction with a randomly chosen instruction with
some small probability. Uniform-close-mutation modifies each close count value
with some small probability. The runs discussed here allowed for pipelining of
genetic operators, so we might have combinations like alternation followed by
uniform-mutation. For additional details and the particular parameters used in these
runs see Helmuth and Spector (2015).

3.3 Lexicase Selection

Lexicase selection is a recently developed selection method for evolutionary
computation in which individuals are selected by filtering the population according
to performance on individual fitness cases, considered in random order (Spector
2012). Lexicase selection, when used as the parent selection method in genetic
programming, has been shown to provide significant improvements in terms of
problem-solving power (Helmuth et al. 2015b; Helmuth and Spector 2015).

For each parent selection event, lexicase selection (Algorithm 2) randomly orders
the test cases and then removes any individuals that do not have the best performance
on the first case. If more than one individual remains, then those that do not have
the best performance among those that remain on the second case are also removed.
This continues until only one individual remains and is selected, or until all cases
have been used, in which case a random member of the set of remaining individuals
is selected. Key properties of lexicase selection are (a) it avoids combining all errors
into a single value, (b) because of the random ordering of test cases, every test case
will be most important (first to be considered) at least occasionally, and (c) similarly,
each pair of test cases, and each triple, etc., will be most important now and then.

Algorithm 2 Pseudocode for lexicase selection, in the context of error minimization.
Here the function perf.i; p/ computes the performance of program p on test case i
candidates WD the entire population
cases WD list of all the test cases in a random order
while jcandidatesj > 1 and jcasesj > 0 do
current, cases := first.cases/, rest.cases/

best_performance WD minfperf.i;current/ j i 2 candidatesg
candidates := fi j i 2 candidates ^ perf.i;current/ D best_performanceg

end while
return random individual from candidates

Using Graph Databases to Explore the Dynamics of Genetic Programming Runs 191

3.4 Replace-Space-with-Newline

The replace-space-with-newline problem is an introductory programming bench-
mark problem taken from Helmuth and Spector (2015). Here the program is given
an input string and required to both (a) print the string with all the spaces replaced
by newlines and (b) return an integer that is the number of non-space characters in
the input string. There are 100 different training instances for this problem, each of
which generates two error values: (a) the Levenshtein distance between the printed
output and the target print string, and (b) the absolute difference between whatever
value is on the top of the integer stack and the expected return value. A penalty
value of 1000 is assigned for test cases that were expecting a return value but found
the integer stack empty. For tournament selection runs, all 200 of these error
values were added together to form the total error, which was used as the fitness
for the individuals. For lexicase selection the errors were kept separate in an error
vector of 200 values; this, as we shall see, frequently allowed individuals to be
selected who did well on some test cases, but very poorly on others.

3.5 Our Data

In this chapter we explore a subset of the data collected for Helmuth et al. (2015a).
In particular we have the full genealogical records for 100 runs of replace-space-
with-newline using lexicase selection, and 100 runs using tournament selection
with tournament size 7. In those runs, 57 of the 100 lexicase runs succeeded, i.e.,
an individual was discovered that had zero error on all 200 of the training cases.
Tournament selection only had 13 successes out of 100 runs, so lexicase selection
provides a significant advantage on this problem. Similar results in Helmuth and
Spector (2015) indicate that lexicase is in fact generally much more successful than
tournament selection across a broad range of software synthesis problems.

4 Lexicase, Meet Replace-Space-with-Newline

It’s one thing to know that lexicase succeeds 57 out of 100 times on the replace-
space-with-newline problem, but that leaves us with the crucial question of why? In
order to study this question, we chose one successful run to explore in more detail.
We’re making no claims that this is a “representative” run (whatever that would
even mean); it’s an interesting run, though, and our hope is that by understanding
its dynamics better we can learn useful things about both the problem and the
tools we’re applying. Looking at this run in some detail certainly unearthed
several surprising results, and in Sect. 6 we’ll expand our view by looking at some
cumulative results across all 100 lexicase runs.

192 N.F. McPhee et al.

4.1 Working Backwards

A natural place to start our analysis is at the end of the run, when the GP system
created one or more individuals that solved the problem. So we used Neo4j to find
all the ancestors of any “winning” individual, i.e., an individual with a total error of
zero represented than others. As we’ve already mentioned, individual 86:261 has 45
successful offspring, and both individuals 82:447 and 83:047 have five offspring
in the graph, i.e., five offspring that were ancestors of a winning individual in
generation 87. Each of these is marked in Fig. 1 with a shaded diamond.

Gen 79

Gen 80

Gen 81

Gen 82

Gen 83

Gen 84

Gen 85

Gen 86

Gen 87

80:220

82:447

83:04783:124 83:619

84:319

85:086

86:261

87:71987:941 87:94742 Other Winners

Fig. 1 Ancestry of the 45 “winners” from a successful run of replace-space-with-newline using
lexicase. Diamond-shaped nodes had an unusually large number of offspring (over 100 each).
Shaded nodes had at least five offspring that were ancestors of winners

Using Graph Databases to Explore the Dynamics of Genetic Programming Runs 193

Figure 1, however, only tells us how many offspring an individual had that
were themselves either a winner or an ancestor of a winner, as no other nodes are
displayed. One might wonder how many total offspring an individual has regardless
of whether they led to a winner. Using a Cypher query to identify the most fecund
ancestors of winners in these last nine generations reveals several things that were
quite surprising. The most remarkable of these was that individual 86:261 was a
parent of 934 of the 1000 individuals in generation 87! Given that lexicase selection
was designed in significant part to spread selection events out across the population,
this makes it clear that there are times when lexicase does the opposite, and instead
puts nearly all its eggs in a single basket. This level of selection focus would simply
be impossible using almost any other common type of selection such as tournament
selection; in most uses of tournament selection, for example, no individual can be
in more than a relative handful of tournaments, and thus can’t be a parent terribly
often no matter how fit they are.

While no other node in Fig. 1 has nearly as many children as 86:261 did, there
are several that also had very high reproduction rates, putting them well above what
would be possible with something like tournament selection. Individual 82:447,
for example, had 443 offspring, including the 5 illustrated in Fig. 1. In fact there
were eight individuals in Fig. 1 that have more than 100 offspring; each of these is
indicated with a diamond shape. This highlights a particularly interesting ancestry
chain from 80:220 through 81:691, 82:447, 83:124, 84:319, 85:086 to 86:261,
marked with dashed edges in Fig. 1. With the exception of 81:691, which “only”
had 17 offspring, each of these seven individuals had more than 100 offspring, and
thus had a fairly dominate role in shaping that part of the evolutionary process

If we look at the total error in of the individuals in Fig. 1, we again find some
surprises that tell us quite a lot about lexicase selection. In particular, if we look at
the total error for each individual along the dashed path from 80:220 through 82:447
to 86:261, the total errors of the first five individuals in the chain are reasonably low.
One (individual 82:447) has the best total error in that generation and all but 81:691
(the individual with only 17 offspring) are in the top fifth of the population when
ranked by total fitness. The fitnesses of the last two (the grandparent and parent
of every one of the 45 solutions), however, came as quite a shock. In particular,
individual 85:086 has a total error of 100,000, placing it very near the bottom of
the population by total error (rank 971). Individual 86:261, which was the parent of
924 of the 1000 individuals in the next generation, has a total error of 4034, placing
it below 3=4 of the population in its generation by that aggregate measure.

How could individuals with such terrible total fitness end up being selected
so often as parents? Exploring the specific test case errors reveals that individual
85:086 is perfect on half of the test cases (all those that involve printing), but gets
a penalty error of 1000 on the other half because it never actually returns a value.
Every one of its ancestors in Table 1, however, has at least a few non-zero errors
on the printing test cases, meaning that any lexicase ordering that places a few key
printing test cases before any of the “return” test cases would likely select individual
85:086.

194 N.F. McPhee et al.

Table 1 The total error and
rank (by total error) in the
population in that individual’s
generation for the sequence
of “diamond” individuals
from in Fig. 1

Individual Total error Rank in population

80:220 321 147

81:691 441 268

82:447 107 1

83:124 157 85

84:319 240 188

85:086 100;000 971

86:261 4034 765

What about individual 86:261, with it’s 934 offspring? It has error zero on 194 of
the 200 test cases. On 4 of the remaining 6 test cases it, like individual 85:086, fails
to return a value and gets the penalty of 1000; it has an error of 17 on the other two.
Thus it gets 97 % of the test cases correct, but happens to be heavily penalized for its
behavior on 4 of the 6 it gets wrong. In a system that aggregates the errors, its rank of
765 out of 1000 would mean that it would probably have no offspring. With lexicase
selection, however, it’s success on the 194 test cases means that it is selected (from
this population) almost every time. In fact only 152 of the 1000 individuals in the
final generation had a parent who wasn’t 86:261, and only 116 other individuals in
generation 86 had an offspring in the next generation. While four of those had 10
or more offspring in the last generation, none of those four actually gave rise to a
winner. The three parents of winners other than 86:261 (individuals 86:272, 86:049,
and 86:672 in Fig. 1) had very few offspring (1, 2, and 2 respectively), suggesting
that they may not have contributed much (or anything) to their successful progeny,
and the success of their offspring was due more to the good fortune of mating with
86:261 than anything else.

4.2 How Exactly Did We Get Here?

Now that we know quite a lot about who gave rise to those 45 winners, what
genetic operations brought them about? The largest group was 18 of the 45 which
came about through uniform-close-mutation alone, all of which were mutations of
individual 86:261. This indicates that success could be achieved via a fairly simple
modification to 86:261’s genome that only modifies where some code blocks end.

The other large group was 17 winners that arose via alternation followed by
uniform-mutation. 14 of these were the result of a self-cross of 86:261 and itself,
with the other three being crosses between 86:261 and the other three parents
of winners (86:272, 86:049, and 86:672). There were also two smaller groups of
winners, 6 which were the result of alternation alone (all self-crosses of 86:261),
and 4 from uniform-mutation alone applied to 86:261.

An obvious question then is what changed in moving from 86:261 to the
final solutions. The genomes and programs involved are fairly complex (over 200
instructions) and, as mentioned earlier, a full analysis of the genomes and behaviors

Using Graph Databases to Explore the Dynamics of Genetic Programming Runs 195

of the individuals involved is beyond the scope of this chapter. Such an analysis is
possible, however, and our graph database work has clearly identified individuals
whose genomes and programs deserve additional study.

Based on this exploration, we can also propose a hypothesis for further explo-
ration. 86:261’s total error of 4034 comes in large part from failing to return a value
on four test cases. A distinct possibility is that 86:261 simply times out on those four
test cases. The efficacy of uniform-close-mutation suggests that there might be some
sequence of instructions that are being executed repeatedly via a loop or recursion,
and there are uniform-close-mutations that shorten that block in ways that allow it to
complete all the test cases within the time limit without changing the value returned.

5 How Is Tournament Selection Different?

In addition to studying lexicase selection, we wanted to collect data from replace-
space-with-new-line with tournament selection in order to compare with our earlier
lexicase results. As noted in Sect. 4, lexicase produced at least one individual with an
error of zero in 57 of 100 runs while tournament selection only produced 13 of 100
successful runs. In this section we’ll explore one of these 13 successful tournament
runs in a little more detail.

An immediate difference between the lexicase and tournament runs is that there
was only one solution discovered in the tournament selection run, in contrast to the
45 different individuals that solved the problem in the lexicase run.

Figure 2 shows the ancestry of the winning individual from generation 150
(when the winner was discovered) back to generation 145. It’s clear that the
branching factor in this ancestry is much higher than with lexicase in Fig. 1.
Table 2(a) shows the number of ancestors n generations back that contributed to
the winning individual, and we can see that the number of ancestors increases
much more quickly for tournament than lexicase; at 10 generations back, there
were approximately three times the number of contributing parents in tournament
as in lexicase. This is likely partially due to the fact that in lexicase some parents
produced a surprisingly large number of children. Another possible contribution to
this asymmetry is a difference in the role of mutations under lexicase, but we haven’t
yet explored that in any detail.

Another major difference was the selection pressure exerted by the two selection
mechanisms. As we saw earlier, in lexicase selection one parent can dominate
the selection if it performs well for a significant number of test cases. However,
tournament selection can never impose such a strong selection pressure. Throughout
the entire run, the most a single parent in the tournament selection run ever produced
was 24 children (see Table 2(b)), and all of the 18 most prolific parents produced
between 17 and 24 offspring. Compare this to lexicase selection, where all of the
18 top parents produced over 200 offspring. This extreme difference in selection
pressure may also help explain the differences in the branching factor of the two
ancestry trees.

196 N.F. McPhee et al.

Gen 142

Gen 143

Gen 144

Gen 145

Gen 146

Gen 147

Gen 148

Gen 149

Gen 150

233 5 2

3

2332

2

2

2

2

2

Fig. 2 Ancestry of the sole “winner” from run 74 of tournament selection, replace-space-with-
newline. The few nodes with more than one offspring that is an ancestor of the winner are marked
with diamonds containing the number of children (in this graph) for that node. Most of those nodes
had additional children, not pictured in the figure, that are not ancestors of the winning individual

We also noticed another crucial difference between the types of individuals
selected for reproduction. With tournament selection, the primary bias is towards
individuals that have the lowest total error. However, this is not the case in lexicase
where, as long as an individual performs extremely well for enough cases, it is still
possible to be selected for reproduction, even if it has substantial errors on other
test cases. In this tournament run, for example, every ancestor of the winner in the
last six generations has a total error of either 83 or 132, which is in marked contrast
to the diversity of total errors in the lexicase run (see Table 1). Additionally, across
all individuals chosen as parents in the last 20 generations of the tournament run
(regardless of whether they were an ancestor of the winner), there were as few as
one and at most five distinct total errors within each generation. This suggests that
tournament selection kept mutating and recombining a small set of behaviors until
it managed, essentially by accident, to produce an improved child. Lexicase, on the
other hand, maintained a much more diverse population and appeared to somehow
leverage that diversity to continue to discover improvements.

6 A Few Cumulative Results

The bulk of this chapter has focused on exploring two specific successful runs
on the replace-space-with-newline problem, one using lexicase selection, and one
using tournament selection. To better understand how well this application of graph
databases scales, we also created two larger cumulative databases (one for lexicase
selection and one for tournament selection), each containing the complete genealog-
ical record for all 100 runs on replace-space-with-newline. Given these cumulative

Using Graph Databases to Explore the Dynamics of Genetic Programming Runs 197

Table 2 Two examples of the impact of selection on evolutionary dynamics in the two explored
runs

(a)

Number of ancestors

n Lexicase Tournament

18 58 297

17 52 236

16 46 180

15 49 152

14 45 209

13 46 212

12 41 146

11 29 97

10 22 63

9 14 42

8 14 33

7 10 30

6 9 20

5 7 13

4 6 10

3 7 6

2 6 4

1 4 2

(b)

Number of children

Rank in run Lexicase Tournament

1 934 24

2 657 23

3 594 23

4 590 21

5 433 20

6 326 20

7 297 19

8 294 19

9 285 19

10 283 18

11 279 18

12 271 18

13 234 18

14 220 18

15 212 18

16 205 18

17 203 18

18 202 17

Table (a) lists the number of parents contributing to a winning individual n generations away for
both the lexicase and tournament runs explored in this chapter. The top row, for example, indicates
that in the lexicase run there were 58 distinct ancestors of a winning individual 18 generations
before the discovery of a winner, and in the tournament run there were 297 distinct ancestors 18
generations before the discovery of a winner. Table (b) lists the 18 most fecund individuals across
the entirety of each of the lexicase and tournament selection runs

databases, we were then able to do broad queries against those collections of runs.
These were typically inspired by observations from the explorations of individual
runs, with the broader queries helping us understand to what degree an observation
in an individual run was representative or an outlier.

An obvious question, for example, is how unusual is the individual we discovered
in Sect. 4 that had 934 offspring? Was that an aberration, or are these kinds of hyper-
selected and hyper-fecund individuals a regular occurrence when using lexicase
selection? Querying the combined database revealed that there were 71 individuals
in the 100 lexicase runs that were selected more than 900 times, where the average
number of selections in a given generation was 1700. So each of these 71 individuals
received over half the total selections in its generation, and consequently had
numerous offspring; all had over 700 offspring out of the 1000 created for the

198 N.F. McPhee et al.

next generation. 22 of those 71 individuals had over 900 offspring, with the biggest
winners being two individuals that had 990 and 991 offspring, respectively, after
being selected over 1600 times each.

These 71 individuals clearly represent a very small fraction of the over 18 million
nodes encapsulated in our 100 lexicase runs. 50 of the 100 runs, however, had
at least one individual with over 900 selections, so this kind of hyper-selection is
clearly common in the dynamics of these lexicase runs. This sort of hyper-selection
has a profound impact on the dynamics of a run, as almost every individual in the
subsequent generation is a child of the hyper-selected individual, and due to self-
crosses and mutations that individual is often the only parent of those children.
Thus the genetics of that individual are likely to have an enormous influence on
the make-up of the next generation, creating a substantial population bottleneck.
So while those 71 individuals only represent a tiny proportion of the cumulative
population, they’re likely to have a tremendous impact on the run dynamics; thus
the ability to identify and examine these individuals is potentially very informative.

One of the other surprises from our earlier exploration is how “unfit” some
of those highly selected individuals were when viewed through the lens of total
error. Turning now to these cumulative results, we find that 15 of these 71 hyper-
selected individuals had total error at or below 10, and so would likely be selected by
tournament selection (although never more than a few dozen times). On the other
end of the spectrum, however, 7 of these 71 hyper-selected individuals had total
error over 3000 and would have been extremely unlikely to ever be chosen using
tournament selection. So here again we see a substantial difference between the
dynamics of lexicase and tournament selection, especially given the impact these
hyper-selected individuals have on their runs.

Finally, looking at all 200 runs makes it clear that lexicase and tournament
selection differ considerably in the likelihood of discovering multiple “winning”
individuals in the same generation. Over the 100 runs of the replace-space-with-
newline with tournament selection, only 13 runs found a solution with zero total
error, and only one of those runs had more than one solution in the final generation
(there were two). Of the 57 successful lexicase runs, however, 30 (so just over
half) had multiple solutions. Many were only a few (6 runs just had 2 solutions),
but 6 runs had over 30 solutions, including runs with 69 and 74 solutions. This
strongly suggests that when tournament discovered a winning individual, that
discovery was fairly random and therefore had a low probability. The prevalence
of multiple solutions in the lexicase runs, however, indicates that the discovery of
those solutions had a much higher probability. What’s less clear is whether that
increased probability was driven by lexicase’s hyper-selection in the last generation,
or whether lexicase selection throughout the run had led to Push program structures
that were easier to combine/mutate into winning individuals.

Using Graph Databases to Explore the Dynamics of Genetic Programming Runs 199

7 So What Did We Learn In All This?

In this chapter we’ve illustrated the potential of graph databases such as Neo4j
as tools for exploring and analyzing some of the rich matrix of low-level events
that ultimately make up any evolutionary computation run. Here we’ve used graph
databases as a new kind of “lab bench” instrument, allowing us to zoom in and
capture the details of potentially crucial moments in our GP runs.

This has exposed surprising and potentially important properties of lexicase
selection. These properties will hopefully help us better understand dynamics
of runs using lexicase, and why those runs are frequently more successful than
runs using tournament selection. A key goal in the original design of lexicase
selection (Helmuth et al. 2015b) was to increase and maintain diversity in GP runs
which, as Helmuth et al. (2015a) shows, does appear to be the case, with lexicase
generally leading to more diversity than either tournament selection or implicit
fitness sharing. One would, however, typically consider hyper-selection and the
consequent population bottlenecks to be the enemy of diversity, so our discovery
of a pattern of individuals being selected hundreds, and sometimes even thousands,
of times was at the very least striking and worthy of further study.

A key risk in this sort of narrow examination is that one might mistake an
observation for a pattern. Thus there will always be a need for broader summary
statistical analysis. The kind of exploration we’ve demonstrated here will ultimately
have to be used in conjunction with those statistical tools; discoveries in “digs” such
as these can raise questions and suggest hypotheses that can then be supported or
refuted through the use of more “traditional” studies.

One other concern is how to scale our use of graph databases. Databases for
individual runs are quite tractable, and can be populated and explored using basic
off-the-shelf computers. Combing multiple runs, however, presents a number of
challenges. The database containing the 100 lexicase runs, for example, contained
over 18 million nodes and over 25 million edges, with the full Neo4j database
weighing in at 18 GB. The database combining the 100 tournament runs was even
larger because most of the runs went the full 300 generations: over 28 million
nodes, over 48 million edges, and a database of over 31 GB. That said, these
databases runs reasonably on stock desktop hardware, which is how all the results
presented here were generated. To scale up further, however, we’d quickly start
to need more specialized infrastructure to, for example, combine the lexicase and
tournament selection runs into a single database containing the history of those 200
runs, or combining the results of runs on multiple problems. We have data from
thousands of runs (Helmuth et al. 2015a), but bringing that together in a single
database is clearly infeasible using these tools. An alternative to this approach
would be to have a host of database engines on a cluster, each serving a subset
of related data, and then providing tools that would allow queries to be run across
all these endpoints, aggregating those results into a single response. Version 1.1 of

200 N.F. McPhee et al.

the SPARQL query language (Wikipedia 2015b), for example, includes support for
queries across multiple endpoints and could potentially be used to run queries across
large distributed datasets.

Acknowledgements Thanks to the members of the Hampshire College Computational Intel-
ligence Lab and M. Kirbie Dramdahl at the University of Minnesota, Morris, for discussions
that helped to improve the work described in this chapter. Thanks also to Josiah Erikson for
systems support, and to Hampshire College for support for the Hampshire College Institute for
Computational Intelligence. This material is based upon work supported by the National Science
Foundation under Grants No. 1017817, 1129139, and 1331283. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

We are very grateful to all the participants in the 2015 Genetic Programming Theory and
Practice (GPTP) workshop for their enthusiasm, ideas, and support. In particular we’d like to
thank William Tozier for all manner of suggestions and feedback, and in particular for helping us
understand the connection between our work and the Pickering’s idea of the “mangle of practice”.
Krzysztof Krawiec provided a number of valuable suggestions based on an early draft. Steven
Gustafson suggested that we look into SPARQL and triplestore databases as an alternative to
Neo4j, an interesting idea we haven’t had time to explore in detail. Stuart Card connected us to
the interesting related work by Karthik Kuber. Finally, thanks to the GPTP organizers; without
their hard work none of those other valuable conversations would have occurred.

References

Burlacu B, Affenzeller M, Kommenda M, Winkler S, Kronberger G (2013) Visualization of genetic
lineages and inheritance information in genetic programming. In: GECCO ’13 Companion:
proceeding of the fifteenth annual conference companion on genetic and evolutionary compu-
tation conference companion. ACM, Amsterdam, pp 1351–1358

Burlacu B, Affenzeller M, Winkler S, Kommenda M, Kronberger G (2015) Methods for genealogy
and building block analysis in genetic programming. In: Computational intelligence and
efficiency in engineering systems, studies in computational intelligence, vol 595. Springer
International Publishing, Berlin, pp 61–74

Donatucci D, Dramdahl MK, McPhee NF (2014) Analysis of genetic programming ancestry using
a graph database. In: Proceedings of the Midwest Instruction and Computing Symposium.
http://goo.gl/RZXY2U

Helmuth T, Spector L (2015) General program synthesis benchmark suite. In: Silva S, Esparcia-
Alcazar AI, Lopez-Ibanez M, Mostaghim S, Timmis J, Zarges C, Correia L, Soule T, Giacobini
M, Urbanowicz R, Akimoto Y, Glasmachers T, Fernandez de Vega F, Hoover A, Larranaga
P, Soto M, Cotta C, Pereira FB, Handl J, Koutnik J, Gaspar-Cunha A, Trautmann H, Mouret
JB, Risi S, Costa E, Schuetze O, Krawiec K, Moraglio A, Miller JF, Widera P, Cagnoni S,
Merelo J, Hart E, Trujillo L, Kessentini M, Ochoa G, Chicano F, Doerr C (eds) GECCO ’15:
Proceedings of the 2015 on genetic and evolutionary computation conference. ACM, Madrid,
pp 1039–1046. doi:10.1145/2739480.2754769, http://doi.acm.org/10.1145/2739480.2754769

Helmuth T, McPhee NF, Spector L (2015a) Lexicase selection for program synthesis: a diversity
analysis. In: Riolo R, Worzel WP, Groscurth K (eds) Genetic programming theory and practice
XIII. Springer, Ann Arbor; Genetic and Evolutionary Computation, forthcoming

Helmuth T, Spector L, Matheson J (2015b) Solving uncompromising problems with lexicase
selection. IEEE Trans Evol Comput 19(5):630–643. doi:10.1109/TEVC.2014.2362729, http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6920034

http://goo.gl/RZXY2U
http://dx.doi.org/10.1145/2739480.2754769
http://doi.acm.org/10.1145/2739480.2754769
http://dx.doi.org/10.1109/TEVC.2014.2362729
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6920034
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6920034

Using Graph Databases to Explore the Dynamics of Genetic Programming Runs 201

Kuber K, Card SW, Mehrotra KG, Mohan CK (2014) Ancestral networks in evolutionary
algorithms. In: Proceedings of the 2014 conference companion on Genetic and evolutionary
computation companion. ACM, pp 115–116

McPhee NF, Dramdahl MK, Donatucci D (2015) Impact of crossover bias in genetic programming.
In: GECCO ’15: Proceedings of the 2015 conference on genetic and evolutionary computation

Pickering A (1993) The mangle of practice: agency and emergence in the sociology of science.
Am J Sociol 99(3):559–589. http://www.jstor.org/stable/2781283

Robinson I, Webber J, Eifrem E (2013) Graph Databases. O’Reilly, URL http://info.neotechnology.
com/rs/neotechnology/images/GraphDatabases.pdf

Smith BH, Weintraub ER, Franklin A, Pickering A, Guzik K (2008) The mangle in practice:
science, society, and becoming. Duke University Press, Durham/London

Spector L (2012) Assessment of problem modality by differential performance of lexicase
selection in genetic programming: a preliminary report. In: McClymont K, Keedwell E (eds)
1st workshop on understanding problems (GECCO-UP), ACM, Philadelphia, pp 401–408.
doi:10.1145/2330784.2330846, http://hampshire.edu/lspector/pubs/wk09p4-spector.pdf

Spector L, Helmuth T (2013) Uniform linear transformation with repair and alternation in genetic
programming. In: Riolo R, Moore JH, Kotanchek M (eds) Genetic programming theory and
practice XI. Genetic and Evolutionary Computation, chap 8. Springer, Ann Arbor, pp 137–153

Spector L, Robinson A (2002) Genetic programming and autoconstructive evolution
with the push programming language. Genet Program Evolvable Mach 3(1):7–40.
doi:10.1023/A:1014538503543, http://hampshire.edu/lspector/pubs/push-gpem-final.pdf

Spector L, Klein J, Keijzer M (2005) The push3 execution stack and the evolution of control. In:
GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation,
vol 2. ACM, Washington D.C., pp 1689–1696

Wikipedia (2015a) Graph database — Wikipedia, the free encyclopedia. http://en.wikipedia.org/
w/index.php?title=Graph_database&oldid=653752823. Accessed 28 March 2015, Online

Wikipedia (2015b) SPARQL — Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.
php?title=SPARQL&oldid=661970711. Accessed 8 June 2015, Online

http://www.jstor.org/stable/2781283
http://info.neotechnology.com/rs/neotechnology/images/GraphDatabases.pdf
http://info.neotechnology.com/rs/neotechnology/images/GraphDatabases.pdf
http://dx.doi.org/10.1145/2330784.2330846
http://hampshire.edu/lspector/pubs/wk09p4-spector.pdf
http://dx.doi.org/10.1023/A:1014538503543
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://en.wikipedia.org/w/index.php?title=Graph_database&oldid=653752823
http://en.wikipedia.org/w/index.php?title=Graph_database&oldid=653752823
http://en.wikipedia.org/w/index.php?title=SPARQL&oldid=661970711
http://en.wikipedia.org/w/index.php?title=SPARQL&oldid=661970711

Predicting Product Choice with Symbolic
Regression and Classification

Philip Truscott and Michael F. Korns

Abstract Market researchers often conduct surveys to measure how much value
consumers place on the various features of a product. The resulting data should
enable managers to combine these utility values in different ways to predict the
market share of a product with a new configuration of features. Researchers
assess the accuracy of these choice models by measuring the extent to which the
summed utilities can predict actual market shares when respondents choose from
sets of complete products. The current paper includes data from 201 consumers
who gave ratings to 18 cell phone features and then ranked eight complete cell
phones. A simple summing of the utility values predicted the correct product on
the ranking task for 22.8 % of respondents. Another accuracy measurement is to
compare the market shares for each product using the ranking task and the estimated
market shares based on summed utilities. This produced a mean absolute difference
between ranked and estimated market shares of 7.8 %. The current paper applied two
broad strategies to improve these prediction methods. Various evolutionary search
methods were used to classify the data for each respondent to predict one of eight
discrete choices. The fitness measure of the classification approach seeks to reduce
the Classification Error Percent (CEP) which minimizes the percent of incorrect
classifications. This produced a significantly better fit with the hit rate rising from
22.8 to 35.8 %. The mean absolute deviation between actual and estimated market
shares declined from 7.8 to 6.1 % (p. <0.01). A simple language specification will
be illustrated to define symbolic regression and classification searches.

Keywords Abstract regression grammars • Genetic algorithms • Symbolic
regression • Classification • Non-linear regression

P. Truscott (�)
Southwest Baptist University, Bolivar, MO 65613, USA
e-mail: ptruscott@sbuniv.edu

M.F. Korns
Analytic Research Foundation, 2240 Village Walk Drive Suite 2305, Henderson,
NV 89052, USA
e-mail: mkorns@korns.com

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_12

203

mailto:ptruscott@sbuniv.edu
mailto:mkorns@korns.com

204 P. Truscott and M.F. Korns

1 Introduction

Market research has a long history of attempting to evaluate the importance of
product features so that brand managers can predict the popularity of new feature
combinations. Some of these methods require respondents to consider a set of
products and place them into a rank ordering. Since these survey methods require
the respondents to assess all of a product’s features jointly the methodology has
been termed ‘Conjoint’(Green and Rao 1971). After the respondents have ranked
the complete configurations the utility values of the individual product features are
calculated using multinomial logit.

Another approach requires respondents to explain how much value they place
on each feature separately. This “self-explicated” approach generates utility values
directly (Marder 1997).

Both conjoint and self-explication methods then incorporate the utility values
into predictive models. The utilities are re-combined to play “what-if” games that
predict the market share of future product offerings. The most common technique
for assessing the accuracy of these choice models is to follow the conjoint or self-
explication survey task with a validation task. Often these validation tasks resemble
the process of using comparison-shopping Web sites. In “full profile” validation
tasks the entire feature matrix of the products are displayed so the interplay of
different feature combinations will be apparent in a way that is unlikely during non-
Internet purchasing. The validation task constructed for the current research only
displayed the brand and model number of each product and thus avoided “leading
the witness” by giving prominence to specific features.

The goal is to find a methodology that is able to predict a high proportion of the
top products in the validation task. A high “hit rate” substantiates the accuracy of a
given methodology.

Codd (1983) made a major contribution to the standardization of database
searches through the specification that came to be known as the Structured Query
Language (SQL). It is argued here that a standardization of evolutionary searches
would be similarly beneficial. For this reason, the following article illustrates
a parsimonious specification of four of the most common type of classification
searches: classification and regression trees (CART), neural networks, decision trees
and non-linear discriminant analysis.

2 The Experiment

For the current research, a self-explication survey collected data from 201 Indian
consumers. The specific form of rating has been termed the Un-bounded Write-in
Scale (UWS) because respondents may give rating numbers without upper or lower
limits (Marder 1997). A Web page tells them to click:

Predicting Product Choice with Symbolic Regression and Classification 205

Table 1 Illustrative mobile phone attributes

1. a plus sign button as many times as they want to show how much they like a
feature

2. a minus sign button as many times as they want to show how much they dislike
a feature

3. a zero button to indicate that they are neutral about a feature

The chief proponent of this methodology, Marder (1997), argues that the resultant
ratings are superior to bounded ratings because they lead to normal distributions.
Ratings scales, for example, that limit choices from one to ten often produce “cliff
distributions” where the values cluster at the minimum or maximum value. For the
current research respondents were required to evaluate 18 attributes of a mobile
phone. Table 1 shows three of the 18 attributes. As illustrated by Table 1 the
“attributes” of a product include both its physical features (for example screen size
and CPU speed) and non-physical qualities (such as its warrantee duration, price
category, and brand). The attributes did not all have the same number of levels. As
can be seen from Table 1 the screen size attribute had six levels, while price had only
five. To complete the Web based survey respondents were required to enter ratings
for every level of every attribute. The full list of attributes and levels is shown in
Appendix 1. After giving their ratings to the separate product features, respondents
saw a product-ranking screen. The lower left part of the screen contained a list of
eight mobile phones. The survey software randomized the list in a different way
for each respondent. The lower right hand side of the screen showed an empty list
which respondents were required to fill. They had to rank the eight products from
“least likely to buy” to “most likely to buy”. The software prevented respondents
from proceeding to the final screens until they had completed the ranking task. After
completing the survey, respondents were sent electronic money in the form of a 500
Indian Rupee electronic gift certificate.

3 Results from Utility Summation

The characteristics of the eight mobile phones were researched to find their actual
feature configurations. Appendix 2 shows the sources for the product feature
information. Table 2 shows implied market shares based on the two types of data

206 P. Truscott and M.F. Korns

Table 2 Market shares from direct choice task and utility summation

collected. The first row shows the number of products that achieved the highest
score based on summing the utilities for the 18 attributes of the various products.
Formula 1 below describes the scoring process that determines the market shares in
row 1 of Table 2.

PVpi D
amaxX

aD1

Uai � Fap (1)

In formula 1 above, Uai is the utility value of the ith respondent for the ath
attribute level. Fap represents a matrix describing the configuration of a specific
product. It contains Boolean (0,1) values that indicate which level of a given attribute
a product has. To take the example of our mobile phone survey, if the largest screen
size takes the value ‘1’ and the iPhone has this screen size then it will take the value
‘1’ for this level and all other levels of the screen size attribute will be zero. Fap is
the presence of feature F for the attribute-level a for product p. The total product
value, PVpi, is the sum of a product’s utilities for the ith respondent for product p
(given the feature configuration Fp).

Row 2 of Table 2 shows the proportion of respondents who put each of the
products at the top of the list in the ‘probability to purchase’ ranking task. The
mean absolute deviation between the estimated and direct choice markets shares
was 7.8 %. The summed utility method predicted the top ranked products for 22.8 %
of the respondents (a proportion commonly called the ‘hit rate ’in market research
literature).

4 Fitness Measures and Classification Problems

For non-logit regression models, predicted values are continuous variables. The
evolutionary search process results in sets of such variables that minimize the error
between their predicted values and those of the dependent variable. For classification
searches, the predicted values are categorical variables. The predicted values for our

Predicting Product Choice with Symbolic Regression and Classification 207

product search process are discrete categorical values between one and eight that
represent one of the eight products.

The classification search required a suitable database of training data. The 18
utility scores were the independent variables. Each of the 201 respondents had eight
sets of utility scores to represent the eight products in the ranking task. For each
person the eight rows of product data were based on:

1. the utility score the respondent gave to each of the 18 attributes
2. the specific utility value that was relevant to each product’s feature configuration

The evolutionary search was conducted using Abstract Regression Classification
(ARC) software (Korns 2011, 2007, 2010). The dependent variable was the rank
order number of the eight products where the number zero represented the product
the respondents were least likely to buy and seven was the product they were most
likely to buy.

The data in Table 2 GPTP appears to be an ideal candidate for a classification:
GPTP search. The independent variables are 18 product feature utilities for each
of the eight products. The dependent variables are eight discrete values that
represent one of the eight products. This requires a fitness measure to replace
the Normalized Least Squares Error (NLSE) commonly used in regression models
where the dependent variable is a quantitative variable. For this reason, the current
classification search used ARC’s Classification Error Percent (CEP) fitness measure.
This minimizes the percent of observations where the prediction was not an exact
match.

5 The Select() Command

Since the classification search requires a prediction in the form of discrete values,
several of the goal specifications below needed a command to constrain predicted
values to be in this form. For this reason a select() command was used to transform
continuous results into one of eight values representing one of the eight products.
The following example illustrates the use of the select command. The neuralnet
command (described below) can be specified to produce a certain number of outputs.
In the illustrative command below the final numeric parameter (the number 8)
specifies that the neuralnet goal will have eight outputs.

neuralnet(0,18,4,8,n)

In order to constrain this goal to produce a discrete value between one and eight
it was embedded within a select command as follows:

select(neuralnet(0,18,4,8,n))

The select() command will analyze the vector of eight output values and return
the position of the highest value. The resulting value was an integer from one to
eight.

208 P. Truscott and M.F. Korns

6 Training and Testing Data

Initial training runs used data for all respondents, however this meant using the
records for those products that received a lower (2nd and below) choice rankings.
This process resulted in fitness scores close to a level that would be produced by
chance. Since classification models could expect to produce random hits 12.5 % of
the time, CEP error levels close to 87.5 % were similar to the results of chance.

An alternative search strategy involved using only the data records for the top
ranked products during the training stage, but then applying the resulting model
to the full data set during testing. This procedure was followed in the searches
described below.

7 A Decision Tree Search

A form of decision tree searching is described in Breiman et al. (1984) where the
predicted outcome variable is a category. This form of their search process has been
termed a classification tree (as distinction from a regression tree described below).
A tree search can be specified in ARC using the ‘tree’ code-expression generator in
the following form:

tree(categories, node-depth, tree-depth, c |v |f)

The final parameter takes the following values:

1. ‘c’ signifies that there is a constant at the decision node
2. ‘v’ signifies that there is an abstract variable at the decision node
3. ‘f’ signifies that there is a function at the decision node

In the case of our cell phone search task the goal was specified as follows:

model(tree(8,2,3,f))

Thus, eight categories were specified. The node-depth was two. The tree depth
was three and functions were at the decision node. After running for 3 h and
evaluating 142,000 formulas, the champion formula produced the data in Table 3.
In terms of the metrics used by the market research industry, the product hit rate
worsened from 22.8 % under summed utilities to only 2.2 %. The Mean Absolute
Deviation between actual and estimated choice shares also deteriorated from 7.8 to
21.4 %.

Predicting Product Choice with Symbolic Regression and Classification 209

Table 3 Market shares from direct choice task and a decision tree search

8 A Non-Linear Discriminant Analysis (NLDA) Search

The next evolutionary search involved Linear Discriminant Analysis (LDA). Since
this search was conducted at a node-depth of two (see below) this was technically
Non-Linear Discriminant Analysis (NLDA). The ‘net’ code-expression generator
for LDS searches takes the following form:

net(node-depth, inputs, outputs, x |v, n |h |s)

The penultimate parameter was introduced to handle extremely large numbers of
input variables. Its two values have the following meanings:

1. ‘x’ signifies concrete features (when there are fewer than 250 independent
variables)

2. ‘v’ signifies abstract variables (when there are more than 250 independent
variables)

The final parameter allows the user to constrain the output to be in one of three
forms:

1. ‘n’ signifies ‘no operator’ (results unconstrained)
2. ‘h’ signifies hyperbolic tangent (results in the range �1 to C1)
3. ‘s’ signifies sigmoid (results in the range 0 to 1)

The specific goal for the product search was:

select(net(2,18,8,x,n))

Two represented the node-depth. The 18 utility scores were the inputs, and the
eight outputs corresponded to the eight product choices. The ‘x’ parameter implies
concrete features rather than abstract variables. The final parameter indicates the
output values were unconstrained but since the select command was wrapped around
the goal specification, the outputs were constrained to be in the range of 1–8. After
24,000 well-formed formulas, the NLDA search produced a champion on the testing
data with a CEP error of 92 % (Table 4).

210 P. Truscott and M.F. Korns

Table 4 Market shares from direct choice task and non-linear discriminant analysis

Table 5 Market shares from direct choice task and weighted search

9 A Weighted Search

The weighted() command differs from the net() command above in that it does not
guarantee coverage of all the features. The net() command guarantees coverage
due to the deterministic nature of the search. Due to this determinism, all the
independent variables must be included in every evolution of the formula. The
general form of the weighted code-expression generator is:

Weighted (node-depth, base-functions, n |h |s)

The final parameter has the same meanings as described above under the LDA
search section. The specific form of the weighted search used for the mobile phone
search was:

model(select(weighted(5,8,s)))

This implied a node-depth of five, eight base functions and outputs constrained
to be in sigmoid form. After evaluating 23,000 formulas this search produced the
champion associated with Table 5. Compared to the NLDA search the hit rate and
the difference between actual and estimated choice shares improved. However, both
were still worse than the simple process of summing utilities shown in Table 2. The
champion model had a CEP error of 48 %.

Predicting Product Choice with Symbolic Regression and Classification 211

Table 6 Market shares from direct choice task and neural net search

10 An Artificial Neural Network (ANN) Search

McCulloch and Pitts (1943) proposed that neural events and relationships could
be represented by propositional logic. Since then various algorithms have been
proposed to mimic neural activity that fall into the class of Artificial Neural
Networks (ANN).

ARC’s neural net code-generator can create a classification goal as follows:

neuralnet(node-depth, inputs, hidden, outputs, x |v, n |h |s)

The penultimate parameter (x |v) has the same meaning as in the case of the LDA
search above. The final parameter values (n |h |s) have the same meanings as they
do in LDA goal specification. The specific form of the goal for the product search
was:

select(neuralnet(0,18,4,8,n))

This indicates a node-depth of zero. The 18 inputs were the 18 product feature
utility variables. There were four hidden layers. Eight output values represented the
eight product choices. The select command wrapped around this goal constrained
these outputs to be integers from one to eight.

After evaluating 11,000 formulas this goal produced the champion with the
results shown in Table 6. This champion had a CEP error of 44 %. ARC allows
for a search based on the Classification and Regression Tree technique described by
Breiman et al. (1984). The general form of the goal specification is:

cart(node-depth, tree-depth, c |v |f)

The final parameter takes the following values:

1. ‘c’ signifies that there is a constant at the decision node
2. ‘v’ signifies that there is an abstract variable at the decision node
3. ‘f’ signifies that there is a function at the decision node

The specific goal for our product classification search was:

model(cart(2,3,c))

212 P. Truscott and M.F. Korns

Table 7 Market shares from direct choice task and CART search

This the goal specified a node-depth of 2 at the leaf level, a tree-depth of 3 and
constants at the decision node. Since the select command was not used, the results
are not constrained to be continuous values. This goal produced a regression model
with a continuous variable as its predicted values.

The CART search evaluated 988,000 formulas. Its training score is not compara-
ble to the fitness percentages above because the output from CART is a regression
formula rather than a category. Its error of 97 % appears to be larger than the fitness
percent errors quoted above but it produced the best metrics in terms of hit rate and
mean absolute deviation between actual and estimated choice shares.

It is interesting to note that the hit rate is an improvement on that based on
summed utilities in Table 2 but the Mean Absolute Deviation is worse (Table 7).

11 An NLSE Search

The favorable hit rate from the CART search suggested the possibility of using a
regression model search rather than classification. Normalized Least Squares Error
(NLSE) was chosen as the fitness measure. For any given respondent the full data set
was used in training (the winning products and the lower ranked products) because
all rankings were considered to have information value in the NLSE search process.

ARC’s universal code-expression generator has the following general format:

universal(node-depth, base-functions, v |t)

The first parameter specifies the grammar depth of the expression allowed. The
second parameter specifies the number of base functions. The final parameter has
the following meanings:

1. ‘v’ means only variables may compose the base functions
2. ‘t’ means variables or constants may compose the base functions

The specific goal for the mobile phone search was defined as follows:

regress(universal(1,14,v))

Predicting Product Choice with Symbolic Regression and Classification 213

Table 8 Market shares from direct choice task and NLSE search

This specified a grammar depth of one, 14 basis functions, and only variables
within them. After various combinations of operators and evolution durations no
champion model improved on the summed utility approach in Table 2.

It was not clear how best to balance the importance of the winning product and
the lower ranked products. Since market shares depend only on a person’s top-
ranked product, it was attractive to privilege them in the search process. However,
the lower ranked products represented seven eighths of all the available data. A
hybrid approach was selected. The dependent variable was squared. Since the top
ranked product had the highest value this meant its ranking had more importance
but the data from the lower ranked products was retained. This eventually produced
a champion that improved on both the hit rate and the mean absolute deviation
between the actual and estimated choice shares. Table 8 shows the results of this
champion. The Table 8 results show that the hit rate increased from 22.8 to 35.8 %
and the mean absolute deviation fell from 7.8 to 6.1 %. The Bowker-McNemar test
is a variation on the Chi-square test where the same respondents are measured twice.
This test indicated that the NLSE champion formula not only produced improved
results but that they were different from the summed utility results (p. <0.01).

The special circumstances of product choice modeling imply that the ideal search
evolutionary search process would involve a customized fitness measure, which
progressively decreases the mean absolute deviation between actual and estimated
choice shares.

12 Summary

Given that the cell phone data involved eight discrete choices, it was logical to
assume that a predictive model could follow a classification approach. It is inter-
esting to note, that the same training data format could be used for a wide variety
of different classification search strategies. CART, decision tree learning, neural
nets, non-linear discriminant analysis and it non-deterministic variant ‘weighted()’.
Code-generators allowed these searches to be undertaken with minimal effort to
specify each search goal.

214 P. Truscott and M.F. Korns

Ultimately, the product prediction process was improved by a regression
approach using least squares rather than classification error as the fitness measure.
Even though classification proved not to win the hunt, the ease with which hunters
can use different sets of dogs must be counted as one of ARC’s strengths. This
should be counted as an argument for the standardization of regression and
classification search languages so that this flexibility becomes commonplace.

Appendix 1: Questionnaire Text

1. Operating system

a. Android
b. Symbian
c. Windows
d. Blackberry
e. iOS (iPhone OS)

2. Screen size

a. Less than 3 in.
b. 3.0–3.4 in.
c. 3.5–3.9 in.
d. 4.0–4.4 in.
e. 4.5–4.9 in.
f. 5 in. and over

3. Camera memory

a. Below 2 megapixels
b. 2–4.9 megapixels
c. 5–7.9 megapixels
d. 8 Megapixels and above

4. Memory

a. Below 8 GB
b. 8–15.9 GB
c. 16–31.9 GB
d. 32–63.9 GB
e. 64 GB or more

5. Talk time

a. Less than 6 h
b. 6–11 h
c. 12–23 h
d. 24–35 h
e. 36 h or more

Predicting Product Choice with Symbolic Regression and Classification 215

6. Stand by time

a. Under 50 h
b. 50–99 h
c. 100–199 h
d. 200–299 h
e. 300 h or more

7. Price

a. 5000 Rs or less
b. 5001–10,000 Rs
c. 10,001–18,000 Rs
d. 18,001–35,000 Rs
e. 35,001 Rs and above

8. Phone thickness

a. Less than 6 mm
b. 6–7 mm
c. 8–9 mm
d. 10–11 mm
e. 12 mm or more

9. CPU speed

a. 1 GHz or less
b. 1.0–1.3 GHz
c. 1.4–1.5 GHz
d. 1.6–1.9 GHz
e. 2.0 GHz or more

10. Warranty length

a. Free repairs for 6 months
b. Free repairs for 1 year
c. Free repairs for 1.5 years
d. Free repairs for 2 years
e. Free repairs for 2.5 years

11. GPS

a. Has GPS
b. No GPS

12. Wi-Fi

a. Has Wi-Fi
b. No Wi-Fi

216 P. Truscott and M.F. Korns

13. Touchscreen

a. Has a touchscreen
b. No touchscreen

14. SIM format

a. Single SIM
b. Dual SIM

15. 3G

a. Has 3G connectivity
b. No 3G connectivity

16. Qwerty keyboard

a. Has a QWERTY keyboard
b. No QWERTY keyboard

17. Brand impression

a. Apple
b. Samsung
c. Blackberry
d. XOLO
e. Spice
f. Micromax
g. Nokia
h. Lava

Appendix 2: Sources of Feature Data

All feature data for the eight mobile phones were drawn from www.Flipkart.com
on September 26th, 2013 except the following items that were missing from the
Flipkart comparison screens.

For the iPhone 5 with 32 GB, data was missing for the CPU speed attribute. This
was taken from www.GSMArena.com on September 26th 2013.

For the Samsung Galaxy Note 2, data was missing for the talk-time and standby
time attributes. This was taken from www.GSMArena.com on September 26th
2013.

For the Blackberry Curve 9220, data was missing for the GPS attribute. This
was taken from www.GSMArena.com on September 26th 2013. The CPU speed
attribute was missing from both these sources. It was taken from asia.cnet.com on
September 26th 2013.

For the XOLO Q1000, data was missing for the GPS attribute. This was taken
from www.GSMArena.com on September 26th 2013.

www.Flipkart.com
www.GSMArena.com
www.GSMArena.com
www.GSMArena.com
www.GSMArena.com

Predicting Product Choice with Symbolic Regression and Classification 217

For the Spice MI-495, data was missing for the USB connection attribute.
This was taken from www.GSMArena.com on September 26th 2013. The phone
thickness attribute was missing from both these sources. It was taken from
comapareindia.in.com on November 5th 2013.

For the Micromax Canvas 4 A210, data was missing for the GPS attribute. This
was taken from www.GSMArena.com on September 26th 2013.

For the Lava Iris 504Q, data was missing for the GPS attribute. It was taken from
comapareindia.in.com on November 5th 2013.

References

Breiman L, Friedman J, RAOlshen, Stone C (1984) Classification and regression trees. Wadsworth
and Brooks, Pacific Grove

Codd EF (1983) A relational model of data for large shared data banks. Commun ACM 26(1):
64–69

Green PE, Rao V (1971) Conjoint measurement for quantifying judgmental data. J Mark Res
8(3):355–363

Korns MF (2007) Large-scale, time-constrained symbolic regression-classification. In: Riolo RL,
Soule T, Worzel B (eds) Genetic programming theory and practice V. Genetic and evolutionary
computation, chap 4. Springer, Ann Arbor, pp 53–68. doi:doi:10.1007/978-0-387-76308-8_4

Korns MF (2010) Abstract expression grammar symbolic regression. In: Riolo R, McConaghy T,
Vladislavleva E (eds) Genetic programming theory and practice VIII. Genetic and Evolutionary
Computation, vol 8, chap 7. Springer, Ann Arbor, pp 109–128. http://www.springer.com/
computer/ai/book/978-1-4419-7746-5

Korns MF (2011) Accuracy in symbolic regression. In: Riolo R, Vladislavleva E, Moore JH (eds)
Genetic programming theory and practice IX. Genetic and evolutionary computation, chap 8.
Springer, Ann Arbor, pp 129–151. doi:doi:10.1007/978-1-4614-1770-5_8

Marder E (1997) The laws of choice: predicting customer behavior. The Free Press, New York
McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull

Math Biophys 5(4):115–133

www.GSMArena.com
comapareindia.in.com
www.GSMArena.com
doi:10.1007/978-0-387-76308-8_4
http://www.springer.com/computer/ai/book/978-1-4419-7746-5
http://www.springer.com/computer/ai/book/978-1-4419-7746-5
doi:10.1007/978-1-4614-1770-5_8

Multiclass Classification Through
Multidimensional Clustering

Sara Silva, Luis Muñoz, Leonardo Trujillo, Vijay Ingalalli, Mauro Castelli,
and Leonardo Vanneschi

Abstract Classification is one of the most important machine learning tasks in
science and engineering. However, it can be a difficult task, in particular when a
high number of classes is involved. Genetic Programming, despite its recognized
successfulness in so many different domains, is one of the machine learning
methods that typically struggles, and often fails, to provide accurate solutions for
multiclass classification problems. We present a novel algorithm for tree based GP
that incorporates some ideas on the representation of the solution space in higher
dimensions, and can be generalized to other types of GP. We test three variants
of this new approach on a large set of benchmark problems from several different
sources, and observe their competitiveness against the most successful state-of-the-
art classifiers like Random Forests, Random Subspaces and Multilayer Perceptron.

Keywords Classification • Multiple classes • Clustering

1 Introduction

In the last two decades, Genetic Programming (GP) (Koza 1992) has established
itself as a solid research field, not only because of the numerous practical successes
that have been reported in many different application domains (Poli et al. 2008; Koza
2010) but also due to the strengthening of its theoretical foundations (Langdon and
Poli 2002).

S. Silva (�)
Faculty of Sciences, BioISI – Biosystems & Integrative Sciences Institute, University
of Lisbon, Lisbon, Portugal
e-mail: sara@fc.ul.pt

L. Muñoz • L. Trujillo
Tree-Lab, Posgrado en Ciencias de la Ingeniería, Instituto Tecnológico de Tijuana, Blvd.
Industrial y Av. ITR Tijuana S/N, Mesa Otay C.P. 22500, Tijuana, B.C., Mexico

V. Ingalalli
LIRMM, Montpellier, France

M. Castelli • L. Vanneschi
NOVA IMS, Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_13

219

mailto:sara@fc.ul.pt

220 S. Silva et al.

Probably the most straightforward formulation for a GP search is to apply it in
supervised machine learning problems, particularly symbolic regression and data
classification. In general, for a supervised classification problem some pattern x 2
R

p has to be classified in one of M classes !1; : : :; !M using a training set X of
N p-dimensional patterns with a known class label. Then, the goal is to build a
mapping g.x/ W Rp ! M, that assigns each pattern x to a corresponding class !i,
where g is derived based on the evidence provided by X . In these problems fitness
is usually assigned in two general ways. One approach is to use a wrapper method,
where GP is used as a feature extraction method that performs the transformation
k.x/ W R

p ! R
d, and then another classifier is used to measure the quality of

the transformation based on accuracy or another performance measure. The second
approach is to use GP to evolve g directly, performing the feature transformation
step implicitly.

However, various references report on the poor performance of GP in multiclass
classification (i.e., where M > 2) when compared to other state-of-the-art classifiers
(see for instance Castelli et al. 2013). Very recently, we have introduced a novel
method in Ingalalli et al. (2014), and an improved variant in Muñoz et al. (2015),
which has finally allowed GP to be considered as a competitive option for multiclass
classification. The current work summarizes these two previous contributions, and
introduces yet another variant of the method, reporting comparative results between
the three of them, and also putting them against the most popular state-of-the-art
classification methods.

The remainder of this chapter is organized as follows. Section 2 describes the
state-of-the-art of multiclass classification with GP that is related to the work
presented here. Sections 3–5 describe the three variants of the novel method
mentioned above, called M2GP, M3GP and eM3GP, respectively. Section 6 specifies
the data set, tools and parameters used to perform the experiments. Section 7
reports and discusses the results achieved by each of the three variants, comparing
them between each other and with the state-of-the-art classifiers. Finally, Sect. 8
concludes and proposes the future directions for this work.

2 Related Work

Espejo et al. (2010) present a comprehensive discussion on GP-based classification
methods. Here we outline several GP methods that have been proposed in order to
specifically tackle multiclass classification problems.

Several works (Bojarczuk et al. 2000; Sakprasat and Sinclair 2007; Shen et al.
2003; Falco et al. 2002; Tan et al. 2002) in this area are based on a common and
straightforward approach that consists in evolving a single rule in each GP run. In
particular, c runs are performed for a c-class classification problem. In this way,
the final classifier has a single rule for each class. All these works evolve multiple
comprehensible IF-THEN classification rules.

Multiclass Classification Through Multidimensional Clustering 221

However, the focus of this short literature review is on another common
approach, which consists in evolving a discriminant function. In this case the two
main approaches are (1) range selection methods and (2) binary decomposition
methods. Range selection methods are applicable to GP classifiers that output
numerical values. The method works by declaring c � 1 thresholds for c-class
classification problems. To select optimal thresholds, several mechanisms have been
proposed, including static thresholds selection (Tackett 1993; Zhang and Ciesielski
1999), dynamic thresholds (Zhang and Smart 2004; Li et al. 2007) and slotted
thresholds (Zhang and Smart 2004).

In binary decomposition methods, one classifier is trained to recognize samples
belonging to a particular class and reject all other samples. This results in c
classifiers for a c-class classification problem. A well-known drawback of this
approach is related to the fact that the multiple classifiers may result in conflicts,
whose number usually grows up proportionally to the number of classes. Hence,
this approach produces an increased classification error as the number of classes
gets larger. Binary decomposition methods have been explored in Kishore et al.
(2000), Silva and Tseng (2008), Lin et al. (2008). The two approaches for multiclass
classification, constructing a single classification function or c binary classifiers, are
compared in Teredesai and Govindaraju (2004), by considering a hand-written digit
recognition problem. As reported in Espejo et al. (2010), when a single function
is evolved, able to discriminate all the classes, the function directly outputs the
numeric value of the predicted class, since each class is an integer digit. In both
cases, the fitness function is based on classification accuracy.

In Muni et al. (2004) the authors proposed a GP-based approach to multiclass
classification in which each individual is a multitree structure made of c trees, where
c is the number of classes. Each of these c trees (T1; � � � ; Tc) encodes a threshold
function for a particular class. The system considers that a data instance x belonging
to class i is correctly classified if Ti.x/ � 0 and Tj.x/ < 0, for all j ¤ i. The fitness
function is computed as the classification accuracy. A similar system evolving a
multiple-threshold discriminant function is described in Winkler et al. (2007), where
a fitness function based on the sum of squared errors is employed.

One of the most recent contributions of GP for multiclass classification is found
in Jabeen and Baig (2013). In this work, the authors propose a two-stage strategy for
multiclass classification problems, which is an improvement of a traditional binary
decomposition method.

Finally, we briefly address two previous works that present a similar goal to our
own, highlighting the main differences to the present contribution.

Lin et al. (2007) proposed a layered multipopulation approach, where each
layer has d populations, and each population produces a single transformation
k.x/ W Rp ! R, and classification is performed based on a threshold. While each
population is evaluated independently, all of them are combined to generate new
feature vectors of dimension d, which are given as input to a new layer, and only the
final layer has a single population with d D 1. For multiclass problems an Euclidean
distance classifier was used and results show the method improves the search
efficiency and reduces training time. However, the approach does not improve upon

222 S. Silva et al.

the performance of a standard GP classifier, it is not tested on problems with many
classes (highest is M D 3), and it requires an a priori setting for the number of layers
and populations used in each layer.

Another, more closely related work, is the one presented by Zhang and Rockett
(2009), who propose a multidimensional feature extraction method that uses a
similar solution representation to the one used in the present contribution. However,
the authors set a fixed limit on the maximum number of feature dimensions, set to
d D 50, and initialize the population with trees that use different number of features
within this range. Other important difference is that the authors use a multiobjective
search process considering class separation and solution size, and do not explicitly
consider multiclass problems, instead relying on a hierarchical nesting of binary
classifiers.

3 M2GP: Multidimensional Multiclass GP

The basic idea of M2GP (originally presented in Ingalalli et al. 2014) is to find a
transformation, such that the transformed data of each class can be grouped into
unique clusters. In M2GP the number of dimensions in which the clustering is
performed is completely independent from the number of classes, such that high
dimensional datasets may be easily classified by a low dimensional clustering, while
low dimensional datasets may be better classified by a high dimensional clustering.

In order to achieve this, M2GP uses a representation for the solutions that allows
them to perform the mapping k.x/ W Rp ! R

d. The representation is basically the
same used for regular tree-based GP, except that the root node of the tree exists
only to define the number of dimensions d of the new space. Each branch stemming
directly from the root performs the mapping in one of the d dimensions. The genetic
operators are the regular subtree crossover and mutation, except that the root is never
chosen as the crossing or mutation node. However, the truly specialized element of
M2GP is the fitness function. Each individual is evaluated in the following way:

1. All the p-dimensional samples of the training set are mapped into the new
d-dimensional space (each branch of the tree is one of the d dimensions).

2. On this new space, for each of the M classes in the data, the covariance matrix
and the cluster centroid is calculated from the samples belonging to that class.

3. The Mahalanobis distance between each sample and each of the M centroids is
calculated. Each sample is assigned the class whose centroid is closer. Fitness is
the accuracy of this classification (the percentage of samples correctly classified).

Figure 1 shows an example of clustering of a dataset. The original data, regardless
of how many features, or attributes, it contains, is mapped into a new 3-dimensional
space by a tree whose root note has three branches, each performing the mapping on
each of the three axes X, Y, Z. The fact that the data contains three classes is purely
coincidental—it could contain any number of classes, regardless of the dimension
of the space. On the left, the clustering was obtained by an individual with low
accuracy; on the right, the same data clustered by an individual with accuracy close
to 100 %. The class centroids are marked with large circles.

Multiclass Classification Through Multidimensional Clustering 223

−1.5
−1
−0.5

0
0.5

1
x 109

−16 −14 −12 −10 −8 −6 −4 −2

x 105

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

x 106

Z

YX
−3 −2.5 −2 −1.5 −1 −0.5 0

15

20

25

30
140

150

160

170

180

190

200

210

220

Z

Y
X

Fig. 1 Example of clustering of a dataset. On the left, clustering obtained by an individual with
low accuracy; on the right, the same data clustered by an individual with very high accuracy. The
large circles represent the centroids

At the end of the run, the solution given to the user is composed not only of the
tree of the best individual, but also of the respective covariance matrices and cluster
centroids. In order to classify unseen data, M2GP uses the tree to map the new
samples into the new space, and then uses the covariance matrices and the cluster
centroids in order to determine the minimum Mahalanobis distance between each
sample and each centroid. (Note that the covariance matrices and cluster centroids
are not recalculated when classifying new data.)

The choice of the Mahalanobis distance instead of the Euclidean distance is not
an unnecessary complication of the algorithm. Preliminary results have consistently
shown that the distance measure indeed plays a significant role in the performance
of M2GP, especially in the higher dimensional solution spaces. Unlike the Euclidean
distance, the Mahalanobis distance not only is able to capture the physical distance
between the sample and the class clustered data sets, but also considers the statistical
correlation between them, thereby reasserting the work of Shiming Xiang and Zhang
(2008).

However, M2GP suffers from a drawback: how to choose the right number
of dimensions for a given problem? M2GP is incapable of adding or removing
dimensions during the evolution, so the number of dimensions d is fixed in the
beginning of each run. M2GP chooses d based on the observation that the best
fitness found on the initial generation is highly correlated with the best fitness
found on the final generation (Ingalalli et al. 2014). Therefore, before initiating a
run, M2GP runs a procedure that iteratively initializes different populations with
increasing dimensions (we mean the dimension d mentioned earlier, not the number
of individuals in the population) and checks which of these initial populations has
the best fitness. Starting with d D 1, this procedure adds one more dimension and
initializes one more population as long as the best fitness continues to improve from
the previous population. As soon as adding one more dimension degrades the fitness,
the procedure stops and the dimension yielding the best fitness is chosen.

224 S. Silva et al.

4 M3GP: M2GP with Multidimensional Populations

As described in the previous section, the original M2GP uses a greedy approach
to determine how many dimensions the evolved solutions should have. It may
happen that by fixing the number of dimensions in the beginning of the run,
the algorithm is being kept from finding better solutions during the search, ones
that may use a different number of dimensions. Therefore, the newer algorithm
(originally presented in Muñoz et al. 2015) evolves a population that may contain
individuals of several different dimensions. It is called M3GP, which stands for
M2GP with multidimensional populations. The genetic operators may add or
remove dimensions, and it is assumed that selection will be sufficient to discard
the worst ones and maintain the best ones in the population. The next paragraphs
describe specific relevant aspects of M3GP.

4.1 Initial Population

M3GP starts the evolution with a random population where all the individuals
have only one dimension. This ensures that the evolutionary search begins looking
for simple, one dimensional solutions, before moving towards higher dimensional
solutions, which might also be more complex.

For M2GP, a Ramped Half-and-Half initialization (Koza 1992) skewed to 25 %
Grow and 75 % Full was recommended by Ingalalli et al. (2014), suggesting that a
higher proportion of full trees facilitates the initial evolution. Because all the initial
M3GP individuals are unidimensional, it makes sense to believe that the need
for bigger initial trees is even higher. Therefore, all the individuals in the initial
M3GP population are created using the Full initialization method (Koza 1992).
Additionally to the Full initialization, there was also an attempt to use deeper
initial trees of depth 9 instead of 6. However, preliminary results did not show any
improvement, and therefore the traditional initial depth of 6 levels was used.

4.2 Mutation

During the breeding phase, whenever mutation is the chosen genetic operator, one
of three actions is performed, with equal probability: (1) standard subtree mutation,
where a randomly created new tree replaces a randomly chosen branch (excluding
the root node) of the parent tree; (2) adding a randomly created new tree as a new
branch of the root node, effectively adding one dimension to the parent tree; and (3)
randomly removing a complete branch of the root node, effectively removing one
dimension from the parent tree.

Multiclass Classification Through Multidimensional Clustering 225

As mentioned previously, M3GP begins with a population that only contains
unidimensional individuals. From here, the algorithm has to be able to explore
several different dimensions. In M3GP mutation is the only way of adding and
removing dimensions, and therefore we have increased its probability of occurrence
from 0.1 (used by M2GP in Ingalalli et al. 2014) to 0.5, to guarantee a proper search
for the right dimension. Preliminary results have confirmed that a higher mutation
rate indeed improves the fitness.

4.3 Crossover

Whenever crossover is chosen, one of two actions is performed, with equal
probability: (1) standard subtree crossover, where a random node (excluding the
root node) is chosen in each of the parents, and the respective branches swapped;
(2) swapping of dimensions, where a random complete branch of the root node
is chosen in each parent, and swapped between each other, effectively swapping
dimensions between the parents. The second event is just a particular case of the
first, where the crossing nodes are guaranteed to be directly connected to the root
node.

4.4 Pruning

Mutation, as described above, makes it easy for M3GP to add dimensions to the
solutions. However, many times some of the dimensions actually degrade the fitness
of the individual, so they would be better removed. Mutation can also remove
dimensions but, as described above, it does so randomly and blind to fitness. To
maintain the simplicity and complete stochasticity of the genetic operators, we have
decided not to make any of them more ‘intelligent’, and instead we remove the
detrimental dimensions by pruning the best individual after the breeding phase.

The pruning procedure removes the first dimension and reevaluates the tree. If
the fitness improves, the pruned tree replaces the original and goes through pruning
of the next dimension. Otherwise, the pruned tree is discarded and the original tree
goes through pruning of the next dimension. The procedure stops after pruning the
last dimension.

Pruning is applied only to the best individual in each generation. Applying it to all
the individuals in the population could pose two problems: (1) a significantly higher
computational demand, where a considerable amount of effort would be spent
on individuals that would still be unfit after pruning; (2) although not confirmed,
the danger of causing premature convergence due to excessive removal of genetic
material, the same way that code editing has shown to cause it (Haynes 1998).

226 S. Silva et al.

Preliminary experiments have revealed that pruning the best individual of each
generation shifts the distribution of the number of dimensions to lower values (or
prevents it from shifting to higher values so easily) during the evolution, without
harming fitness.

4.5 Elitism

It was mentioned earlier that, in order to explore solutions of different dimensions,
M3GP relies on mutation to add and remove dimensions from the individuals, with a
fairly high probability. It also has to rely on selection to keep the best dimensions in
the population and discard the worst ones. The way to do this is by ensuring some
elitism on the survival of the individuals from one generation to the next. M3GP
does not allow the best individual of any generation to be lost, and always copies it
to the next generation. Let us recall that this individual is already optimized in the
sense that it went through pruning. Preliminary experiments have shown that elitism
is indeed able to improve fitness.

5 eM3GP: M3GP Ensemble Classifier

M3GP assumes that a single transformation will simplify the classification problem
for all the classes. However, this may not be the case. It may happen that the
optimal data transformation is in fact class dependent, i.e., different data clusters
require transformations that change the geometrical distribution of the data points
in specialized ways.

Another problem with M3GP seems to be the automatically chosen number
of dimensions. In most problems, the number of dimensions used by M3GP is
much larger than what M2GP uses, even when the performance on the test set is
statistically equivalent (see Table 3 in Sect. 7.2). For instance, a notorious example
is the WAV dataset, where the median test accuracy is almost the same for M2GP
and M3GP (84.9 and 84.3, respectively) but the median number of dimensions used
in the population is quite different (5 and 31, respectively). This suggests that M3GP
may be suffering from bloat at the dimension level.

Finally, like many other classifiers, M3GP appears to suffer from overfitting, and
is negatively affected by class imbalance, two issues that need to be addressed in
real-world scenarios.

To address these issues, we propose an ensemble method called ensemble M3GP,
or simply eM3GP, whereby classification is done using M different transformations,
one for each class in an multiclass problem with M classes. The proposed eM3GP
uses basically the same methods and representation scheme as M3GP, with the
following enhancements.

Multiclass Classification Through Multidimensional Clustering 227

Specialized class transformations

New set of specialized class transformations

Class 1 Class 2 Class 3 Class n

Class 1 Class 2 Class 3 Class n

True Positive
False Positive

True Positive
False Positive

49

49

20
35

31 32

23

18

011

11 10 0

14
41

New evaluated Tree
Looking for

improvement in
new trees

Fig. 2 Identification of the best transformation for each class based on true and false positives

1. Specialized class transformations: First, we are interested in identifying the
best transformation k0i for each class !i, and building a set of specialized
class transformations S D .k01; : : :; k0M/. At the beginning of the search, when
the first individual is evaluated, M copies are stored in S. For all subsequent
transformations evolved during the search, we compute the number of True
Positives (TP) and False Positives (FP) it produces for each class. If at least one
of these numbers improves (TP gets higher or FP gets lower) and neither value
deteriorates relative to k0i , then the new tree replaces k0i within S. This is done for
every individual evaluated during the run—see Fig. 2 for an illustration of this
process.

2. Ensemble classifier: Our proposal builds an ensemble E D .e1; : : :; eM/ of trans-
formations for each new individual k, by combining k with the transformations
stored in S. Each ei represents a d-dimensional transformation, such that given a
data point x the ei transformation is used to compute the distance to the i-th class
cluster. After computing the distance to each class cluster, the minimum distance
determines the class label assigned.

3. Ensemble construction: One possible approach is to use S as an ensemble,
however preliminary tests using this approach have shown a substantial decrease
in test performance. Therefore, an ensemble E is constructed for each individual
tree k and used to assign fitness. First, every element ei in the ensemble is
set equal to k, i.e., ei D k for all i. Then, the accuracy of E is computed.
Afterwards, in a random order we replace each ei by its corresponding specialized

228 S. Silva et al.

Specialized class transformations Evaluated Tree

Overall Accuracy
This is equivelent to

M3GP57%

46%

61%

68% Final
Ensemble

Only if fitness
improves the

change is keept

Fig. 3 Ensemble construction to build the individual

transformation k0i in S, i.e., ei D k0i . After each replacement, we compute the
accuracy of the ensemble E. If the accuracy improves then the change is kept,
otherwise it is reversed. The process is depicted in Fig. 3.

There are several comments to be made regarding the proposed algorithm. First,
specialized class transformations are chosen based on the performance achieved on
each class, attempting to find improvements in terms of both TP and FP. These
criteria provide a robust estimate of performance on a class by class basis, however
it is possible that in the end we do not have the best possible transformation for
each class, but only a non-dominated individual of a larger Pareto set. Nonetheless,
we feel this selection process provides a useful first approximation. Second, we
can say that the proposed ensembles are used to construct improved versions of
each individual. This should give low quality individuals a chance to improve, and
possibly save any useful genetic material they may have. Finally, the ensemble
construction process is a greedy algorithm that may not be considering higher order
epistatic effects. Again, for now we choose the simplest approach, and will leave
future improvements as possible future research.

6 Experimental Setup

In this section we describe the data sets used for testing the methods, as well as the
tools and parameters adopted for performing the experiments.

Multiclass Classification Through Multidimensional Clustering 229

Table 1 Data sets used for the experimental analysis

Data set HRT IM-3 WAV SEG IM-10 YST VOW M-L

No. of classes 2 3 3 7 10 10 11 15

No. of attributes 13 6 40 19 6 8 13 90

No. of samples 270 322 5000 2310 6798 1484 990 360

6.1 Data Sets

We have used eight different data sets to test the performance of the three methods.
Table 1 summarizes the main characteristics of these data sets that encompass both
real-world and synthetic data, having integer and real data types, with varying
number of attributes, classes and samples. The ‘Heart’ (HRT), ‘Segment’ (SEG),
‘Vowel’ (VOW), ‘Yeast’ (YST) and ‘movement-libras’ (M-L) data sets can be
found in the KEEL dataset repository1 in Alcala-Fdez et al. (2011), whereas the
‘Waveform’ (WAV) data set is available in Bache and Lichman (2013). ‘IM-3’ and
‘IM-10’ are the landsat satellite data sets that were used in Ingalalli et al. (2014)
and Muñoz et al. (2015), taken from data available on the U.S. Geological Survey
(USGS) Earth Resources Observation Systems (EROS) Data Center (EDC).2 None
of the eight data sets have missing values. From each of the original datasets we
have formed 30 different partitions with the training and test data ratio of 70:30, to
be used in 30 independent runs.

6.2 Tools and Parameters

A modified version of GPLAB 3 was used to execute all the runs. GPLAB is a freely
available open source GP toolbox for MATLAB.3 Most of the settings adopted
were the GPLAB 3 defaults. The population size was 500 individuals, allowed to
evolve for 100 generations in 30 independent runs per experiment. The function set
included C, �, � and = (protected as in Koza 1992) and the terminal set included
ephemeral random constants (also as in Koza 1992). Due to the implementation
particularities and differences between M2GP and M3GP, some relevant settings
were modified accordingly, as already described in Sect. 4. For additional details
on other settings, the reader is referred to Ingalalli et al. (2014) and Muñoz et al.
(2015).

1http://keel.es/datasets.php
2http://glovis.usgs.gov
3http://gplab.sourceforge.net

http://keel.es/datasets.php
http://glovis.usgs.gov
http://gplab.sourceforge.net

230 S. Silva et al.

For the comparison with the state-of-the-art classifiers, we have used Weka
3.6.10. Weka is also open source and freely available.4 In Weka we have used the
default parameters and configurations for each algorithm.

7 Results and Discussion

This section is split in three parts. First we summarize the results of the comparison
between M2GP and a standard GP classifier, and between M2GP and a number
of state-of-the-art classifiers (previously published in Ingalalli et al. 2014). Then
we summarize the results of the comparison between M3GP and M2GP, and
between M3GP and the best state-of-the-art classifiers from the first part (previously
published in Muñoz et al. 2015). Finally, we present the new results obtained with
eM3GP, comparing them with the ones obtained by the previous methods.

7.1 Results of M2GP

With the goal of comparing the performance of M2GP with the performance of other
GP systems, we chose the range selection method with static threshold selection
mentioned in Sect. 2 (Zhang and Smart 2004; Li et al. 2007) as the benchmark for
comparison, since it is a fairly standard way of performing multiclass classification
with GP. However, in data sets with a higher number of classes we immediately
observed the often reported inadequacy of this standard GP method to perform
multiclass classification. It was losing the race too quickly, so we abandoned any
further comparison. Just to provide some numbers, on the WAV and SEG data sets
M2GP improved the accuracy upon the standard method in approximately 25 and
55 percentual points, respectively.

We then compared M2GP with a number of classifiers available in Weka.
Random Forests (RF) and Decision Trees (J48) are tree based classifiers; Random
Subspace (RS) and Multi-Class Classifier (MCC) are meta classifiers; Multilayer
Perceptron (MLP) and Support Vector Machines (SVM) are function based clas-
sifiers. Table 2 presents the results already reported in Ingalalli et al. (2014), the
median and the best accuracy values of the 30 different runs for the test data
sets. We have used the same set of 30 different partitions to perform 30 different
runs with all the classifiers. M2GP used 100 generations and the dimension d
was automatically chosen during the process of initialization (as explained in
Sect. 3), except for the binary class data set (HRT) where d D 1, since this was
reported to be the best setting. For the rest of the classifiers, we have used the
default settings from Weka. SVM used the “one-against-one” approach to multi-

4http://www.cs.waikato.ac.nz/ml/weka

http://www.cs.waikato.ac.nz/ml/weka

Multiclass Classification Through Multidimensional Clustering 231

Table 2 Comparison among various classifiers

! Data Set HRT IM-3 WAV SEG IM-10 YST VOW M-L

Classifiers C=2 C=3 C=3 C=7 C=10 C=10 C=11 C=15

Median 55.556 93.814 86.3 55.844 90.363 41.124 81.818 14.352

SVM Best 65.432 97.938 88.067 61.616 92.055 46.067 85.859 24.074

Median 79.630 93.814 74.800 96.104 94.654 55.169 75.926 63.426

J48 Best 85.185 98.969 78 97.691 95.537 57.977 83.838 75.000

Median 80.247 94.845 81.500 97.258 96.861 57.528 89.394 71.759

RF Best 87.654 98.969 83.067 98.557 97.744 61.124 93.266 76.852

Median 81.481 92.784 82.200 95.960 93.919 56.629 82.828 65.741

RS Best 90.124 97.938 84.400 97.403 95.096 60.674 88.216 74.074

Median 80.247 95.876 83.333 96.320 90.216 57.977 82.492 75.926
MLP Best 87.654 97.938 85.200 97.403 91.319 62.921 87.542 84.259

Median 83.951 95.361 86.800 92.424 81.829 57.977 57.576 60.648

MCC Best 90.124 97.938 88.267 94.228 83.865 62.247 65.657 72.222

Median 82.099 94.845 84.867 95.599 90.191 53.82 85.859 62.963

M2GP Best 88.889 98.969 86.467 97.403 92.545 60.225 94.613 74.074

Median accuracy and Best accuracy on the test data set for 30 runs are reported. For each
problem, the best values among the classifiers are in bold (if more than one, it means there
is no statistically significant difference between their medians) and the worst values are in
italics (the same). For each problem, a highlighted (respectively underlined) value means the
classifier is significantly better (respectively worse) than M2GP

class classification, which has comparable performance to “one-against-all” while
requiring less training time (Hsu and Lin 2002). To test for statistical significance of
the results, the non-parametric Kruskal-Wallis with Bonferroni correction was used
under the alternative hypothesis that the accuracy values of the different classifiers
do not have equal medians.

Table 2 has many things to reveal. First of all, on the IM-3 data set all the
classifiers obtained median accuracy values that are not statistically different from
each other. In terms of best accuracy, on this data set M2GP was one of the classifiers
achieving the best value (in bold). Also in the VOW data set M2GP achieved the
best accuracy. Regarding the median accuracy values, M2GP was one of the best
classifiers on HRT (in bold), and never one of the worst classifiers on any of the
data sets (in italics). On data sets WAV, YST and VOW, only the best classifiers
were able to outperform M2GP (highlighted values), whereas M2GP was able to
outperform many other classifiers (underlined values), at least one on each data set
except IM-3. Ingalalli et al. (2014) report that on the M-L data set M2GP was not
able to choose the ideal d, otherwise it would probably have been able to outperform
more classifiers. Regarding the comparison with the other function based classifiers
(MLP and SVM), M2GP was clearly superior to SVM in almost all problems,
and fairly competitive with MLP, which together with MCC was one of the best
classifiers. RF was, however, the clear winner, in particular on the data sets with a
higher number of classes.

232 S. Silva et al.

7.2 Results of M3GP

The comparison between M3GP and M2GP will be presented in terms of fitness,
expressed as classification accuracy, and in terms of number of nodes and number
of dimensions of the solutions. Whenever a result is said to be significantly different
(better or worse) from another, it means the difference is statistically significant
according to the Friedman test with Bonferroni-Holm correction using the 0.05
significance level.

Table 3 shows quantitative results regarding the training and test fitness, also
including the information on the number of nodes of the best individuals, as well
as their number of dimensions. All these results refer to the median of the 30
runs. The best approach (between M2GP and M3GP, and the new eM3GP whose
results will be discussed later) on each problem is marked in bold—more than
one is marked when the difference is not statistically significant. In terms of size,
or number of nodes, we consider lower to be better. In terms of dimensions, we
remark that a higher number of dimensions does not necessarily translate into a
larger number of nodes and/or lower interpretability of the solutions. We include
additional information for the number of dimensions, which is the minimum and
maximum values obtained in the 30 runs.

Table 3 shows that, in terms of training fitness, M3GP is significantly better than
M2GP in all the problems (except the last, M-L, where the results are considered
the same), while in terms of test fitness M3GP is better or equal to M2GP in all
problems (except M-L). It is interesting to note that it is in the higher dimensional
problems (except M-L) that M3GP achieves better results than M2GP (the problems
are roughly ordered by dimensionality of the data). Ingalalli et al. (2014) had
already identified problem M-L as yielding a different behavior from the others,
and in Muñoz et al. (2015) it was once again often considered the exception to the
rule. Our explanation for M3GP not being able to perform better on this problem is
the extreme easiness it has in reaching maximal accuracy. Both M2GP and M3GP
achieve 100 % training accuracy, but M3GP does it in only a few generations
(not shown), producing very small and accurate solutions that barely generalize
to unseen data. On the other hand, M2GP does not converge immediately, so in
its effort to learn the characteristics of the data it also evolves some generalization
ability.

Regarding the size of the solutions, in most problems where M3GP brought
improvements, it also brought larger trees. However, when we split the nodes of
the M3GP trees among their several dimensions, even the largest trees (e.g., in IM-
10 and YST) seem to be simple and manageable (around 20 nodes per dimension),
in particular when we consider that no simplification has been done except for the
pruning of detrimental dimensions (see Sect. 4), and therefore the effective size of
the trees may be even smaller.

Regarding the number of dimensions used in M2GP and M3GP, two things
become clear. The first one is that there seems to be no single optimal number of
dimensions for a given problem, since both M2GP and M3GP may choose wildly

Multiclass Classification Through Multidimensional Clustering 233

Ta
bl

e
3

C
om

pa
ri

so
n

be
tw

ee
n

M
2G

P,
M

3G
P

an
d

eM
3G

P

H
R

T
IM

-3
W

A
V

SE
G

IM
-1

0
Y

ST
V

O
W

M
-L

Tr
ai

ni
ng

fit
ne

ss

M
2G

P
89

.4
98

.2
87

.4
96

.8
91

.4
62

.6
95

.9
10

0
M

3G
P

94
.7

99
.6

90
.7

98
.1

93
.0

68
.5

10
0

10
0

eM
3G

P
86

.7
98

.2
81

.8
96

.1
92

.0
61

.0
87

.8
10

0
Te

st
fit

ne
ss

M
2G

P
80

.2
93

.8
84

.9
95

.6
90

.2
53

.8
85

.9
63

.0
M

3G
P

79
.0

95
.4

84
.3

95
.6

91
.0

56
.2

93
.8

57
.1

eM
3G

P
80

.8
93

.2
81

.2
94

.7
90

.3
56

.1
78

.6
65

.1
#

N
od

es

M
2G

P
37

24
12

6
43

11
7

14
6

49
33

M
3G

P
11

0
66

71
11

1
23

9
27

4
53

13

eM
3G

P
4

8
3

8
58

14
10

4

#
D

im
en

si
on

s

M
2G

P
3

(1
–8

)
2

(1
–4

)
5

(2
–1

0)
4

(3
–8

)
7

(4
–1

0)
6

(1
–1

3)
9

(4
–1

8)
10

(7
–1

2)

M
3G

P
12

(1
–1

7)
5

(2
–8

)
31

(2
9–

37
)

11
(5

–2
1)

12
(1

1–
16

)
13

(1
1–

18
)

20
(1

6–
20

)
12

(1
0-

13
)

eM
3G

P
1

(1
–4

)
1

(1
–5

)
1

(1
–1

0)
6

(2
–1

0)
7

(3
–1

2)
10

(1
–1

6)
4

(1
–1

4)
2

(1
–1

1)

T
he

va
lu

es
re

fe
r

th
e

m
ed

ia
ns

of
30

ru
ns

.
T

he
be

st
va

lu
es

ar
e

in
bo

ld
(i

f
m

or
e

th
an

on
e,

it
m

ea
ns

th
er

e
is

no
st

at
is

tic
al

ly
si

gn
ifi

ca
nt

di
ff

er
en

ce
be

tw
ee

n
th

e
m

ed
ia

ns
)

W
he

ne
ve

r
a

re
su

lt
is

sa
id

to
be

si
gn

ifi
ca

nt
ly

di
ff

er
en

t
(b

et
te

r
or

w
or

se
)

fr
om

an
ot

he
r,

it
m

ea
ns

th
e

di
ff

er
en

ce
is

st
at

is
tic

al
ly

si
gn

ifi
ca

nt
ac

co
rd

in
g

to
th

e
Fr

ie
dm

an
te

st
w

ith
B

on
fe

rr
on

i-
H

ol
m

co
rr

ec
tio

n
us

in
g

th
e

0.
05

si
gn

ifi
ca

nc
e

le
ve

l

234 S. Silva et al.

0

400

F
re

q
u

en
cy

 in
G

en
er

at
io

n
 1

5

IM−10

0

400

F
re

q
u

en
cy

 in
G

en
er

at
io

n
 1

5

VOW

0

400

F
re

q
u

en
cy

 in
G

en
er

at
io

n
 2

5

0

400

F
re

q
u

en
cy

 in
G

en
er

at
io

n
 2

5

0

400

F
re

q
u

en
cy

 in
G

en
er

at
io

n
 5

0

0

400

F
re

q
u

en
cy

 in
G

n
er

at
io

n
 5

0

0 5 10 15 20 25 30
0

400

Dimensions

F
re

q
u

en
cy

 in
G

en
er

at
io

n
 1

00

0 5 10 15 20 25 30
0

400

Dimensions

F
re

q
u

en
cy

 in
G

en
er

at
io

n
 1

00

Fig. 4 Distribution of the number of dimensions in the population in generations 15, 25, 50 and
100 (top to bottom) for M3GP. On the left, a typical run of problem IM-10. On the right, a typical
run of problem VOW

different values, depending on the run. The second one is that M3GP tends to use a
larger number of dimensions than M2GP. What these numbers do not show is that
different problems result in very different behaviors with respect to the evolution of
the number of dimensions. Figure 4 illustrates two main types of behavior, described
next. In most problems the distribution of the number of dimensions moves rapidly
to higher values in the beginning of the run, and then remains stable and more or
less in the same range until the end of the run (exemplified on the left in Fig. 4).
However, in some problems, like WAV and VOW, the distribution of the number
of dimensions does not settle during the 100 generations of the run, and instead
keeps moving towards higher values (exemplified on the right in Fig. 4). The WAV
problem goes as high as 37 dimensions, and curiously this is one of the problems
where M3GP produces substantially smaller trees than M2GP.

The comparison between M3GP and the state-of-the-art classifiers is based only
on training and test fitness, once again considering fitness to be accuracy. Based
on the comparison previously done between M2GP and several state-of-the-art
methods (see Sect. 7.1), we have decided to compare M3GP with a tree based

Multiclass Classification Through Multidimensional Clustering 235

Table 4 Comparison between the three methods and state-of-the-art clas-
sifiers

HRT IM-3 WAV SEG IM-10 YST VOW M-L

Training fitness

RF 98.4 100 99.5 99.9 99.8 98.3 99:9 99:2

RS 88.9 97:1 92.0 98.4 96.3 71.1 97:8 92:3

MLP 98.4 98:7 98.5 97.6 91.0 64.6 91:9 91:3

M2GP 89.4 98:2 87.4 96.8 91.4 62.6 95:9 100
M3GP 94.7 99:6 90.7 98.1 93.0 68.5 100 100
eM3GP 86.7 98:2 81.8 96.1 92.0 61.0 87:8 100
Test fitness

RF 80.2 94:8 81.5 97.3 96.9 57.5 89:4 71:8

RS 81.5 92:8 82.2 96.0 93.9 56.6 82:8 65:7

MLP 80.2 95:9 83.3 96.3 90.2 58.0 82:5 75:9
M2GP 80.2 93:8 84.9 95.6 90.2 53.8 85:9 63:0

M3GP 79.0 95:4 84.3 95.6 91.0 56.2 93:8 57:1

eM3GP 81.4 93:2 81.2 94.7 90.3 56.1 78:6 65:1

The values refer the medians of 30 runs. The best values are in bold (if more
than one, it means there is no statistically significant difference between the
medians)

classifier (RF—Random Forests), a meta classifier (RS—Random Subspace), and
a function based classifier (MLP—Multi Layer Perceptron). The three of them were
well ranked in the previous comparison with M2GP. We have also included M2GP
in this comparison to check how much better M3GP compares to the state-of-the-art
than M2GP. Also eM3GP is included in this table, whose results will be discussed
later.

Table 4 reports and compares the training and test fitness obtained by RF, RS,
MLP, M2GP and M3GP (and eM3GP, to be discussed later) on the same eight
problems, medians of 30 runs. The best approach on each problem is marked in
bold, or several when their differences are not statistically significant. Looking at
the first row, it is undeniable that RF is an almost unbeatable method when it comes
to training fitness. Still, it is beaten by M3GP in the last two problems (VOW and
M-L). (M2GP achieves the same feat in only one of them, M-L).

Also in test fitness RF is the best method, ranked first in five of the eight
problems. However, other methods are not far from this achievement, including
M3GP and MLP, both ranked first in four of the eight problems. (M2GP achieves
this is only two problems). While RF is not equaled by any other method in two
problems (SEG and IM-10), both M3GP and MLP achieve this in one problem
(VOW and M-L, respectively). M2GP and M3GP stand together as winners on the
WAV problem.

Besides the remarkable fact that M3GP achieves almost the same quality of
results as the popular and successful RF in terms of test fitness, it is also worth

236 S. Silva et al.

remarking that the models provided by M3GP are potentially much easier to
interpret than the ones provided by RF or any of the other two state-of-the-art
methods.

7.3 Results of eM3GP

The results achieved by eM3GP can be found in Tables 3 and 4. Although eM3GP
was not able to match the performance of M3GP in most problems, it appears to
be much more resistant to overfitting, based on the observed difference between
training and test fitness (Table 3). The obvious case is the M-L problem, where
eM3GP actually achieves significantly better test fitness, but also in problems like
WAV, SEG and YST it is clear that with eM3GP the test fitness follows the training
fitness much more closely than with M3GP. Therefore, even if the final solutions
may not necessarily be better with eM3GP, the results suggest that with more
generations the tendency may be inverted, and eM3GP may actually be able to reach
better performance than M3GP.

One point where eM3GP clearly wins is, no doubt, the compactness of the
evolved solutions, both in terms of number of nodes and in terms of number
of dimensions (Table 3). The ensemble approach is able to maintain smaller
solutions, preventing the bloat at the dimension level and thus performing a kind of
dimensionality reduction, at least when compared to M3GP. Also when comparing
to M2GP the solutions of eM3GP are much smaller, even in the few cases where the
number of dimensions is not.

If we inspect the distribution of dimensions inside the population we can see
there is a large difference in its evolutionary dynamics between M3GP and eM3GP.
While M3GP tends to produce unimodal distributions that approximate a Gaussian
form (see Fig. 4), eM3GP maintains a higher diversity of dimensions within the
population, which is either approximately flat (e.g., VOW) or has a single tail with a
peak in unidimensional transformations (e.g., M-L), as shown in Fig. 5 (compare the
VOW dynamics with the one seen in Fig. 4 for M3GP). Such a distribution, and the
effect it has on bloat, seems to correlate nicely with recently proposed bloat control
strategies (Silva 2011).

8 Conclusions

This work has addressed the problem of multiclass classification with GP, an area
where previous GP approaches tended to yield poor performance. It has presented
three variants of a novel method, respectively called M2GP (Ingalalli et al. 2014),
M3GP (Muñoz et al. 2015) and eM3GP. The novelty of M2GP is mainly its fitness
function, that implicitly drives the evolution into forming multidimensional clusters
that allow an accurate classification of the data. M3GP allows the evolution to

Multiclass Classification Through Multidimensional Clustering 237

VOW M-L

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

450

500

Dimensions

F
re

q
u

en
cy

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

450

500

Dimensions

F
re

q
u

en
cy

Fig. 5 Distribution of the number of dimensions in the final generation for eM3GP. On the left, a
typical run of problem VOW. On the right, a typical run of problem M-L

choose the most appropriate dimensionality for this mapping during the search,
thus improving the adaptability to the particularities and difficulties posed by each
problem. Finally, the newer eM3GP introduces an ensemble approach that allows
the evolution of specialized mappings for different classes, thus providing some
protection against overfitting and the negative effects of class imbalance. As a
welcome side effect, eM3GP also removes the bloating problems that seems to affect
M3GP.

The results have shown that this new approach finally allows GP to be considered
as a viable and competitive option for solving multiclass classification problems,
even when compared to the best and most popular state-of-the-art classifiers, like
Random Forests, Random Subspaces and Multilayer Perceptron.

Future work will focus on the difficulties of real-world problems. The apparent
ability of eM3GP for dealing with overfitting and class imbalance will be thoroughly
tested, and certainly improved. We will also go back to the original fitness function
of M2GP and improve this core element of success, as it is still in its original “raw”
form and its robustness can certainly be improved in order to face the difficulties
of real-world data. Another path of future work is the interpretation of the solutions
returned by this method. Until now there was absolutely no attempt at performing
a symbolic simplification of the mappings returned, or any type of interpretation of
what these mappings may reveal about the data.

For now, it is clear that with this new approach we have a simple and general
purpose classifier that is well worth testing, improving and using in challenging
classification tasks.

Acknowledgements This work was partially supported by FCT funds (Portugal) under con-
tract UID/Multi/04046/2013 and projects PTDC/EEI-CTP/2975/2012 (MaSSGP), PTDC/DTP-
FTO/1747/2012 (InteleGen) and EXPL/EMS-SIS/1954/2013 (CancerSys). Funding was also
provided by CONACYT (Mexico) Basic Science Research Project No. 178323, DGEST (Mexico)
Research Projects No. 5149.13-P and 5414.11-P, and FP7-Marie Curie-IRSES 2013 project
ACoBSEC. Finally, the second author is supported by scholarship No. 372126 from CONACYT.

238 S. Silva et al.

References

Alcala-Fdez J, Fernandez A, Luengo J, Derrac J, Garcia S, Sanchez L, Herrera F (2011) Keel data-
mining software tool: data set repository, integration of algorithms and experimental analysis
framework. J Mult Valued Logic Soft Comput 17:2–3, 255–287

Bache K, Lichman M (2013) UCI machine learning repository, university of California, Irvine,
school of information and computer sciences. http://archiveicsuciedu/ml

Bojarczuk CC, Lopes HS, Freitas AA (2000) Genetic programming for knowledge discovery in
chest-pain diagnosis. IEEE Eng Med Biol Mag 19(4):38–44. http://ieeexplore.ieee.org/iel5/51/
18543/00853480.pdf

Castelli M, Silva S, Vanneschi L, Cabral A, Vasconcelos MJ, Catarino L, Carreiras JMB (2013)
Land cover/land use multiclass classification using gp with geometric semantic operators. In:
EvoApplications’13. Springer, Berlin, pp 334–343

Espejo PG, Ventura S, Herrera F (2010) A survey on the application of genetic programming to
classification. Trans Sys Man Cyber Part C 40(2):121–144

Falco ID, Cioppa AD, Tarantino E (2002) Discovering interesting classification rules with genetic
programming. Appl Soft Comput 1(4):257–269

Haynes T (1998) Collective adaptation: the exchange of coding segments. Evol Comput 6(4):
311–338. doi:10.1162/evco.1998.6.4.311. http://dx.doi.org/10.1162/evco.1998.6.4.311

Hsu CW, Lin CJ (2002) A comparison of methods for multi-class support vector machines. IEEE
Trans Neural Netw 13(2):415–425

Ingalalli V, Silva S, Castelli M, Vanneschi L (2014) A multi-dimensional genetic programming
approach for multi-class classification problems. In: Nicolau M, et al. (eds) 17th European
conference on genetic programming. Lecture notes in computer science, vol 8599. Springer,
Granada, pp 48–60

Jabeen H, Baig AR (2013) Two-stage learning for multi-class classification using genetic
programming. Neurocomputing 116:311–316

Kishore JK, Patnaik L, Mani V, Agrawal VK (2000) Application of genetic programming for
multicategory pattern classification. IEEE Trans Evol Comput 4(3):242–258

Koza JR (1992) Genetic programming: volume 1, On the programming of computers by means of
natural selection, vol 1. MIT Press, New York

Koza JR (2010) Human-competitive results produced by genetic programming. Genet Program
Evolvable Mach 11(3–4):251–284

Langdon W, Poli R (2002) Foundations of genetic programming. Springer, Berlin
Li XM, Wang M, Cui LJ, Huang DM (2007) A new classification arithmetic for multi-image

classification in genetic programming. In: International conference on machine learning and
cybernetics, vol 3, pp 1683–1687, 2007

Lin JY, Ke HR, Chien BC, Yang WP (2007) Designing a classifier by a layered multi-population
genetic programming approach. Pattern Recogn 40(8):2211–2225

Lin JY, Ke HR, Chien BC, Yang WP (2008) Classifier design with feature selection and feature
extraction using layered genetic programming. Expert Syst Appl 34(2):1384–1393

Muñoz L, Silva S, Trujillo L (2015) M3gp—multiclass classification with gp. In: Machado P,
Heywood MI, McDermott J, Castelli M, García-Sánchez P, Burelli P, Risi S, Sim K (eds)
Genetic programming. Lecture notes in computer science, vol 9025. Springer International
Publishing, Berlin, pp 78–91

Muni D, Pal N, Das J (2004) A novel approach to design classifiers using genetic programming.
IEEE Trans Evol Comput 8(2):183–196

Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. Published via
http://lulu.com and freely available at http://www.gp-field-guide.org.uk. http://www.gp-field-
guide.org.uk. (With contributions by J. R. Koza)

Sakprasat S, Sinclair M (2007) Classification rule mining for automatic credit approval using
genetic programming. In: IEEE congress on evolutionary computation, 2007. CEC 2007,
pp 548–555

http://archiveicsuciedu/ml
http://ieeexplore.ieee.org/iel5/51/18543/00853480.pdf
http://ieeexplore.ieee.org/iel5/51/18543/00853480.pdf
http://dx.doi.org/10.1162/evco.1998.6.4.311
http://dx.doi.org/10.1162/evco.1998.6.4.311
http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk

Multiclass Classification Through Multidimensional Clustering 239

Shen S, Sandham W, Granat M, Dempsey MF, Patterson J (2003) A new approach to brain tumour
diagnosis using fuzzy logic based genetic programming. In: Engineering in medicine and
biology society, 2003. Proceedings of the 25th annual international conference of the IEEE
(volume 1), vol 1, pp 870–873

Shiming Xiang FN, Zhang C (2008) Learning a mahalanobis distance metric for data clustering
and classification. Pattern Recogn 41(2):3600–3612

Silva S (2011) Reassembling operator equalisation: A secret revealed. In: Proceedings of the 13th
annual conference on genetic and evolutionary computation, GECCO ’11. ACM, New York,
pp 1395–1402

Silva S, Tseng YT (2008) Classification of seafloor habitats using genetic programming. In: Appli-
cations of evolutionary computing. Lecture notes in computer science, vol 4974. Springer,
Berlin, pp 315–324

Tackett WA (1993) Genetic programming for feature discovery and image discrimination.
In: Proceedings of the 5th international conference on genetic algorithms. Morgan Kaufmann
Publishers Inc, San Francisco, CA, pp 303–311

Tan KC, Tay A, Lee T, Heng CM (2002) Mining multiple comprehensible classification rules using
genetic programming. In: Proceedings of the 2002 congress on evolutionary computation. 2002.
CEC ’02, vol 2, pp 1302–1307

Teredesai A, Govindaraju V (2004) Issues in evolving gp based classifiers for a pattern recognition
task. In: Congress on evolutionary computation, 2004. CEC2004, vol 1, pp 509–515

Winkler S, Affenzeller M, Wagner S (2007) Advanced genetic programming based machine
learning. J Math Model Algorithm 6(3):455–480

Zhang M, Ciesielski V (1999) Genetic programming for multiple class object detection.
In: Advanced topics in artificial intelligence. Lecture notes in computer science, vol 1747.
Springer, Berlin, pp 180–192

Zhang M, Smart W (2004) Multiclass object classification using genetic programming. In: Appli-
cations of evolutionary computing. Lecture notes in computer science, vol 3005. Springer,
Berlin, pp 369–378

Zhang Y, Rockett PI (2009) A generic multi-dimensional feature extraction method using
multiobjective genetic programming. Evol Comput 17(1):89–115

Prime-Time: Symbolic Regression Takes
Its Place in the Real World

Sean Stijven, Ekaterina Vladislavleva, Arthur Kordon, Lander Willem,
and Mark E. Kotanchek

Abstract In this chapter we review a number of real-world applications where
symbolic regression was used recently and with great success. Industrial scale
symbolic regression armed with the power to select right variables and variable
combinations, build robust trustable predictions and guide experimentation has
undoubtedly earned its place in industrial process optimization, business forecast-
ing, product design and now complex systems modeling and policy making.

Keywords Symbolic regression • Forecasting • DataModeler • Extrapolation
• Prediction • Simulation-based optimization

1 Introduction

Symbolic regression remains the poster child for real-world application of genetic
programming and over the past quarter-century has moved from discovering the
low-order polynomials of toy data sets to extracting insights, models and profits
from data sets ranging up to millions of records and thousands of variables. The
ability to simultaneously explore the worth of different variable combinations during

S. Stijven (�)
Department of Mathematics - Computer Sciences, University of Antwerp, Antwerp, Belgium
e-mail: sean.stijven@uantwerp.be

E. Vladislavleva
Evolved Analytics Europe BVBA, Beerse, Belgium
e-mail: katya@evolved-analytics.be

A. Kordon (retired)
Kordon Consulting LLC, Fort Lauderdale, FL, USA
e-mail: arthur@evolved-analytics.com

L. Willem
Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
e-mail: lander.willem@uantwerp.be

M.E. Kotanchek
Evolved Analytics LLC, Midland, MI, USA
e-mail: mark@evolved-analytics.com

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8_14

241

mailto:sean.stijven@uantwerp.be
mailto:katya@evolved-analytics.be
mailto:arthur@evolved-analytics.com
mailto:lander.willem@uantwerp.be
mailto:mark@evolved-analytics.com

242 S. Stijven et al.

the model development is a huge advantage of multi-objective symbolic regression
and provides the foundations for the use cases which are discussed in this chapter.

We open the discussion with a brief review of the role of symbolic regression in
process optimization. Although such is one of the earliest real-world applications of
GP, success in this space fueled a sizable investment in developing new algorithms,
analysis infrastructure and workflow which, subsequently, enabled application in
other domains.

The maturation of the capabilities has enabled a migration away from the world
of corporate R&D and into the business mainstream. The business forecasting
application discussed in the second section features the hybridization and integration
of symbolic regression with other technologies—in this case, ARIMAX model-
ing—which is facilitated by the white-box nature of the developed models.

The final sections are devoted to the development of a metamodel (or a surrogate
model) to summarize the propagation of infectious disease for purposes of social
policy design. As such it makes the results of highly sophisticated simulation models
accessible to policy makers who, via an interactive interface, explore the impact
and implications of different assumptions and scenarios. The immediacy of the
interaction enables the an awareness and integration of insight which would not
be possible if review of myriad charts, tables and text were required.

In summary, over the course of a quarter-century, symbolic regression has moved
from the realm of the research lab into manufacturing to business operations and
policymaking. This indicates a level of maturity such that it is ready to take its
proper place among the pantheon of data analysis tools

2 Modern Process Optimization

2.1 Historical Foundations

One of the first applications of genetic programming in Dow Chemical was in
continuous process modeling (Smits and Kotanchek 2004; Kordon and Smits 2001).
Over the subsequent 25 years, orders-of-magnitude improvements in both the
algorithmic efficiency of symbolic regression as well as corresponding orders-of-
magnitude enhancements in compute capabilities has greatly expanded the impact
and efficacy of symbolic regression in this realm. In parallel with the model
generation capability improvements, new tools and techniques for both designing
the modeling strategy and extracting insight from the new plethora of developed
models have greatly enhanced the impact. In many respects, the overarching analysis
workflow improvement has been as meaningful as the improvement in the model
development foundations.

Prime-Time: Symbolic Regression Takes Its Place in the Real World 243

2.2 Corporate Goal

The generic goal of any symbolic regression exercise is to determine an input-
output relationship and, furthermore, to determine which of the inputs are most
effective and useful in predicting the targeted output. However, there can be nuances
which motivate different models being studied than those with the “best accuracy”.
To illustrate, if new customer requirements are imposing better cold-weather
performance for a biofuels additive, we might want to simultaneously understand
the chemistry trade-offs involved in achieving the targeted performance while also
identifying the operational process control settings and feedstock characteristics
required to satisfy the customer.

The net conclusion is that insight and operational performance are both important
from the practitioner viewpoint.

2.3 The Importance of Methodology and Workflow

The total-cost-of-ownership of a model is very important since both efficacy and
efficiency make or break the ROI of modeling. In a typical industrial analysis, the
actual model development tends to take a relatively small fraction of the human
time expended. As a result the infrastructure around exploring the available data to
design the analysis approach as well as the tools to select models and extract insight
are critical ingredients to success.

2.4 Data Exploration and Analysis Design

A conventional assumption in many modeling techniques is to presume that
the inputs and independent. This convention is generally violated in most real-
world problems as illustrated in Fig. 1 for a biofuel data set. Although variable
orthogonality can be achieved, for example, by a principle components analysis,
doing such eliminates the interpretability of models beyond the first one or two
principle components. Simply pruning the input set to selected sets of independent
inputs is not an attractive alternative since such imposes a priori constraints which
are not necessary and are often counter-productive.

2.5 Model Development

The basics of the evolutionary search for symbolic regression models are pretty
straight-forward: reward models for accuracy, simplicity and novelty [Smits and
Vladislavleva; Vladislavleva et al.] and let the primordial soup percolate. The art

244 S. Stijven et al.

Fig. 1 The left plot illustrates the correlation matrix for the available inputs for a biofuels analysis.
Many of the available process setpoints and measurements as well as the associated chemical
analysis results in the data are highly correlated (either positively or negatively) which implies that
we will have potential for variable substitutions in the model development. Note in this case that
the maximum correlation is less than 0.7 which implies a foundation capability of R2 < 0:5 for a
simplistic single-variable model

comes in the selection of available function operators, definition of metavariables
and normalization of data ranges. From a user perspective, they care mostly about
having a selection of high-quality models which properly balance the complexity-
accuracy trade-off since our goal is to have as simple of model as possible—but no
simpler. Such a collection of models is illustrated in Fig. 2.

2.6 Model Exploration and Insight Development

To paraphrase Bill Worzel, “Symbolic regression is an optionizer as well as
optimizer.” This is illustrated in Figs. 3 and 4. As such many potential models
are hypothesized, refined (or rejected) and available at the end of the development
stage. Since each of the independent model searches follows its own path through
the search space, we have the raw material to collect considerable insight into
the modeling potential and alternate solutions. An analysis often requires multiple
rounds of model development with each iteration building upon the insights
gathered from the prior rounds to focus the input variable set, tune development
options or simply to evolve additional model forms.

Understanding the number of variables required to achieve a given level of
performance and the modeling potential of inputs is very important. For instance,
even though a particular input does not quite provide as direct of path to a quality
model as another, it may be a measurement that is more easily or robustly achieved
which, from an operational standpoint, would make models containing it rather than
it the more desirable.

Prime-Time: Symbolic Regression Takes Its Place in the Real World 245

Fig. 2 Although additional attributes may be used as criteria in the model development, from a
practical standpoint, the candidate model set comes from those models which best balance the
complexity-accuracy trade-off. In this figure, the models denoted as red dots are those lying on
the Pareto front. Although these are nominally optimal, the other models indicated in blue in
the density plot may be of more practical interest due to their model dimensionality or particular
combination of constituent models (Color figure online)

2.7 Model Selection and Ensemble Definition

The deterministic nature of the physical sciences introduces a bias towards THE
model. However, the stochastic nature of evolutionary search will uncover many
“good enough” models which we can judiciously combine to create a trustable
model that will warn if it is exposed to new operating conditions or if the modeled
system has undergone some sort of fundamental change so that the models are no
longer applicable. This can be easily accomplished by selecting models from near
the knee of the Pareto front which have uncorrelated error residuals. Because the
selected ensemble models agree with the development data, they will agree when
near known operating conditions and, because they are diverse, they will diverge
when exposed to new operating regions. This is illustrated in Fig. 6 for the model
set shown in Fig. 5.

2.8 Process Optimization Summary

The computational and algorithmic advances over the past two decades allows sym-
bolic regression to quickly build insightful models from process data. These can then
be deployed as inferential sensors to control and optimize the targeted processes as
well as to provide guidance for operational opportunities and enhancements.

246 S. Stijven et al.

Fig. 3 The model dimensionality table shows the modeling potential achieved as a function of the
number of inputs in the constituent models. In this biofuel distillation case, it also illustrates that
there are many paths to comparable models due to potential variable substitutions

3 Modern Business Forecasting

Another new area of industrial applications of GP is business forecasting. The
ultimate objective of business forecasting is to deliver to the key decision-makers
a reliable forecast on specific economic variables, such as product demand, raw
materials prices, labor cost, etc. Of special interest are the forecasting methods

Prime-Time: Symbolic Regression Takes Its Place in the Real World 247

Fig. 4 The founders effect means that each model development follows its own path through
search space. Here we look at the variables which have emerged to the fore. Because of the
couplings of inputs, we can see that some inputs are clearly desirable. Others can clearly be ignored
and some may be substituted for others and, in some circumstances or combinations, become useful

Fig. 5 This is a table of diverse 3-variable ensemble models for a distillation column

based on explanatory variables (economic drivers), the most popular of which
is the Auto-Regressive Integrated Moving-Average with eXplanatory variables
(ARIMAX) model. A limitation of this approach, however, is the assumption of
linear relationships between the explanatory variables and the target variable.

One option to overcome this limitation is by integrating GP and ARIMAX
methods into a hybrid system where the nonlinearity is represented with transforms,
generated by GP and used as explanatory variables in ARIMAX models.

The final forecast is generated by ARIMAX models with nonlinear explanatory
variables (Kordon 2014). The nonlinear equations, generated by GP, can be based

248 S. Stijven et al.

Fig. 6 The constituent models of an ensemble will diverge when asked to extrapolate. This is
illustrated for a 3-variable model ensemble consisting of 14 unique models

on both contemporaneous and dynamic relationships. The last option assumes using
lagged inputs up to an expected maximum lag. The selected nonlinear transforms
from the GP-generation phase are used in ARIMAX model generation but they
might not be selected in the final model if they are statistically insignificant. If
distributed lags of a statistically significant nonlinear transform exist, it is repre-
sented by the corresponding transfer function in the ARIMAX model. As a result,
GP complements ARIMAX models with adding contemporaneous and dynamic
nonlinear explanatory variables and the final models are with all the benefits of
this well-known forecasting approach, such as building multi-step forecasts of all
inputs, statistically defined confidence limits, and available software.

An important area of business forecasting with big economic impact is raw mate-
rials prices forecasting where 3-to-6 months forecasts are critical in high-volume
price negotiation. A recent application of large-scale raw materials forecasting in
the chemical industry is discussed in (Kordon 2012). An example of applying
the hybrid system in two typical cases in raw materials forecasting: (1) when the
relationships between the forecasted variable and the related economic drivers are

Prime-Time: Symbolic Regression Takes Its Place in the Real World 249

contemporaneous and (2) when the relationships are dynamic due to lags, is shown
in Kordon (2014). In the first case, a simple nonlinear transform, generated by GP
and used as exogenous input in the ARIMAX model, has shown the best ex-ante
performance. In the second case, GP has generated a dynamic model with accurate
lags.

This model has been compared to another contemporaneous nonlinear model,
generated by GP, and the best linear ARIMAX model. The ex-ante performance
of the dynamic model is the best for the tested period of time. These encouraging
results based on real world applications with high economic impact demonstrate the
big potential of GP in business forecasting.

4 Modern Complex Systems Analysis and Policy Making

For many years already we have been proposing to use symbolic regression for
simulation-based optimization, with its claim to fame being an white-box model
which can be built to model the behaviors of a complex simulator and a built-in
variable selection capability, which will only be producing models using variables
impacting simulator responses. The more robust are the symbolic regression
features—the more complicated simulators we can consider to understand and
meta-model. The process of building models of simulation models is referred to
as meta-modeling, and the process of optimizing and understanding the models
(as well as the underlying simulators and complex systems they are mimicking)
is referred to as simulation-based optimization, derivative-free optimization.

In this section we share the results of an exciting project to understand an truly
complex system—the state of the art simulator of the spread of infectious diseases
in a large population of humans, based on probabilistic individual-based models.
This inter-disciplinary project took place in Belgium by several groups and led
to a publication on Active Learning to Understand Infectious Disease Models and
Improve Policy Making at PLOS Computational Biology by Lander Willem, Sean
Stijven, Ekaterina Vladislavleva, Jan Broeckhove, Philippe Beutels, and Niel Hens.

Results presented in this section appeared in Active Learning to Understand
Infectious Disease Models and Improve Policy Making at PLOS Computational
Biology by Lander Willem, Sean Stijven, Ekaterina Vladislavleva, Jan Broeck-
hove, Philippe Beutels, and Niel Hens (DOI: 10.1371/journal.pcbi.1003563) and
are presented here for the audience interested in complex systems analysis and
simulation-based optimization.

By large population we mean demographies of 0.5–300 million people in known
geographies (cities, counties, countries) and known probabilistic contact networks.
Population is decided into age groups from the known distribution, into families,
“children” go to school and kindergarten, adults travel to work by cars and public
transportation, communicate with their colleagues at work during the day and with
their families in the evening. In the presence of an infections disease with a certain
infectious rate R0, each individual can be in one of the four states—healthy, infected
and being infectious without symptoms, infectious while displaying symptoms, and
recovered.

http://dx.doi.org/10.1371/journal.pcbi.1003563

250 S. Stijven et al.

The basic reproduction number R0 is the most important indicator of how
dangerous the infectious disease is. R0 is defined as the expected number of
secondary infections caused by a primary infection in a fully susceptible population.
In the presence of an actual pandemics threat, R0 can be estimated from a small
population of early infected cases quite accurately within a couple of days. For the
NHN1 influenza virus the R0 value observed was 1.8.

Robust evaluation of worst and best case scenarios, realistic predictions of
whether or not the pandemics will happen and robust forecasts of the damages, are of
critical importance to the governments and National Health institutes. This global
economic impact and the need to understand pandemics has made influenza the
subject of many simulation studies. The most recent state-of-the art dynamic models
for influenza are a lot more realistic than static compartmental deterministic models,
but realism comes at price of much higher complexity. Dynamic individual-based
models require a lot more simulation time, provide less transparency and are looked
at as a black-box simulators with many “knobs to turn” of unknown significance for
simulation results.

Many fundamental parameters in individual-based models are unknown a priori
and the computational complexity severely hinders experimental approaches with
different scenarios of distributions of these fundamental parameters.

Computational complexity and the presence of too many variables of unknown
significance as well as the need to understand relationships and dependencies in
input response data make symbolic regression the perfect tool for model-based
understanding of dynamic models.

In Willem et al. (2014) the authors proposed a hybrid approach for understanding
the complex black-box simulations through an iterative strategy of collecting the
simulation data, reducing dimensionality, identifying new optimal experiments
and repeating the process until ensembles of reliable and transparent symbolic
regression meta-models is found and can be used to sensitivity analysis and design
space exploration.

4.1 Flute Simulator

As a basis for a simulator we took an open-source individual-based model for
influenza epidemics called FluTE and developed by Chao et al. (2010). This state
of the art model is written in C++. All individuals are simulated as members of
different social mixing groups (Fig. 7). Within each group influenza transmission
is based on random mixing. The geographical distribution, employment rates and
commuting behavior of the population are based on the 2000 Census data for Seattle
(500,000 people) and the Los Angeles County (11 million people). The data is
distributed together with the source code of the model. The simulation runs for
180 days in 12-h time steps, representing daytime (work, school and community
contacts) and nighttime (home and community contacts). The contact probabilities
in the model were tuned such that the final age-specific clinical attack rates were

Prime-Time: Symbolic Regression Takes Its Place in the Real World 251

Workplace

School

Nighttime

Workplace

School

Daytime

susceptible infected recovered

Fig. 7 An illustration of how infections are spread in the individual-based simulation. Each
simulation run models 180 days in 12-h intervals (daytime and nighttime), and at the end the
resulting outcomes are calculated,—the total attack rate (the fraction of the population that got
infected) and the peak day (the day of the 180-day interval with the maximum attack rate)

similar to past influenza pandemics and observed household attack rates.1 This
FluTE model can simulate several intervention strategies like vaccination or spread
of antiviral medications with subsequent changes in susceptibility and infectivity
as well as social distancing measures like quarantines and subsequent changes in
contact probabilities between individuals.

4.2 Experimental Workflow

We provide an overview of the experimental workflow in Fig. 8. This section follows
the order of the steps as depicted in Fig. 8.

1Attack rate is defined as a ratio of the new cases in the population at risk to the total size of the
population at risk.

252 S. Stijven et al.

Design of Experiment Simulation Model

Surrogate ModelingSystem Understanding

adaptive sample
strategy

configurations

input-response
data

surrogate
models

FluTE

Symbolic Regression

Model Behavior
Feature Selection

Response Exploration
Prediction Uncertainty

1 2

34

Fig. 8 (Adapted from Willem et al. 2014) Workflow of the data-driven simulator analysis and
understanding. The goal of such a workflow is to understand which inputs to the simulator are
impacting the outputs, and build robust and efficiently evaluation able meta-models to reliably
mimic the simulator behavior

4.2.1 Step 1: Design of Experiments

To maximize the information content from the experiments in the high-dimensional
input space with inputs of unknown significance we used space-filling Latin
hypercube designs (LHD) and their approximations to create input data sets for
the FluTE simulations. Latin Hyper cube designs are particularly useful to prevent
the “collapse” in the input data design in cases where input variables might turn out
to be insignificant and will be omitted from consideration. Space-filling designs are
critical in simulation-based optimization applications, where the variable selection
and system understanding happens iteratively and data collection is precious.

In the general case, a sample value from the first interval of the first input
parameter is matched at random with sample values from intervals chosen for
the other input parameters (Ma et al. 1993). Then the second interval of the first
input parameter is matched at random with sample values from previously unused
intervals of the other features. Each interval of every input parameter will be
sampled once and only once.

LHD has the advantage that the number of samples is independent of the number
of dimensions of the input space but can be determined based on the computational
budget, the input dimensions and the complexity of the simulation. Computing
a space-filling LHD can be an onerous task and therefore we used the maximin
designs of spacefillingdesigns.nl (Santner et al. 2003; Husslage et al. 2006). Because
our designs have a rather limited number of sample points, we extended the designs
using the Intersite-projected distance method of the Sequential Experimental Design
(SED) toolbox (Crombecq and Dhaene 2010; Crombecq et al. 2009; Crombecq
2011).

Prime-Time: Symbolic Regression Takes Its Place in the Real World 253

4.2.2 Step 2: Simulation Model

The FluTE simulator allows varying 38 individual inputs (indicators defining
the influenza in question, the number of seed cases (infected people entering
the population on day 1), and prevention measures, like closing schools and
kindergartens, enforced quarantines, vaccinations (with vaccination fractions and
efficacy), antiviral medication and their influence on infection probabilities, etc.

We will add information on how the input-space is converted to simulation
configurations. We will add some info on how we executed the simulation on a
cluster, and will add info on the avg. calculation time of each simulation run—2 h.

The summary is that with 37 knots to turn and 2 h needed to evaluate one input-
response combination (simulating a couple of million people changing states over
180 days and nights), quick data collection is virtually impossible. Meta-modeling
of such computationally expensive simulators and development of interactive tools
to efficiently explore what-of scenarios is the only solution to prepare for crisis
situations. When meta-models are created (with symbolic regression in this case),
they can be evaluated in real-time immediately as estimations for the transmission
rate R0 of the attacking infection are becoming available.

4.2.3 Step 3: Meta-Modeling with Symbolic Regression

After the simulation runs are completed, we gather the results and create an
input-response data set. Symbolic Regression (SR) applied to this data set will
generate a robust ensemble of meta-models emulating the behavior of the simulator.
We used the SR implementation from the DataModeler package in Mathematica
(Evolved Analytics LLC 2011). The result of a single SR experiment is an ensemble
of tree-based regression models that give a good approximation of the response
variable together with the confidence metric for the prediction.

In Willem et al. (2014) we used fixed time budgets for SR experiments based on
the size and dimensionality of the data sets. Timings are listed in Table 1.

4.2.4 Step 4: System Understanding

To arrive at a convincing ensemble of symbolic regression models we selected
ensembles at the “knee” of the Pareto Front of non-dominated trade-offs in model
complexity and model error spaces. At the last step the non-linear optimization of
constants in all ensemble models was performed. A model ensemble of high-quality
and minimal complexity obtained through an effective SR algorithm can facilitate
system understanding and focus the research.

The main differentiating factors of an effective SR implementations are the
facts that the final ensembles only contain variable drivers, ensembles are con-
structed from maximally different strong SR learners, and therefore provide reliable
confidence intervals for their prediction. Besides variable importance, good final

254 S. Stijven et al.

Table 1 Symbolic regression settings

Name Value

Population size 1000

Archive size 100

Crossover rate 0.9

Mutation rate 0.1

Population tournaments 5

Primitive functions C, �, �,�; ��1, �2, �x,p, log, exp

Time budget FluTE RUN 1,2,3 1000 s

Time budget FluTE RUN 4 7200 s

Time budget FluTE RUN 5 3600 s

Independent evolutions FluTE 8

ensembles also provide dimensionality trade-offs in complexity and accuracy of
models. Another strong benefit of effective symbolic regression implementation is
functionality to automatically generate hypotheses for meta-variables,—low order
transformations of driver inputs, which can potentially linearize the final models and
enable further application of the powerful linear and regularized linear learning.

The ultimate highlight of SR-enabled system understanding is interactive sen-
sitivity analysis of generated ensembles. Interactive exploration as well as math-
ematical optimization of SR ensembles allows to identify “edge-cases”, which
might have been over-looked or un-anticipated by the domain experts. In addition,
interactive prediction explorers are the only way to present the solutions and what-if
scenario exploration to business decision makers (without overburdening them with
mathematical models). Figure 9 illustrates a snapshot of a six-variable prediction
explorer for the clinical attack rate. This and other explorer are publicly available at
http://www.idm.uantwerpen.be.

4.3 Results

4.3.1 Transmission

As stated above we performed a stepwise exploration of the US-tailored simulation
model for pandemic influenza (FluTE), applied to Seattle and Los Angeles county
(Chao et al. 2010). We first simulated epidemics in the Seattle population using four
basic model parameters: R0, whether individuals can travel, the number of infected
individuals introduced into the population and whether this seeding occurs only once
(static) or on a daily basis (dynamic). Table 2 summarizes the parameter ranges.

The surrogate models for the cumulative clinical attack rate(AR) were of good
quality (error < 0.001). The cumulative clinical attack rate is the fraction of the
population that got infected. Although each configuration was executed 20 times,
almost no stochastic fadeout was observed. The dichotomous variable indicating
whether people can travel was absent in most surrogate models. Given the inherent

http://www.idm.uantwerpen.be

Prime-Time: Symbolic Regression Takes Its Place in the Real World 255

Fig. 9 Response plot explorer for the cumulative clinical attack rate. An interactive version of this
plot is available at www.idm.uantwerpen.be

feature selection of SR, this parameter appears to be unimportant to predict the AR
(Stijven et al. 2011). The response plot for the AR (Fig. 10a) shows that the number
of infected people seeded into the population had almost no impact when seeding
once. Only very low numbers of seeded individuals resulted in a different AR. The
impact of the seeding number on the AR increased with daily seeding. We observed
a correlation of 60 % between the AR and the seeding number and frequency though
we expected a major role for R0.

The day of the epidemic peak advanced logarithmically with an increasing
number of infected seeds, although small numbers of seeds could give rise to no

www.idm.uantwerpen.be

256 S. Stijven et al.

a

1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R0

A
tta

ck
R

at
e

0 1000 2000 3000 4000 5000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Infected people seeded

A
tta

ck
R

at
e

b

1.2 1.4 1.6 1.8 2.0 2.2 2.4
0

10

20

30

40

50

60

70

1.2 1.4 1.6 1.8 2.0 2.2 2.4
0

10

20

30

40

50

60

70

R0

D
ay

E
pi

de
m

ic
P

ea
k

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

Infected people seeded

D
ay

E
pi

de
m

ic
P

ea
k

Fig. 10 Response prediction plots of the high-quality surrogate models obtained with SR.
[Adapted from Willem et al. (2014)] Response prediction plot for the cumulative clinical attack
rate (a) and the day on which the epidemic reaches its peak (b) when seeding occurs only once
(black) or on a daily basis (gray). Predictions for R0 assume a fixed number of infected seeds,
indicated by the dot in the panel on the right, and vice versa

or very late peaks (Fig. 10b). There is no consensus in the literature on pandemic
influenza models about how and to which extent infectious individuals should be
seeded. Some studies (Ferguson et al. 2005; Chao et al. 2010; Halloran et al. 2008;
Andradóttir et al. 2011) have been published with static seeding of 1, 10 and 100
individuals while others used dynamic seeding. There seems to be no concern
about the potential impact of these different seeding approaches, as only a shift
of the epidemic curve due to seeding has been reported (Germann et al. 2006). We
explored a wide range of seeding values using both static and dynamic approaches,
and observed that the seeding approach has impact on the results. The surrogate
model divergence for small seeding values was very large so these conditions needed
to be sampled more intensively.

Prime-Time: Symbolic Regression Takes Its Place in the Real World 257

Population

In order to assess the effect of population size, we compared FluTE simulations
for Seattle (0.5 million people) and LA County (11 million people). We used a
single design with four transmission parameters for both populations (Table 2)
and compared the surrogate models of each dataset. We observed similar response
predictions for the AR (Fig. 11a), indicating that this outcome is insensitive to
population size, when population size is already substantial (i.e. 0.5 m). The travel
parameter was absent in most surrogate models for both populations, indicating
that this is inherent to the simulation model. The main difference for the enlarged
population was the timing of the epidemic (Fig. 11b). For example, a pandemic with
R0 = 1.8 and 100 infected seeds would result in an AR of 0.38 for both populations,
but the epidemic peak day in LA County is predicted to be 15 days later compared
to Seattle. The similar AR and postponed peak for the larger population are in line
with results of previous studies (Ferguson et al. 2006; Chao et al. 2010). We did not
compare urban and rural regions due to lack of data although this may have a large
impact (Ferguson et al. 2005). Model ensemble divergence for low seeding numbers
was less for LA County, which suggests that large populations absorb stochastic
effects.

Vaccination

After adjusting the transmission settings, seven parameters for reactive vaccination
strategies were added to the design (Table 2). The computational burden to simulate
Seattle was much lower compared to the LA County. Therefore, we used the
Seattle population for the initial exploration with vaccination parameters. Based
on the resulting input-response data, surrogate modeling showed that mainly the
response threshold and ascertainment fraction were important to predict the AR.
The importance of R0 and the vaccination coverage increased when the response
threshold and ascertainment parameters were set to mimic instant reactive measures,
immediately after emergence.

Emulation

After subsequent simulation and modeling iterations, we obtained surrogate models
for LA County that can be used to explore reactive vaccination policies on the
outcome of ongoing pandemics. Figure 9 shows a basic interface to visualize the
response behavior by changing the surrogate model parameters. When vaccination
coverage is set to zero, the results from the second design emerge again (Fig. 10).
Further exploration of the surrogate models revealed a saturation effect of the
vaccination coverage on the AR. The predicted AR with a vaccination coverage of
60 % is almost zero for R0 = 1.8 and vaccine efficacies of 0.5. The protection of the
general population by vaccination of a subset is known as herd immunity (Piedra

258 S. Stijven et al.

a

1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.0

0.1

0.2

0.3

0.4

0.5

R
0

A
tta

ck
R

at
e

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

Infected people seeded

A
tta

ck
R

at
e

b

1.2 1.4 1.6 1.8 2.0 2.2 2.4
0

20

40

60

80

100

120

140

R
0

D
ay

E
pi

de
m

ic
P

ea
k

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

Infected people seeded

D
ay

E
pi

de
m

ic
P

ea
k

Fig. 11 Response prediction plots for Seattle and LA County. [Adapted from Willem et al. (2014)]
Response prediction plots of the high-quality surrogate models obtained with SR for the cumulative
clinical attack rate (a) and the day of the epidemic peak (b) in Seattle (black) or LA county (gray).
Predictions for R0 assume a fixed number of infected seeds, indicated by the dot in the panel on
the right, and vice versa

et al. 2005). The clear visualization of herd immunity with the surrogate models
emphasizes the usefulness of our approach since it is hard to observe this effect
directly from the numerous individual simulation results. An interactive version of
this plot is available at www.idm.uantwerpen.be.

4.4 Summary of Modern Complex System Analysis

Symbolic Regression combined with intelligent design of experiments has proven
to be an indispensable tool in understanding complicated simulation models and
reducing them to practice. The process of replacing a black-box simulator by an

www.idm.uantwerpen.be

Prime-Time: Symbolic Regression Takes Its Place in the Real World 259

Table 2 Parameter design for all modeling iterations with FluTE and obtained variable
importance for the cumulative clinical attack rate

Parameter RUN 1 RUN 2 RUN 3 RUN 4 RUN 5

Region Seattle Seattle LA County Seattle LA County

Travel allowed? Yes/no (�) Yes/no (�) Yes/no (�) yes yes/no (�)

R0 1.1–2.4 (++) 1.1–2.4 (++) 1.1–2.4 (++) 1.1–2.4 (++) 1.1–2.4 (++)

Infected seeds 0–5000 (+*) 0–1024 (+*) 0–1024 (+*) 0–1024 (+*) 0–1024 (+*)

Seeded daily? Yes/no (++) Yes/no (+) No Yes/no (-) No

Ascertainment 0–90 % (+) 80 %

Ascertainment delay 1–5d (�) 1d

Response threshold 0–5 % (+) instant

Response delay 0–30d (�) instant

Vaccination coverage 0–90 % (�) 0–90% (++)

VEsusceptibility 0–66 % (�) 0–66 % (+)

VEinfectiousness 0–66 % (�) 0–66 % (�)

VEsymptoms 0–66 % (�) 0–66 % (�)

Scenarios 200 200 50 800 200

Repetitions 20 20 10 20 20

Legend: ++ very important, + important, � almost no impact, * only small values, VE:
Vaccine efficacy

interactive profiler of a simulator meta-model provides unique selling points for
several reasons:

• It is critical to understand simulator inputs that impact the Key Performance
Indicators, and SR does just that.

• It is critical to get reliable predictions for predictions of simulator outputs as
well and the trustability of the predictions. Robust ensemble-based symbolic
regression does just that.

• The only way to facilitate data-driven decisions is to empower the decision maker
with simple to use tools to explore what-of scenarios and be best prepared for
whatever is coming.

References

Andradóttir S, Chiu W, Goldsman D, Lee M, Tsui K, Sander B, Fisman D, Nizam A (2011)
Reactive strategies for containing developing outbreaks of pandemic influenza. BMC Public
Health 11(Suppl 1):S1

Chao D, Halloran M, Obenchain V, Longini I (2010) FluTE, a publicly available stochastic
influenza epidemic simulation model. PLoS Comput Biol 6(1):e1000,656

Crombecq K (2011) Surrogate modelling of computer experiments with sequential experimental
design. Ph.D. thesis, University of Antwerp, Antwerp

Crombecq K, Dhaene T (2010) Generating sequential space-filling designs using genetic algo-
rithms and monte carlo methods. In: Simulated evolution and learning. Lecture notes in
computer science, vol 6457. Springer, Berlin, pp 80–84

260 S. Stijven et al.

Crombecq K, De Tommasi L, Gorissen D, Dhaene T (2009) A novel sequential design strategy
for global surrogate modeling. In: Winter simulation conference, Austin, Texas, WSC ’09,
pp 731–742

Evolved Analytics LLC (2011) DataModeler Release 8.0 Documentation. Evolved Analytics LLC
- www.evolved-analytics.com

Ferguson N, Cummings D, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke
D (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature
437(7056):209–214

Ferguson N, Cummings D, Fraser C, Cajka J, Cooley P, Burke D (2006) Strategies for mitigating
an influenza pandemic. Nature 442(7101):448–452

Germann T, Kadau K, Longini Jr I, Macken C (2006) Mitigation strategies for pandemic influenza
in the United States. PNAS 103(15):5935–5940

Halloran M, Ferguson N, Eubank S, Longini I, Cummings D, Lewis B, Xu S, Fraser C, Vullikanti
A, Germann T, et al (2008) Modeling targeted layered containment of an influenza pandemic
in the United States. PNAS 105(12):4639–4644

Husslage B, Rennen G, Van Dam ER, Den Hertog D (2006) Space-filling Latin hypercube designs
for computer experiments. Tilburg University

Kordon AK, Smits GF (2001) Soft sensor development using genetic programming. In: Spector L,
Goodman ED, Wu A, Langdon WB, Voigt HM, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon
MH, Burke E (eds) Proceedings of the genetic and evolutionary computation conference
(GECCO-2001), Morgan Kaufmann, San Francisco, California, pp 1346–1351. http://www.
cs.bham.ac.uk/~wbl/biblio/gecco2001/d24.pdf

Kordon AK (2012) Applying intelligent systems in industry: a realistic overview. In proceedings
of the 6th IEEE international conference intelligent systems. http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?tp=&arnumber=6335108

Kordon AK (2014) Applying genetic programming in business forecasting. Genetic programming
theory and practice XI. http://link.springer.com/chapter/10.1007/978-1-4939-0375-7_6

Ma J, Ackerman E, Yang J (1993) Parameter sensitivity of a model or viral epidemics simulated
with Monte Carlo techniques. I. illness attack rates. Int J Biomed Comput 32:237–253

Piedra P, Gaglani M, Kozinetz C, Herschler G, Riggs M, Griffith M, Fewlass C, Watts M, Hessel C,
Cordova J, et al (2005) Herd immunity in adults against influenza-related illnesses with use of
the trivalent-live attenuated influenza vaccine (CAIV-T) in children. Vaccine 23(13):1540–1548

Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer experiments.
Springer, New York

Smits G, Kotanchek M (2004) Pareto-front exploitation in symbolic regression, Chap. 17
In: O’Reilly UM, Yu T, Riolo RL, Worzel B (eds) Genetic programming theory and practice II.
Springer, Ann Arbor, pp 283–299. doi:10.1007/0-387-23254-0_17

Smits G, Vladislavleva E (2008) Trustable symbolic regression models: using ensembles interval
arithmetic and pareto fronts to develop robust and trust aware models. In: Dow Benelux
BV, Terneuzen (eds) Tilburg University, Tilburg, the Netherlands. Evolved-Analytics, LLC,
Midland, MI, USA http://link.springer.com/chapter/10.1007%2F978-0-387-76308-8_12

Stijven S, Minnebo W, Vladislavleva K (2011) Separating the wheat from the chaff: on feature
selection and feature importance in regression random forests and symbolic regression. In: Pro-
ceedings of the 13th annual conference companion on genetic and evolutionary computation,
Dublin, GECCO ’11, pp 623–630

Trustable symbolic regression models: using ensembles, interval arithmetic and pareto fronts to
develop robust and trust-aware models

Vladislavleva E , Smits G, Kotanchek M (2008) Better solutions faster: soft evolution of robust
regression models in pareto genetic programming. In: Dow Benelux BV, Terneuzen (eds)
Tilburg University, Tilburg, the Netherlands. Evolved-Analytics, LLC, Midland, MI, USA
http://link.springer.com/chapter/10.1007%2F978-0-387-76308-8_2

Willem L, Stijven S, Vladislavleva E, Broeckhove J, Beutels P, Hens N (2014) Active learning to
understand infectious disease models and improve policy making. PLoS Comput Biol 10(4).
doi:10.1371/journal.pcbi.1003563. http://dx.doi.org/10.1371/journal.pcbi.1003563

http://www.evolved-analytics.com
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d24.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d24.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6335108
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6335108
http://link.springer.com/chapter/10.1007/978-1-4939-0375-7_6
doi:10.1007/0-387-23254-0_17
http://link.springer.com/chapter/10.1007{%}2F978-0-387-76308-8_12
http://link.springer.com/chapter/10.1007%2F978-0-387-76308-8_2
http://10.1371/journal.pcbi.1003563
http://dx.doi.org/10.1371/journal.pcbi.1003563

Index

A
A*, 34
Affenzeller Michael, 1
against-replication, 76
ancestry, 185, 187, 191, 195
answers, 67

B
Banzhaf Wolfgang, 39
Burlacu Bogdan, 1

C
Castelli Mauro, 219
caveats, 62
choosing-a-representation-language, 70
Classification, 39
classification, multiple classes, clustering, 219
Conserved Stems, 21
Conserved Stems Extraction, 28
Cross-Validation, 79

D
Data Science, 117
DataModeler, 241
Decision-tree, 39
diversity, 117, 152
Donatucci David, 185

E
Elyasaf Achiya, 22
ensembles, 117
Evolutionary Computation, 79

F
Forecasting, 241

G
genealogy, 185, 187, 191, 195
Genetic Algorithms, 79
Genetic Programming, 39, 79
gp-as-if-you-meant-it, 64
gp-as-mangle-ish-practice, 75
gradient boosted regression, 117
graph database, 185, 189
Gustafson Steven, 117

H
Helmuth Thomas, 151, 185
Heuristic Search, 23
Heuristics, 23
HH-Evolver, 24
Hodjat Babak, 79
Hyper Heuristic, 24

I
industrial application, 117
Ingalalli Vijay, 219
initial-setup-and-restrictions, 71

K
Kaizen Programming, 39
Kommenda Michael, 1
Kordon Arthur, xiv, 241
Korns Michael, 203

© Springer International Publishing Switzerland 2016
R. Riolo et al. (eds.), Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation, DOI 10.1007/978-3-319-34223-8

261

262 Index

Kotanchek Mark, xiv, 241
Krawiec Krzysztof, 170
Kronberger Gabriel, 1

L
lexicase selection, 185, 190, 191
Lexicase selection, diversity, tournament

selection, implicit fitness sharing, 151
lexicase-selection, 68

M
machine learning, 117
Maximum Weighted Clique, 29
McPhee Nicholas Freitag, 151, 185
Milo Nimrod, 22
Muñoz Luis, 219
multidimensional, balanced accuracy,

ensemble, 219

N
Narasimhan Ram, 117
Neo4j, 185, 189

O
O’Reilly Una-May, 170
on-mindful-exercises, 61
on-the-mangle-of-practice, 73
operators, 67
overview, 65

P
Palla Ravi, 117
program trace, execution record, machine

learning, surrogate fitness, behavioral
diversity, implicit fitness sharing,
lexicase selection, 170

Pseudoknots, 22

R
real-world application, 117
Replace Space With Newline problem, 191
Replace Space With Newline problem,

Syllables problem, String Lengths
Backwards problem, Negative To Zero
problem, Double Letters problem,
Scrabble Score problem, Checksum
problem, Count Odds problem, 155

Riolo Rick, xiv

RNA, 22
rubrics, 67

S
Sequence-Structure Motifs, 23
Shahrzad Hormoz, 79
Silva Sara, 219
Simulation-based Optimization, 241
Sipper Moshe, 22
Spector Lee, 151
Stijven Sean, 241
Swan Jerry, 170
Symbolic Regression, 241
Symbolic Regression, Complexity Measures,

Multi-objective Optimization,
NSGA-II, 1

T
target-problems, 71
tdd-as-if-you-meant-it, 62
the-facilitator, 70
the-systems-turn, 72
the-tableau, 66
the-users-turn, 69
tournament selection, 185, 195
Trujillo Leonardo, 219
Truscott Philip, 203

V
Vaks Pavel, 22
Vanneschi Leonardo, 219
Veloso de Melo Vinícius, 39
Vladislavleva Ekaterina, 241

W
warrants, 69
why-a-warrant, 72
why-an-excuse, 60
Willem Lander, 241
Winkler Stephan M,̇ 1
Worzel Bill, viii, xiv
Worzel W. P., 137

Y
Yousuf Aisha, 117

Z
Ziv-Ukelson Michal, 22

	Dedication
	Foreword
	Preface
	Acknowledgments

	Contents
	Contributors
	Evolving Simple Symbolic Regression Models by Multi-Objective Genetic Programming
	1 Introduction
	2 Complexity Measures for Symbolic Regression
	3 NSGA-II for Symbolic Regression
	3.1 Domination of Solutions with Equal Qualities
	3.2 Discrete Objective Functions

	4 Experiments
	4.1 Problems
	4.2 Results
	4.2.1 Exemplary Models
	4.2.2 Noisy Data

	5 Conclusion
	References

	Learning Heuristics for Mining RNA Sequence-Structure Motifs
	1 Introduction
	1.1 RNA Structural Motif Discovery
	1.2 Biological Preliminaries and Definitions
	1.3 Heuristic Search
	1.4 Hyper Heuristics
	1.5 Our Approach: Learning Hyper Heuristics for the Task of Mining RNA Sequence-Structure Motifs

	2 Previous Work
	2.1 Mining Common Structure Among a Set of Unaligned RNA Sequences
	2.2 Learning Hyper Heuristics
	2.2.1 Learning Hyper Heuristics for Planning Systems
	2.2.2 Learning Hyper Heuristics for Specific Domains

	3 Method
	3.1 Casting the Problem of Mining RNA Sequence-Structure Motifs as One of Maximum Weighted Clique in an n-Partite Graph
	3.2 Converting the Maximum Weighted Clique Problem into a State Graph
	3.3 Gather and Define Domain Knowledge and Low-Level Heuristics for this Domain
	3.3.1 Stem Edge Features

	3.4 Learning Hyper Heuristics Using HH-Evolver
	3.4.1 The Hyper Heuristic-Based Genome
	3.4.2 Training and Test Sets
	3.4.3 Fitness
	3.4.4 Search Time

	4 Concluding Remarks
	References

	Kaizen Programming for Feature Construction for Classification
	1 Introduction
	2 Feature Construction
	3 Evolutionary Algorithms for Feature Construction
	4 Kaizen Programming Applied to Feature Construction
	4.1 Implementation

	5 Experiments
	5.1 Pre-processing
	5.2 Computational Environment
	5.3 Organization of the Experiments
	5.4 Method of Analysis
	5.5 Evaluation of the Discovered Features
	5.6 Comparison Against Other Feature Construction Techniques

	6 Conclusions
	References

	GP As If You Meant It: An Exercise for Mindful Practice
	1 Why: An Excuse
	1.1 On Mindful Exercises
	1.2 Caveats

	2 ``TDD As If You Meant It''
	3 GP As If You Meant It
	4 Overview
	4.1 The Tableau
	4.1.1 Answers
	4.1.2 Operators
	4.1.3 Rubrics

	4.2 Lexicase Selection
	4.3 The User's Turn
	4.3.1 Warrants

	4.4 The Facilitator
	4.4.1 Choosing a Representation Language
	4.4.2 Target Problems
	4.4.3 Initial Setup and Restrictions
	4.4.4 The System's Turn

	5 Why: A Warrant
	5.1 On the Mangle of Practice
	5.2 GP as ``mangle-ish Practice''
	5.3 Against Replication

	References

	nPool: Massively Distributed Simultaneous Evolution and Cross-Validation in EC-Star
	1 Introduction
	2 Description
	3 Rule-Based Representation and a Real-World Problem
	4 Experiments
	4.1 Results
	4.2 Discussion

	5 Conclusions
	5.1 Future Work

	References

	Highly Accurate Symbolic Regression with Noisy Training Data
	1 Introduction
	1.1 Example Test Problems

	2 Training with Zero Noise
	3 Training with Noisy Data
	4 Noisy Training with Range Shifting Testing
	5 Conclusion
	About the Author
	References

	Using Genetic Programming for Data Science: Lessons Learned
	1 Introduction
	2 Background
	2.1 Attributes of GP for Data Science
	2.2 Summary of Attributes of Data Science and GP

	3 Case Study: Operations Optimization
	3.1 The Data Science Challenge at Hand
	3.2 Data Management
	3.3 Gradient Boosted Regression
	3.4 Practical Considerations When Implementing the Gradient Boosting Method
	3.5 Adapting the Model to Handle Sensor Drift
	3.6 Genetic Programming Solution
	3.6.1 Visualization
	3.6.2 Diversity

	4 Lessons Learned
	5 Conclusions
	References

	The Evolution of Everything (EvE) and Genetic Programming
	1 Background
	2 Fog Lifter™
	2.1 Example Uses of Fog Lifter
	2.2 Fog Lifter Platform
	2.2.1 Functional Relational Programming (FRP)
	2.2.2 Data Registry
	2.2.3 Conceptual Data Flow Design
	2.2.4 Security and Privacy

	3 The Evolution of Everything (EvE)
	3.1 Non-trivial Geography
	3.2 Evolutionary Reinforcement Learning (ERL)
	3.3 The SKGP
	3.4 GP Reinforcement Learning (GPRL)
	3.5 Assembling EvE

	4 Discussion
	References

	Lexicase Selection for Program Synthesis: A Diversity Analysis
	1 Introduction
	2 Diversity Measures
	3 Experiment and Results
	4 Discussion
	5 Conclusions
	References

	Behavioral Program Synthesis: Insights and Prospects
	1 Introduction and Motivations
	2 Behavioral Program Synthesis
	3 Pattern-Guided Program Synthesis
	3.1 Search Drivers
	3.2 Experimental Evidence

	4 Consequences of Behavioral Perspective
	5 Conclusions
	References

	Using Graph Databases to Explore the Dynamics of Genetic Programming Runs
	1 Introduction
	2 Motivation
	3 A Little Background on Tools and Problems
	3.1 Neo4j and Cypher
	3.2 PushGP
	3.3 Lexicase Selection
	3.4 Replace-Space-with-Newline
	3.5 Our Data

	4 Lexicase, Meet Replace-Space-with-Newline
	4.1 Working Backwards
	4.2 How Exactly Did We Get Here?

	5 How Is Tournament Selection Different?
	6 A Few Cumulative Results
	7 So What Did We Learn In All This?
	References

	Predicting Product Choice with Symbolic Regressionand Classification
	1 Introduction
	2 The Experiment
	3 Results from Utility Summation
	4 Fitness Measures and Classification Problems
	5 The Select() Command
	6 Training and Testing Data
	7 A Decision Tree Search
	8 A Non-Linear Discriminant Analysis (NLDA) Search
	9 A Weighted Search
	10 An Artificial Neural Network (ANN) Search
	11 An NLSE Search
	12 Summary
	Appendix 1: Questionnaire Text
	Appendix 2: Sources of Feature Data
	References

	Multiclass Classification Through Multidimensional Clustering
	1 Introduction
	2 Related Work
	3 M2GP: Multidimensional Multiclass GP
	4 M3GP: M2GP with Multidimensional Populations
	4.1 Initial Population
	4.2 Mutation
	4.3 Crossover
	4.4 Pruning
	4.5 Elitism

	5 eM3GP: M3GP Ensemble Classifier
	6 Experimental Setup
	6.1 Data Sets
	6.2 Tools and Parameters

	7 Results and Discussion
	7.1 Results of M2GP
	7.2 Results of M3GP
	7.3 Results of eM3GP

	8 Conclusions
	References

	Prime-Time: Symbolic Regression Takes Its Place in the Real World
	1 Introduction
	2 Modern Process Optimization
	2.1 Historical Foundations
	2.2 Corporate Goal
	2.3 The Importance of Methodology and Workflow
	2.4 Data Exploration and Analysis Design
	2.5 Model Development
	2.6 Model Exploration and Insight Development
	2.7 Model Selection and Ensemble Definition
	2.8 Process Optimization Summary

	3 Modern Business Forecasting
	4 Modern Complex Systems Analysis and Policy Making
	4.1 Flute Simulator
	4.2 Experimental Workflow
	4.2.1 Step 1: Design of Experiments
	4.2.2 Step 2: Simulation Model
	4.2.3 Step 3: Meta-Modeling with Symbolic Regression
	4.2.4 Step 4: System Understanding

	4.3 Results
	4.3.1 Transmission

	4.4 Summary of Modern Complex System Analysis

	References

	Index

