
Studies in Computational Intelligence 679

Oliver Kramer

Genetic
Algorithm
Essentials

Studies in Computational Intelligence

Volume 679

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the worldwide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

Oliver Kramer

Genetic Algorithm Essentials

123

Oliver Kramer
Department for Computing Science,
Computational Intelligence Group

University of Oldenburg
Oldenburg
Germany

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-52155-8 ISBN 978-3-319-52156-5 (eBook)
DOI 10.1007/978-3-319-52156-5

Library of Congress Control Number: 2016963165

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

Part I Foundations

1 Introduction . 3
1.1 Optimization . 3
1.2 From Biology to Genetic Algorithms . 5
1.3 Genetic Algorithm Variants . 6
1.4 Related Optimization Heuristics . 7
1.5 This Book. 8
1.6 Further Remarks . 9

2 Genetic Algorithms . 11
2.1 Introduction . 11
2.2 Basic Genetic Algorithm. 11
2.3 Crossover . 12
2.4 Mutation . 13
2.5 Genotype-Phenotype Mapping . 15
2.6 Fitness . 15
2.7 Selection . 16
2.8 Termination . 17
2.9 Experiments . 18
2.10 Summary . 19

3 Parameters . 21
3.1 Introduction . 21
3.2 Parameter Tuning . 22
3.3 Meta-Genetic Algorithm . 22
3.4 Deterministic Control . 23
3.5 Rechenberg . 24
3.6 Self-adaptation . 26
3.7 Summary . 28

v

Part II Solution Spaces

4 Multimodality . 31
4.1 Introduction . 31
4.2 Restarts . 32
4.3 Fitness Sharing . 34
4.4 Novelty Search . 35
4.5 Niching. 35
4.6 Summary . 37

5 Constraints. 39
5.1 Introduction . 39
5.2 Constraints . 40
5.3 Death Penalty . 41
5.4 Penalty Functions . 41
5.5 Repair . 43
5.6 Decoders. 43
5.7 Premature Stagnation . 44
5.8 Summary . 45

6 Multiple Objectives . 47
6.1 Introduction . 47
6.2 Multi-objective Optimization . 48
6.3 Non-dominated Sorting. 49
6.4 Crowding Distance . 50
6.5 Rakes . 51
6.6 Hypervolume Indicator . 52
6.7 Summary . 53

Part III Advanced Concepts

7 Theory . 57
7.1 Introduction . 57
7.2 Runtime Analysis . 58
7.3 Markov Chains . 59
7.4 Progress Rates . 59
7.5 No Free Lunch . 61
7.6 Schema Theorem . 61
7.7 Building Block Hypothesis . 62
7.8 Summary . 63

8 Machine Learning . 65
8.1 Introduction . 65
8.2 Covariance Matrix Estimation. 66
8.3 Fitness Surrogates . 67
8.4 Constraint Surrogates . 69

vi Contents

8.5 Dimensionality Reduction for Visualization 70
8.6 Summary . 72

9 Applications . 73
9.1 Introduction . 73
9.2 Unsupervised Regression . 74
9.3 Balancing Ensembles . 75
9.4 Feature Tuning . 76
9.5 Wind Turbine Placement . 77
9.6 Virtual Power Plants . 79
9.7 Summary . 80

Part IV Ending

10 Summary and Outlook . 83
10.1 Summary . 83
10.2 Outlook. 84

References . 85

Index . 91

Contents vii

Abstract

GENETIC ALGORITHMS (GAs) are biologically inspired methods for optimization. In
the last decades, they have grown to exceptionally successful means for solving
optimization problems. Genetic Algorithm Essentials gives an introduction to
GENETIC ALGORITHMS with an emphasis on an easy understanding of the main con-
cepts, most important algorithms, and state-of-the-art applications. The depiction
has three unique characteristics: It does not get lost in unnecessary details, it
considers latest developments like machine learning for evolutionary search, and it
abstains from an overload of formalisms and notations and thus opens the doors to a
broader audience. The first part of this book gives an introduction to GENETIC

ALGORITHMS starting with basic concepts like evolutionary operators. It continues
with an overview of strategies for tuning and controlling parameters. The second
part is dedicated to solution space variants such as multimodal, constrained,
and multi-objective solution spaces. The third part gives a short introduction to
theoretical tools for GENETIC ALGORITHMS, the intersections, and hybridizations with
machine learning and shows a choice of interesting applications.

ix

Part I
Foundations

Chapter 1
Introduction

1.1 Optimization

This book gives an introduction to concepts and ideas of Genetic Algorithms.
Before it begins, it is reasonable to clarify, what kinds of problems are solved with
Genetic Algorithms. The answer is simple and short: optimization problems.
Optimization is the task of finding optimal solutions, which are solutions that have
a better quality than others. We often seek for the global optimal solution, which
is the best solution in the whole solution space. This can be a tedious task, as the
solution space can suffer from constraints, noise, strange fitness function conditions,
unsteadiness, and a large number of local optima. If modeled in an appropriate kind
of way, Genetic Algorithms are able to solve most optimization problems that
occur in practice.

Optimization problems can be found in many domains, from natural sciences to
math and computer science, from engineering to social and daily life. Whenever
the task is to minimize an error, to minimize energy, weight, waste, effort and to
maximize profit, outcome, success, and scores, we face optimization problems.

There are many famous optimization problems in computer science with efficient
algorithms that have been proposed to solve them. For many hard problems no effi-
cient solution is available and heuristics like Genetic Algorithms are reasonable
to apply. The traveling salesman problem is an example for a hard optimization
problem, for which heuristics deliver an acceptable solution in practice. In short, the
traveling salesman problem seeks for a permutation of cities, such that the length of
the tour the salesman has to travel is the shortest. Every city is only allowed to be
visited once except of the starting point that has to be reached at the end of the tour
again. In other words, we seek for the shortest round trip between a set of cities while
visiting each city only once. As the number of possible permutations for this round
trip grows exponentially with the number of cities, this problem is difficult to solve.

In Genetic Algorithm research artificial benchmark problems are used for
experimental research. These functions are explicitly given and analytically solvable.
Hence, their characteristics, their structure, and their optima are well known. Given

© Springer International Publishing AG 2017
O. Kramer, Genetic Algorithm Essentials, Studies in Computational
Intelligence 679, DOI 10.1007/978-3-319-52156-5_1

3

4 1 Introduction

Fig. 1.1 Fitness landscape
of the Sphere function
f (x) = ∑

i x2
i

this information, we can test, if your algorithms are able to solve the corresponding
problems. We can challenge the optimization algorithms. A famous and often applied
example in continuous optimization is the Sphere function, see Fig. 1.1. It is simply
structured and employs only one global optimum in the origin. A Genetic Algo-
rithm for continuous solution spaces should be able to approximate the optimum
fast and with almost arbitrary accuracy.

Genetic Algorithms are the translation of the biological concept of evolu-
tion into algorithmic recipes. They belong to the area of computer science related
to machines and computer programs. As they are part of many intelligent systems,
Genetic Algorithms are frequently counted to the areas of computational intelli-
gence and artificial intelligence, which aim at constructing methods that imitate and
even overcome human intelligence. Meanwhile, a huge collection of methods has
been proposed that fall into these categories.

Classic computational intelligence comprises the three branches Genetic Algo-
rithms, neural networks [88], and fuzzy logic, which have in common to be nature-
inspired. Meanwhile, artificial immune systems and swarm intelligence have also
become important areas in computational intelligence. Artificial intelligence is a term
more related to symbol-oriented algorithms that solve human problems like propo-
sitional logic, planning strategies, and shortest path algorithms. Machine learning
concentrates on methods for learning from data, in particular methods that cover the
problem classes classification, clustering, and dimensionality reduction. The same
holds for data mining, which is machine learning with an emphasis on data bases
and a very large set of data samples.

To summarize, Genetic Algorithms are excellent methods for hard optimiza-
tion problems, where classic optimization methods fail due to difficult characteristics.
Such conditions can be unsteadiness, non-derivability, noise and many other. In the
course of this book it will become clear, why Genetic Algorithms are capable of
handling such conditions.

1.2 From Biology to Genetic Algorithms 5

1.2 From Biology to Genetic Algorithms

Genetic Algorithms are biologically-inspired algorithms for optimization. In his
famous work On the Origin of Species Charles Darwin was the first, who proposed
the concept of evolution [13]. It is an explanation for the biological development of
species with mating selection and survival of the fittest. Evolution developed a rep-
resentation known as deoxyribose nucleic acid (DNA). The DNA encodes creatures
and is the basis for evolutionary processes. In other words, DNA is the representation
for biological life. Creatures are the best example for showing that natural evolution
is a successful optimization process that has been running since four billion years.
The current development of species might also be subject to a longer optimization
process, if genetic material has been carried to earth via asteroids.

The time resolution of evolution varies remarkably. New species can arise in
weeks or even days like bacteria while the evolution of other species remains stable
for long periods. In contrast, turtles are an example for slow and stable evolution.
The fast evolution of bacteria can be explained with its low structural complexity
and the fast reproduction rate. The genome encodes proteins that induce biological
processes in cells and organisms.

Figure 1.2 visualizes the continuous cycle of artificial evolution that is based on
the principles of natural evolution. The evolutionary process begins with randomly
or manually initialized solutions. The evolutionary cycle starts by recombining two
or more solutions with the crossover operator. The outcome is mutated. The best
solutions that have been generated this way are selected for the following generation.
Last, the evolutionary cycle examines, if the termination condition has been met, and
continues the genetic optimization run, if this is not the case yet.

Usually, a population of solutions is employed. But the simplest variant of
Genetic Algorithms is the (1+1)-Genetic Algorithm that is only based on
one parent that is mutated to a child. The selection operator chooses the better solu-
tion, which can be the parent or the child. Recombination is not applied as only
one parent exists in each generation. For almost all kinds of solution representations
crossover and mutation operators can be designed. In the course of this book some

Fig. 1.2 Genetic
Algorithm cycle of
initialization, crossover,
mutation, fitness
computation, selection, and
termination

mutation

crossover

selection

termination
initialization

6 1 Introduction

variants will be introduced like continuous vectors, bit strings, and permutations of
symbols.

1.3 Genetic Algorithm Variants

The development of algorithms that are oriented to evolution began in the sixties of
the 20th century. Four main streams of Genetic Algorithm variants have devel-
oped almost independently. Nowadays, they count to the family of Genetic Algo-
rithms, see Fig. 1.3. This is why the question for Genetic Algorithm variants is
deeply connected to their history. Ingo Rechenberg and Hans-Paul Schwefel evolved
artificial systems with algorithms they called evolution strategies in Europe [86, 93].
This class of Genetic Algorithms is still a famous research branch with an empha-
sis on continuous solution spaces. Gaussian mutation [5] is combined with mutation
rate adaptation mechanisms like Rechenberg’s 1/5th rule [86] or self-adaptation [94].
The latter allows an automatic control of the mutation rates.

Also in the sixties of the 20th century John Holland introduced Genetic Algo-
rithms as optimization methods in the United States [39]. The first Genetic Algo-
rithms were mainly based on binary string representations. A decoder function is
required for mapping the bit string genotype to the phenotype, which is finally the
solution to the particular problem. Crossover operators played a more important role
than mutation in the early days of Holland’s Genetic Algorithms. Mutation was
mainly bit flip mutation flipping zeros to ones and vice versa with a fixed probability.

Moreover, Fogel, Owens and Walsh introduced evolutionary programming [27],
which was originally designed for evolving deterministic finite automata that accept
a set of input strings. Later, evolutionary programming was extended for optimization
in binary and continuous solution spaces as well, also equipped with mutation rate
adaptation techniques.

Today all variants have grown together. It is hardly possible to distinguish dif-
ferent variants, because most concepts, representations, and mechanisms have been
introduced to all algorithmic variants. But there are still tracks on the main Genetic
Algorithm conferences focusing on special solution space characteristics like con-
tinuous spaces in evolution strategies.

Only the fourth branch of Genetic Algorithms can still be distinguished
from the other variants: genetic programming [3, 49]. Genetic programming evolves

genetic
algorithms

evolution
strategies

evolutionary
programming

genetic
programming

Fig. 1.3 Overview of Genetic Algorithm variants. Genetic Algorithms, evolution strategies,
evolutionary programming, and genetic programming belong to the same family of optimization
algorithms

1.3 Genetic Algorithm Variants 7

machine learning programs. Hence, the main difference to other Genetic Algo-
rithms is the representation. Programs can be represented in many ways, for example
as trees or as assembler programs. During the evaluation of the solution quality, the
program is run and its performance is measured.

1.4 Related Optimization Heuristics

Numerous optimization heuristics have been proposed in the last decades that are sim-
ilar to Genetic Algorithms. Most of them have in common that they are inspired
by natural processes and that they are based on stochastic operators. Furthermore,
all have in common that they employ exploration and exploitation mechanisms.
Simulated annealing is based on mutating solutions and accepting them in case of
improvements. With a certain probability based on a decreasing parameter called
temperature worse offspring is accepted [48].

Very closely related to Genetic Algorithms is swarm intelligence [7]. Swarm
algorithms are inspired by natural swarms like birds, bees, and ants and are con-
sequently also based on populations of individuals. Particle swarm optimization
algorithms mimic the movement of flocks to move in solution space [47]. Oriented
to the movements of their neighbors and the best positions in solution space found so
far, particles move in solution space with velocities and randomness. This plays the
role of the explorative mechanism. The orientation to the best so far found positions
is the exploitative counterpart.

Ant colony optimization algorithms are search algorithms well appropriate for
combinatorial optimization problems [20]. Based on the idea of pheromones that
ants leave on the surfaces while finding the shortest way from a nest to food sources,
ant colony optimization algorithms distribute pheromones as reward signals on useful
solution fragments depending on the quality of the overall solution.

Fireworks algorithms imitate the movements and dynamic of fireworks [98]. A
shower of sparks fills the local space around the firework. This concepts is very
related to Genetic Algorithms as it tries to find optimal locations of fireworks
while iteratively generating sparks, similar to mutation, evaluating each location and
finally choosing the best location as basis for the following iteration. Recently, a
mechanism has been proposed for balancing exploration and exploitation [11].

Firefly algorithms mimic the flashing behavior of fireflies [106]. The idea is that
unisexual fireflies are attracted by the brightness of solutions that reflects their quality
decreasing with increasing distances. If no firefly is brighter than a defined distance
is exceeded, fireflies randomly move in space.

8 1 Introduction

1.5 This Book

This book is an introduction to Genetic Algorithms. Genetic Algorithms
are biologically inspired optimization heuristics. Meanwhile established as solid
methodological playground, in particular for difficult optimization problems, a long
line of research has proven their success, experimentally and theoretically. Conse-
quently, the list of topics associated with Genetic Algorithms has grown, which
is surely overwhelming for beginners in the field. But also the expert may sometimes
be surprised about the variety of areas and evolving fields. Figure 1.4 visualizes a list
of typical keywords that are associated with Genetic Algorithms and that play
a role in the course of this book reaching from genetic operators like mutation and
selection to applications like learning and constraint handling. The variety of topics
is large and the list of research papers in each field is overwhelming. However, when
having a closer look, many concepts are similar to each other, a baseline of similar
mechanisms and heuristics exists. It is the task of this book to identify the most
important ones and to compose them to a comprehensive depiction.

There are many good related depictions. Most of them put another focus on
the introductory concepts. Eiben and Smith [23] give a good overview to Genetic
Algorithms. The book is an attractive introduction of Genetic Algorithm
concepts and gives an overview to many related fields. A recommendation to all
researchers, who are interested in theoretical results, is the book by Neumann and
Witt [80]. It introduces basic proof techniques and exemplary shows interesting run-
time analysis results. An introduction to the related field of machine learning is
given by James et al. [42], which is an introductory variant of the famous counterpart
Elements of statistical learning [38].

This book is structured as follows.

• Chapter 2 gives an introduction to Genetic Algorithms concentrating on the
most important concepts like populations, the generational scheme, crossover,
mutation, selection, genotype-phenotype mapping, and termination conditions.

• Chapter 3 puts an emphasis on tuning and control of Genetic Algorithms’
parameters. It turns out that the genetic search crucially depends on the choice
of adequate parameters. The chapter gives an introduction to different tuning and
control strategies like dynamic control, Rechenberg’s mutation rate control, and
self-adaptation.

Fig. 1.4 Cloud of typical
keywords associated with
Genetic Algorithms

genetic algorithms

1/5th success rule

mutation rates

evolution strategies multimodal

multi-objectiveselection

mutationrecombination

http://dx.doi.org/10.1007/978-3-319-52156-5_2
http://dx.doi.org/10.1007/978-3-319-52156-5_3

1.5 This Book 9

• Chapter 4 present strategies for overcoming local optima in order to approximate
the global one, or at least to find as many local optima as possible. Strategies
comprise restarts, niching, fitness sharing, and novelty search.

• Chapter 5 gives an introduction to constraint handling. Practical optimization prob-
lems are often constrained. Not the whole solution space is allowed, but only a
feasible subset. Genetic Algorithms have to be adapted to cope with constraints.
One strategy is to choose representations and operators that avoid infeasible solu-
tions. An easy way to cope with constraints is the use of penalty functions, which
deteriorate the fitness of a solution.

• Chapter 6 presents multi-objective optimization approaches. Multiple optimiza-
tion goals induce multiple objectives. If they are conflictive, the minimization
of one objective results in the maximization of another. Strategies like the non-
dominated sorting Genetic Algorithm, rake selection, and selection based on
the hypervolume indicator allow the approximation of a Pareto-set of solutions.

• Chapter 7 gives an introduction to theoretical research on Genetic Algorithms.
Starting with an overview of theoretical research in this area, a runtime analysis
is exemplarily presented and an overview of further theoretical tools is presented.

• Chapter 8 presents research in the intersection between machine learning and
Genetic Algorithms. Machine learning algorithms can be used to improve and
support genetic search. Examples include covariance matrix estimation, meta-
modeling, and visualization. Genetic Algorithms are effective tuning and learn-
ing approaches for machine learning problems.

• Chapter 9 shows Genetic Algorithms in various applications. Genetic Algo-
rithms can be used to optimize machine learning problems, to optimize wind tur-
bine locations considering wake effects and geo-constraints, to scale the features
of wind power data in nearest neighbor regression, and to optimize rule bases for
virtual power plants.

• Finally, Chap. 10 closes with a summary of the most important aspects and con-
tributions of this book.

The book closes with a summary and an appendix containing supplementary infor-
mation.

1.6 Further Remarks

This depiction passes on complex notations where possible. Although a thorough
mathematical formulation might be much more exact helping to implement and
model certain aspects and details, it also can complicate the understanding of con-
cepts, the context, and the connections between different mechanisms. However, here
is some basis notation that we usually employ in our depictions. A vector is a bold
small letter x while a scalar is written with a small plain letter.

Also the pseudocode of most algorithms presented in this book passes on com-
plex notations. More important than the interpretation of possibly arbitrary levels of

http://dx.doi.org/10.1007/978-3-319-52156-5_4
http://dx.doi.org/10.1007/978-3-319-52156-5_5
http://dx.doi.org/10.1007/978-3-319-52156-5_6
http://dx.doi.org/10.1007/978-3-319-52156-5_7
http://dx.doi.org/10.1007/978-3-319-52156-5_8
http://dx.doi.org/10.1007/978-3-319-52156-5_9
http://dx.doi.org/10.1007/978-3-319-52156-5_10

10 1 Introduction

abstractions and formalisms is the understanding of the introduced concepts. This is
provably easier for beginners, if the depiction is easy.

The figures throughout this book have been created withApple Keynote. Plots
have been generated with Python and matplotlib [41]. As Python allows fast
prototyping of new ideas and concepts, it is the recommended programming lan-
guage in our related lectures and research activities. Further, the employment of
Python-based machine learning methods is recommended, for example for meta-
modeling, covariance matrix estimation, and dimensionality reduction. A recom-
mended machine learning library is sklearn [84], which is also extensively used
in [56]. Sklearn contains implementations of most state-of-the-art machine learn-
ing methods like support vector machines, k-means clustering, and neural networks.
The library is steadily improved and extended.

Chapter 2
Genetic Algorithms

2.1 Introduction

Genetic Algorithms are heuristic search approaches that are applicable to a wide
range of optimization problems. This flexibility makes them attractive for many
optimization problems in practice. Evolution is the basis of Genetic Algorithms.
The current variety and success of species is a good reason for believing in the power
of evolution. Species are able to adapt to their environment. They have developed
to complex structures that allow the survival in different kinds of environments.
Mating and getting offspring to evolve belong to the main principles of the success
of evolution. These are good reasons for adapting evolutionary principles to solving
optimization problems.

In this chapter we will introduce the foundations of Genetic Algorithms.
Starting with an introduction to the basic Genetic Algorithm with populations, we
will introduce the most important genetic operators step by step, which are crossover,
mutation, and selection. Further, we will discuss genotype-phenotype mapping, com-
mon termination conditions, and give a short excursus to experimental analysis.

2.2 Basic Genetic Algorithm

The classic Genetic Algorithm is based on a set of candidate solutions that repre-
sent a solution to the optimization problem we want to solve. A solution is a potential
candidate for an optimum of the optimization problem. Its representation plays an
important role, as the representation determines the choice of the genetic operators.
Representations are usually lists of values and are more generally based on sets of
symbols. If they are continuous, they are called vectors, if they consist of bits, they
are called bit strings. In case of combinatorial problems the solutions often consist of
symbols that appear in a list. An example is the representation of a tour in case of the
traveling salesman problem. Genetic operators produce new solutions in the chosen

© Springer International Publishing AG 2017
O. Kramer, Genetic Algorithm Essentials, Studies in Computational
Intelligence 679, DOI 10.1007/978-3-319-52156-5_2

11

12 2 Genetic Algorithms

representation and allow the walk in solution space. The coding of the solution as
representation, which is subject to the evolutionary process, is called genotype or
chromosome.

Algorithm 1 shows the pseudocode of the basic Genetic Algorithm, which can
serve as blueprint for many related approaches. At the beginning, a set of solutions,
which is denoted as population, is initialized. This initialization is recommended
to randomly cover the whole solution space or to model and incorporate expert
knowledge. The representation determines the initialization process. For bit string
representations a random combination of zeros and ones is reasonable, for example
the initial random chromosome 1001001001 as a typical bit string of length 10.
The main generational loop of the Genetic Algorithm generates new offspring
candidate solutions with crossover and mutation until the population is complete.

Algorithm 1 Basic Genetic Algorithm
1: initialize population
2: repeat
3: repeat
4: crossover
5: mutation
6: phenotype mapping
7: fitness computation
8: until population complete
9: selection of parental population

10: until termination condition

2.3 Crossover

Crossover is an operator that allows the combination of the genetic material of two
or more solutions [97]. In nature most species have two parents. Some exceptions
do not know different sexes and therefore only have one parent. In Genetic Algo-
rithms we can even extend the crossover operators to more than two parents. The
first step in nature is the selection of a potential mate partner. Many species spend a
lot of resources on selection processes, but also on the choice of a potential partner
and on strategies to attract partners. In particular, males spend many resources on
impressing females. After the selection of a partner, pairing is the next natural step.
From a biological perspective, two partners of the same species combine their genetic
material and inherit it to their offspring.

Crossover operators in Genetic Algorithms implement a mechanism that
mixes the genetic material of the parents. A famous one for bit string represen-
tation is n-point crossover. It splits up two solution at n positions and alternately
assembles them to a new one (Fig. 2.1). For example, if 0010110010 is the first par-
ent and 1111010111 is the second one, one-point crossover would randomly choose
a position, let us assume 4, and generate the two offspring candidate solutions 0010-

2.3 Crossover 13

parent 1 parent 2

offspring 1 offspring 2

splitting point

Fig. 2.1 Illustration of one-point crossover that splits up the genome of two solutions at an arbitrary
point (here in the middle) and re-assembles them to get two novel solutions

010111 and 1111-110010. The motivation for such an operator is that both strings
might represent successful parts of solutions that when combined even outperform
their parents. This operator can easily be extended to more points, where the solutions
are split up and reassembled alternately.

For continuous representations, the crossover operators are oriented to numerical
operations. Arithmetic crossover, also known as intermediate crossover, computes
the arithmetic mean of all parental solutions component-wise. For example, for the
two parents (1, 4, 2) and (3, 2, 3) the offspring solution is (2, 3, 2.5). This crossover
operator can be extended to more than two parents. Dominant crossover successively
chooses each component from one of the parental solutions. Uniform crossover by
Syswerda [97] uses a fix mixing ratio like 0.5 to randomly choose a bit from either
of the parents. The question comes up, which of the parental solutions take part in
the generation of new solutions. Many Genetic Algorithms simplify this step and
randomly choose the parents for the crossover operation with uniform distribution.

2.4 Mutation

The second protagonist in Genetic Algorithms is mutation. Mutation operators
change a solution by disturbing them. Mutation is based on random changes. The
strength of this disturbance is called mutation rate. In continuous solution spaces the
mutation rate is also known as step size.

There are three main requirements for mutation operators. The first condition is
reachability. Each point in solution space must be reachable from an arbitrary point
in solution space. An example that may complicate the fulfillment of this condition
is the existence of constraints that shrink the whole solution space to a feasible
subset. There must be a minimum chance to reach every part of the solution space.
Otherwise, the chance is not positive that the optimum can be found. Not every
mutation operator can guarantee this condition, for example decoder approaches
have difficulties covering the whole solution space.

14 2 Genetic Algorithms

The second good design principle of mutation operators is unbiasedness. The
mutation operator should not induce a drift of the search to a particular direction,
at least in unconstrained solution spaces without plateaus. In case of constrained
solution spaces bias can be advantageous, which has been shown in [50, 62]. Also
the idea of novelty search that tries to search in parts of the solution space that are
unexplored yet, see Chap. 4, induces a bias on the mutation operator.

The third design principle for mutation operators is scalability. Each mutation
operator should offer the degree of freedom that its strength is adaptable. This is
usually possible for mutation operators that are based on a probability distribution.
For example, for the Gaussian mutation that is based on the Gaussian distribution
the standard deviation can scale the randomly drawn samples in the whole solution
space. The implementation of the mutation operators depends on the employed rep-
resentation. For bit strings bit flip mutation is usually used. Bit flip mutation flips a
zero bit to a one bit and vice versa with a defined probability, which plays the role of
the mutation rate. It is usually chosen according to the length of the representation.
If N is the length of the bit string, each bit is flipped with mutation rate 1/N . In
Chap. 7 we will present a runtime analysis that is based on bit flip mutation. If the
representation is a list or string of arbitrary elements, mutation randomly chooses a
replacement for each element. This mutation operator is known as random resetting.
Let [5, 7,−3, 2] be the chromosome with integer values that come from the interval
[−10, 10], then random resetting decides for each component, if it is replaced. If
the component is replaced, it randomly chooses a new value from the interval. For
example, the result can be [8,−2,−5, 6].

For continuous representations, Gaussian mutation is the most popular opera-
tor. Most processes in nature follow a Gaussian distribution, see Fig. 2.2. This is a
reasonable assumption for the distribution of successful solutions.

A vector of Gaussian noise is added to a continuous solution vector [5]. If x is the
offspring solution that has been generated with crossover,

x′ = x + σ · N (0, 1) (2.1)

Fig. 2.2 The Gaussian
distribution is basis of the
Gaussian mutation operator
adding noise to each
component of the
chromosome

http://dx.doi.org/10.1007/978-3-319-52156-5_4
http://dx.doi.org/10.1007/978-3-319-52156-5_7

2.4 Mutation 15

preprocessing.normalize(X, norm='l2')

10 01 11 00

Imputer(missing_values='NaN', strategy='mean', axis=0)

Ridge(alpha=a).

gamma=10).fit_transform(X)

Fig. 2.3 Example of genotype-phenotype mapping for a machine learning pipeline. The bit string
encodes a pipeline of normalization, imputation, dimensionality reduction, and regression

is the Gaussian mutation with N (0, 1) as notation for a vector of Gaussian-based
noise. Variable σ is the mutation rate that scales the strengths of the noise added. The
Gaussian distribution is maximal at the origin. Hence, with the highest probability
the solution is not changed or only slightly. The Gaussian mutation is an excellent
example for a mutation operator that fulfills all mentioned conditions. With σ it is
arbitrarily scalable. Moreover, with a scalable σ, all regions in continuous solution
spaces will be reachable. Due to the symmetry of the Gaussian distribution, it does
not prefer any direction and is hence driftless.

2.5 Genotype-Phenotype Mapping

After crossover and mutation, the new offspring population has to be evaluated. Each
candidate solution has to be evaluated with regard to its ability to solve the optimiza-
tion problem. Depending on the representation a mapping of the chromosome, the
genotype, to the actual solution, which is denoted as phenotype, is necessary. This
genotype-phenotype mapping should avoid introducing a bias. For example, a biased
mapping could map the majority of the genotype space to a small set of phenotypes.
The genotype-phenotype mapping is not always required. For example, in contin-
uous optimization, the genotype is the solution itself. But many other evolutionary
modeling processes require this mapping.

An example is the evolution of machine learning pipelines. Each step in a machine
learning pipeline can be coded as binary part in a genome, see Fig. 2.3 for a mapping
from a bit string to Python commands from sklearn. For example, 10 at the
beginning of the bit string causes a normalization preprocessing step while 00 at
the end calls ridge regression. Such a mapping from genotypes to phenotypes is an
essential part of the Genetic Algorithm modeling process.

2.6 Fitness

In the fitness computation step the phenotype of a solution is evaluated on a fitness
function. The fitness function measures the quality of the solutions the Genetic
Algorithm has generated. The design of the fitness function is part of the modeling
process of the whole optimization approach. The practitioner can have an influence

16 2 Genetic Algorithms

on design choices of the fitness function and thus guide the search. For example, the
fitness of infeasible solutions can be deteriorated like in the case of penalty functions,
see Chap. 5. In case of multiple objectives that have to be optimized at the same time,
the fitness function values of each single objective can be aggregated, for example by
computing the weighted sum. This technique and further strategies to handle multiple
objective functions at the same time are discussed in Chap. 6. An important aspect
is a fair evaluation of the quality of a solution. It sounds simple to postulate that a
worse solution should employ a worse fitness function value, but a closer look is often
necessary. Should a solution that is very close to the global optimum, but constrained
have a worse fitness value than a bad solution that is feasible? And should a solution
that is close to the optimum of the first objective in multi-objective optimization, but
far away from the optimum of a second objective, which is much less important, get a
worse fitness function value than a solution that is less close to the first optimum but
much closer to the second one? To summarize, the choice of the penalty for infeasible
solutions and the choice of appropriate weights in multi-objective optimization are
important design objectives.

Most approaches aim at minimizing the number of fitness function calls. The
performance of a Genetic Algorithm in solving a problem is usually measured
in terms of the number of required fitness function evaluations until the optimum is
found or approximated with a desired accuracy. Minimizing the number of fitness
function calls is very important, if a call is expensive, for example, if a construction
element has to be generated for each evaluation. Fitness function calls may also
require a long time, for example, if a simulation model has to be run to evaluate the
parameters generated with the Genetic Algorithm. The machine learning pipeline
that is evolved with a Genetic Algorithm is a good example for a comparatively
long fitness evaluation. For each evaluation the machine learning pipeline has to be
trained on the data set. To avoid overfitting it is required to repeat the training multiple
times with cross-validation, which additionally takes time. Finally, the accuracy of
the prediction model has to be evaluated on a test set in order to get a precision score
that can be used as fitness function value.

2.7 Selection

To allow convergence towards optimal solutions, the best offspring solutions have
to be selected to be parents in the new parental population. A surplus of offspring
solutions is generated and the best are selected to achieve a progress towards the
optimum. This selection process is based on the fitness values in the population. In
case of minimization problems low fitness values are preferred and vice versa in case
of maximization problems. Minimization problems can easily be transformed into
maximization problems with negation. Of course, this also works for transforming
maximization problems into minimization problems.

Elitist selection operators select the best solutions of the offspring solutions as
parents. Comma selection selects the μ best solutions from λ offspring solutions.

http://dx.doi.org/10.1007/978-3-319-52156-5_5
http://dx.doi.org/10.1007/978-3-319-52156-5_6

2.7 Selection 17

Plus selection selects the μ best solutions from λ offspring solutions and the μ old
parents that led to their creation.

Many selection algorithms are based on randomness. Roulette wheel also known
as fitness proportional selection selects parental solutions randomly with uniform
distribution. The probability for being selected depends on the fitness of a solution.
For this sake, the relative fitness of solutions normalized with the sum of all fitness
values in a population, usually by division. This fraction of fitness can be understood
as probability for a solution of being selected. The advantage of fitness-proportional
selection operators is that each solution has a positive probability of being selected.

In case of comma selection good parents can be forgot. Also the randomness
of fitness proportional selection allows forgetting of the best solutions. Although
this might sound contra-productive for the optimization process at first, forgetting
may be a reasonable strategy to overcome local optima. Another famous selection
operator is tournament selection, where a set of solutions is selected randomly and
within this competition subset, the best solutions are finally selected as new parents.
The second step can be implemented with fitness proportional selection as typical
example. Tournament selection offers a positive probability for each solution to
survive, even if it has worse fitness values than other solutions.

When using selection as mechanism to choose the parents of the new generation,
it is called survival selection. The selection operator determines, which solutions sur-
vive and which solutions die. This perspective directly implements Darwin’s principle
of survival of the fittest. But the introduced selection operators can also be employed
for mating selection that is part of the crossover operators. Mating selection is a
strategy to decide, which parents take part in the crossover process. It makes sense
to consider other criteria for mating selection than for survival selection.

2.8 Termination

The termination condition defines, when the main evolutionary loop terminates.
Often, the Genetic Algorithm runs for a predefined number of generations. This
can be reasonable in various experimental settings. Time and cost of fitness func-
tion evaluations may restrict the length of the optimization process. A further useful
termination condition is convergence of the optimization process. When approxi-
mating the optimum, the progress of fitness function improvements may decrease
significantly. If no significant process is observed, the evolutionary process stops.
For example, when approximating the optima of continuous optimization problems,
the definition of stagnation as repeated fitness difference lower than 10−8 in multiple
successive generations is reasonable. Of course, stagnation can only mean that the
search might have got stuck in local optima, hence missing the global one. Restart
strategies, see Chap. 4, are approaches that avoid getting stuck in the same local
optima. If the Genetic Algorithm repeatedly approximates the same area in solu-
tion space although starting from different areas, the chance is high that the local

http://dx.doi.org/10.1007/978-3-319-52156-5_4

18 2 Genetic Algorithms

optimum is a large attractor, and a better local optimum is unlikely to find. It can
also be that this local optimum is the global one.

2.9 Experiments

The experiment has been the main analytic tool since the beginning of Genetic
Algorithm research. Hence, carefully conducted experiments have an important
part to play. The first task before the experimental analysis is the formulation of a
research question. As Genetic Algorithm experiments have a stochastic outcome,
a temptation of some researchers might be to bias the results by selecting only the
best runs. However, a fair comparison shows all experiments, although one might
feel that at least one run was bad luck. It may not have reached the optimum and thus
may be disturbing the presentation of the average runs. To be statistically sound, at
least 25 repetitions are usually required, 50 or 100 is also a recommendable choice.
More runs are often not necessary, more than 1000 repetitions can already be bad
as unlikely outliers might occur. In the extreme case of outstandingly expensive
optimization runs 15, 10, or even 5 runs can be a necessary compromise.

Table 2.1 shows the experimental comparison between two Genetic Algo-
rithms, a normal (1 + 1)-Genetic Algorithm and a (1 + 1)-Genetic Algo-
rithm with nearest neighbor meta-model (MM-GA) on the two continuous bench-
mark functions Sphere and Rosenbrock [89]. The concept of a Genetic Algo-
rithm with meta-model, also called fitness function surrogate, will be introduced in
Chap. 8. The experiments have been repeated 25 times. The results show the means
and the standard deviations of all runs in terms of fitness function values after 5000
iterations. Iterations correspond to fitness function evaluations in case of a (1 + 1)-
Genetic Algorithm.

The results show that the Genetic Algorithm with meta-model achieves lower
fitness function values. The optimum of both benchmark functions lies at the origin
with a fitness value of 0.0. The question comes up, if the algorithm that achieves
a better fitness function value in average is really better in practice. Is the result
resilient from a statistical perspective? An answer to this question is only possible,

Table 2.1 Experimental comparison of two Genetic Algorithms, one with, the other without
fitness function meta-model on the Sphere function and on Rosenbrock, from [55]

Problem (1 + 1)-GA MM-GA Wilcoxon

d Mean Dev Mean Dev p-value

Sphere 2 2.067e-173 0.0 2.003e-287 0.0 0.0076

10 1.039e-53 1.800e-53 1.511e-62 2.618e-62 0.0076

Rosenbrock 2 0.260 0.447 8.091e-06 7.809e-06 0.0076

10 0.519 0.301 2.143 2.783 0.313

http://dx.doi.org/10.1007/978-3-319-52156-5_8

2.9 Experiments 19

if we perform a statistical test. It tells us, if the comparison between two algorithms
is statistically valid.

The question for an appropriate statistical test is comparatively easy to answer.
The famous student T-test is not applicable, since the outcome of Genetic Algo-
rithm experiments is not Gaussian distributed. But the Gaussian distribution is a
necessary prerequisite of the T-test, which examines, if two sets of observations
come from the same distribution. An appropriate test for Genetic Algorithms is
the Wilcoxon rank sum test [104]. It does not make assumptions on the distributions
of the data. Instead, the Wilcoxon test sorts the outcomes of both sets of experimen-
tal observations and performs an analysis solely based on the ranks of this sorting.
A small Wilcoxon value of under 0.05 proofs statistical relevance. Coming back
to Table 2.1, the results show that the Genetic Algorithm with meta-model and
a superior fitness is performing significantly better than its competitor, the simple
Genetic Algorithm.

2.10 Summary

Genetic Algorithms are successful optimization approaches that allow optimiza-
tion in difficult solution spaces. In particular, if no derivatives are available and if the
fitness landscape suffers from ill-conditioned parts, Genetic Algorithms are rea-
sonable problem solvers. In this chapter we summarized the foundations of Genetic
Algorithms. They are based on populations of solutions that approximate optima
in the course of iterations. Genetic operators change the solutions. Crossover oper-
ators combine the genomes of two or more solutions. Mutation adds randomness to
solutions and should be scalable, drift-less, and reach each location in solution space.
The genotype or chromosome of a solution is mapped to a phenotype, the real solu-
tion, before it can be evaluated on the fitness function. The latter has to be carefully
designed as it has a crucial impact on the search direction. Selection chooses the best
solutions in a population for survival. These solutions are the parents of the following
generation. With the introduced concepts at hand, we are already able to implement
simple Genetic Algorithms. The next chapters will introduce useful mechanisms
and extensions for Genetic Algorithms, which tweak their performance and make
them applicable to a broad spectrum of problems.

Chapter 3
Parameters

3.1 Introduction

The success of Genetic Algorithm optimization processes significantly depends
on the choice of appropriate parameters. The question comes up how to find the opti-
mal parameter choices. The problem is an optimization problem within the optimiza-
tion challenge of the original problem. Moreover, some parameter setting and tuning
tasks turn out to be dynamic optimization problems, as the optimal choice varies in the
course of the optimization process. Some taxonomies differentiate between exoge-
nous and endogenous parameters [22, 46, 51]. Exogenous parameters are global
parameters of the Genetic Algorithm defining global properties like population
sizes and selection pressure. Endogenous parameters define properties on the level
of chromosomes. The latter appear multiple times in a population and are usually
excellent candidates for self-adaptive parameter control, which will be introduced in
this chapter.

Parameter tuning and control techniques have been developed that allow tun-
ing of Genetic Algorithms before the run. Settings can be tuned by systemat-
ically testing values, by employing latin hypercube designs, and by treating them
as optimization challenges. Control strategies are designed for finding appropriate
parameters during the run of an algorithm. Dynamic control strategies control the
parameters depending on static schemes like the number of generations. Adaptive
parameter control strategies use a feedback from the search like Rechenberg’s muta-
tion rate control. Self-adaptation is the automatic control of parameters based on a
secondary genetic optimization process. Most parameter tuning and control strate-
gies are broadly applicable. They can be implemented in most Genetic Algorithm
variants with only minor adaptations. With this chapter and the previous one, the
depiction of the foundations of Genetic Algorithms is complete.

© Springer International Publishing AG 2017
O. Kramer, Genetic Algorithm Essentials, Studies in Computational
Intelligence 679, DOI 10.1007/978-3-319-52156-5_3

21

22 3 Parameters

3.2 Parameter Tuning

As first step in research on parameter tuning for Genetic Algorithm search, many
static settings were proposed. Particular parameter settings like the choice σ = 0.1
for mutation rates in bit flip mutation were usual. Later, it was discovered that no
optimal settings exist that are feasible for all problems. This is part of the no-free-
lunch problem that will be introduced in more detail in Chap. 7. There is no parameter
choice that is optimal for all problems. Once we have found a good algorithm or
parameter setting for one problem or a problem class, we can be sure that there are
problems, on which the approach or particular parameter settings will fail.

Parameter tuning strategies treat the parameterization of Genetic Algorithms
as optimization problem. There are various kinds of ways to tune parameters. Some
are supported by statistics like latin hypercube sampling. The latter is a method that
promises to cover the data space while sampling from a multidimensional distribution
with as few samples as possible. It generates only one sample in each dimension.

Others are based on simple grid search. Unlike many machine learning approaches
like support vector machines, the parameter tuning problem in Genetic Algo-
rithms is more crucial to proper settings. For parameters like the regularization para-
meter and the width of the radial basis function kernel of support vector machines,
a coarse grid search in the exponents of ten are often sufficient like the interval
[10−20, 10−19, . . . , 1020]. Such a coarse tuning is not sufficient for Genetic Algo-
rithm settings, for example for mutation rates.

Expert knowledge is a good source for proper parameter settings. The practitioner
has a good feeling for the behavior of the Genetic Algorithm. If domain knowl-
edge is available, guesses and estimations by the expert will be close to the true
optimal parameter settings. Approaches exist that support the parameter calibration
process with statistical methods [15].

3.3 Meta-Genetic Algorithm

The meta-Genetic Algorithm uses a Genetic Algorithm to tune the parame-
ters of a Genetic Algorithm that solves the actual optimization problem [16].
Algorithm 2 shows the pseudocode of the meta-Genetic Algorithm. In the main
generational loop a population of parameter candidates is produced with crossover
and mutation. It is very similar to the basic Genetic Algorithm introduced in
Chap. 2 with the exception that the fitness computation is not conducted on a fitness
function, but on the outcome of the repeated runs of an inner Genetic Algorithm
that solves the actual optimization problem. The inner Genetic Algorithm has
to be repeated multiple times as its outcome is stochastic. For the inner Genetic
Algorithm, a reasonable measure has to be computed that is basis of the outer
Genetic Algorithm’s fitness function. Such a measure can be the median, mean,
or the best run. It is also reasonable to take into account the standard deviation to be
sure that an outlier is not responsible for the evaluation of the current parameter set.

http://dx.doi.org/10.1007/978-3-319-52156-5_7
http://dx.doi.org/10.1007/978-3-319-52156-5_2

3.3 Meta-Genetic Algorithm 23

Algorithm 2 Meta-Genetic Algorithm
1: initialize population
2: repeat
3: repeat
4: crossover of parameters
5: mutation of parameters
6: run Genetic Algorithm multiple times

with parameters
7: until population complete
8: selection of parental parameters
9: until termination condition

The outer Genetic Algorithm often achieves better parameter settings than the
ones a practitioner could have chosen, but this performance has its price. The major
disadvantage of the meta-Genetic Algorithm is its inefficiency. The computa-
tional effort to achieve this objective is enormous. The inefficiency results from the
fact that each fitness function evaluation of the outer Genetic Algorithm causes
multiple runs of the inner Genetic Algorithm. Finally, the question comes up, if
the investment of the complete load of fitness function evaluations into the parameter
tuning process would better have been invested into the search in the original solution
space.

3.4 Deterministic Control

In the remainder of this chapter we concentrate on parameter control strategies, which
are designed for finding the best parameters during the genetic optimization run. In
deterministic control an external scheme is used to control the parameters during
the run [1, 26]. Coupling the mutation rate to the generation counter is a common
strategy. It allows the adaptation of the mutation rates during the run. A multiplicative
decrease like σ′ = σ · 0.9 can be applied. In most cases a reduction of the mutation
rate is necessary to allow convergence towards the optimum. But the rigid behavior
can be disadvantageous in many situations. The external scheme does usually not
exactly match the optimal mutation rate decrease. Furthermore, an increase is not
possible without a feedback from the search process. A fast optimization is only
possible, if the mutation rate adaptation scheme exactly matches the requirements,
which is also again a parameter tuning problem. Figure 3.1 illustrates a typical
mutation rate decrease performing a linear development with an additive scheme like
σ′ = σ−0.01. Two exemplary optimal mutation rates leading to the highest progress
rates could be achieved with different control strategies. The dynamic control strategy
does not match the optimal ones, but develops similarly. In situations that require
a high flexibility in particular in situations, where an increase of mutation rates is
advantageous, dynamic mutation rate control fails. The strategy cannot know how
to react without feedback from the search.

24 3 Parameters

Fig. 3.1 Illustration of
actual parameter control
(solid line) representing a
typical mutation rate
decrease, and two exemplary
optimal developments that
do not match, but that are
close to the control strategy

generations

dynamic

optimal 1

optimal 2

mutation rate

3.5 Rechenberg

Adaptive control strategies are designed for considering feedback from the search.
A famous mechanism for adaptive parameter control is Rechenberg’s mutation rate
control [86]. Its idea is to increase the mutation rate whenever possible to accelerate
the search. Further, a decrease of the mutation rate is reasonable, if the search gets
stuck. Rechenberg’s idea is to measure the success probability of the mutation oper-
ators. Algorithm 3 shows the pseudocode of the Rechenberg rule. If it is successful
with a probability higher than 1/5, the rule increases the mutation rate, usually in an
exponential way. For a (1 + 1)-Genetic Algorithm success can easily be measured
via the ratio of successful generations. If we choose a reference number of gener-
ations, for example five oriented to the illustration of Fig. 3.2, and we observe that
the Genetic Algorithm generates a better offspring solution than its parent in 3 of
the 5 generations, we assume that larger steps are possible in solution space to move
faster towards the optimum. An increase of the mutation rate can simply be achieved
by multiplying it with a factor larger than 1. The mutation rate is decreased, if the
success rate is lower than 1/5. It is not changed, if the success rate is equal to 1/5.
For example, when one solution is successful in five generations, no change of the
mutation rate is recommended.

The mechanism of Algorithm 3 has to be embedded within the generational loop
of a Genetic Algorithm. The choices of the number of generations we observe
the search before we apply the Rechenberg rule and the factor we use to modify for
the multiplicative increase and decrease of the mutation rate define the speed of the
adaptation behavior.

3.5 Rechenberg 25

Fig. 3.2 Illustration of Rechenberg’s mutation rate control strategy

Algorithm 3 Rechenberg rule
1: measure success
2: if success rate > 1/5 then
3: increase mutation rate
4: else if success rate < 1/5 then
5: decrease mutation rate
6: end if

The idea of the Rechenberg rule is to stay in the so-called evolution window, which
guarantees optimal progress rates. To illustrate the advantages of adaptive parameter
control in continuous solution spaces, Fig. 3.3 shows a comparison between a simple
(1 + 1)-Genetic Algorithm without mutation rate control and the same Genetic
Algorithm with Rechenberg’s mutation rate control on the Sphere function with
10 dimensions. Both Genetic Algorithms were run for 10,000 generations cor-
responding to the same number of fitness function evaluations. The fitness is plotted
on a logarithmic scale. The plot shows the average, best, and worst of 30 runs. All
other runs lie in the shadowed area. The results show that the adaptive mutation rate
control is necessary to let the Genetic Algorithm approximate the optimum. The
fitness development is linear on the logarithmic scale. Such approximation behavior
is desirable in continuous solution spaces.

For Genetic Algorithms that use a population of candidate solutions the
Rechenberg rule can also be applied. A reference like the best fitness of each genera-
tion can be used to evaluate the generation-wise success. If the offspring population
is large enough, the rate of successful solutions can be measured and an adaptation
of the mutation rate is possible in each generation.

26 3 Parameters

Fig. 3.3 Comparison of a
Genetic Algorithm
without mutation rate control
but constant mutation rate
(const.) and a Genetic
Algorithm with
Rechenberg’s mutation rate
control (Rechen.) on the
Sphere function

3.6 Self-adaptation

Self-adaptation in Genetic Algorithms is the automatic evolutionary control of
mutation rates [94]. In self-adaptive parameter control each solution gets an own
mutation rate that is subject to crossover and mutation. The mutation rate becomes
an endogenous parameter in contrast to the dynamically controlled mutation rate and
Rechenberg’s strategy, where the mutation rate is a global exogenous one. As the
mutation rate is bound to each individual, it can be inherited with the selected solu-
tions. Algorithm 4 shows the pseudocode of the self-adaptive Genetic Algorithm.
It is closely related to the basic Genetic Algorithm of Chap. 2, but employs strat-
egy parameters that are subject to crossover and mutation, and are inherited over
generations bound to the candidate solutions.

For crossover, standard continuous crossover operators are usually applied. Muta-
tion rates for continuous representations are usually positive real numbers, for exam-
ple specifying the Gaussian distribution. For mutation of the mutation rates special
operators are available. Very appropriate for the self-adaptive operator of continu-
ous mutation rates is the log-normal mutation operator. It allows an adaptation in the
exponents of the exponential function exp and a logarithmically linear approximation
of the optimum with

σ′ = σ · exp(τ · N (0, 1)). (3.1)

The mutation rate τ serves as mutation rate of the mutation rates. There are recom-
mendations for the choice of τ that depend on the problem dimensionality [5]. The
optimal choice has been theoretically determined for simple functions, for example
for the unimodal and symmetric Sphere function.

http://dx.doi.org/10.1007/978-3-319-52156-5_2

3.6 Self-adaptation 27

Algorithm 4 Self-adaptive Genetic Algorithm
1: initialize population of x and σ
2: repeat
3: repeat
4: crossover of σ
5: crossover of x
6: mutation of σ
7: mutation of x with σ
8: fitness computation
9: until population complete

10: selection of parental population
11: until termination condition

Self-adaptation can be extended in various kinds of ways. First, for multivariate
Gaussian mutation, it can be extended for adapting multiple mutation rates at once.
For this sake, an individual is equipped with a vector of mutation rates, one for
each dimension. This is advantageous for difficult solution space conditions. To
handle a mutation rate vector, the log-normal mutation operator is adapted. A global
part applies Eq. 3.1 to all components of the mutation rate vector at once while an
individual part applies the equation to each single mutation rate component. This
can be described in one equation and implemented in few lines of source code. Two
mutation parameters τ are introduced, one for the global and one for the component
level.

As highly developed field, further extensions for parameter control in continuous
solution spaces have been developed. One is correlated mutation that can be imple-
mented with a diagonal matrix rotating the mutations or with a set of angles that
describe the rotation for each axis. To allow self-adaptation, each individual must be
equipped with such a rotation matrix or set of angles. Another alternative for para-
meter control in continuous solution spaces is self-adaptive biased mutation. Unlike
the principle of drift-less mutations, self-adaptive biased mutation allows to bias the
Gaussian distribution by shifting its center. Direction and magnitude control the bias.

Self-adaptation can also be applied to exogenous parameters like population sizes
and selection pressures. This is achieved by equipping each individual with a parame-
ter and aggregating these to a global one. The aggregation of endogenous parameters
is a mapping of local individual-based parameters to one global parameter. It is
similar to averaging all parameters by taking into account all parents for arithmetic
crossover, which would result in one global aggregated parameter in the end.

Self-adaptation is the search in a space of parameters that is performed simul-
taneously during the main optimization process. The search in parameter space is
guided by the success in the primary solution space. This is hardly possible, if the
parameter search space is high-dimensional with only few candidate solutions. More-
over, self-adaptation may suffer from premature stagnation of the search process. A
frequent phenomenon is that mutation rates decrease before reaching the optimum
due to drastically decreasing success rates, for example in the vicinity of constraint
boundaries. This will be discussed in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-52156-5_5

28 3 Parameters

3.7 Summary

The choice of appropriate parameters is essential for the success of Genetic Algo-
rithms. Static parameters that are kept constant during the Genetic Algorithm
run can be tuned beforehand. Sampling strategies like the latin hypercube sampling
and grid search are often applied to tune parameters. Statistical methods can support
the tuning process. Some parameters must be controlled during the run for a signifi-
cant improvement of the search. An easy parameter control technique is the dynamic
control with the typical linear or exponential decrease of parameters like mutation
rates during approximation of the optimum. A parameter control technique is much
more flexible when considering feedback from the search. This allows to flexibly
adapt to the search process. The Rechenberg rule is an example for mutation rate
control based on the success rate during the optimization process. It is an excellent
method for continuous mutation rate control and only requires the specification of
parameters that define the magnitude of the mutation rate change.

Self-adaptation of mutation rates lets the evolutionary process take control of the
parameter adaptation problem. Successful parameters are inherited with the individ-
ual and spread over the population. They are subject to crossover and mutation before
they are applied to the chromosome of the candidate solution. Self-adaptation can
also be used for discrete parameters.

Part II
Solution Spaces

Chapter 4
Multimodality

4.1 Introduction

Many optimization problems are difficult to solve. The existence of numerous local
and global optima can significantly complicate the search. Local optima have a better
fitness than their environment. Such a local optimum may be the global one, but it is
often not. Further, the Genetic Algorithm does not know, if it has already found
the global optimum. The fitness landscape can be very hilly with many neighbor-
ing local optima that attract optimization algorithms like Genetic Algorithms.
Algorithms that employ a population of candidate solutions may get trapped in areas
of local optima, which we also call niches or basins in the following. Contrariwise,
populations of candidate solutions allow a Genetic Algorithm to get rid of local
optima, as the chance increases with a larger number of candidate solutions to jump
outside into another niche of the solution space.

Optimization problems with a fitness landscape employing many local optima
are called multimodal. To illustrate the problem of numerous local optima, Fig. 4.1
shows the fitness landscape of a solution space with four local optima that are at the
same time global optima. For many practical problems it can be desirable to detect as
many local and potentially global optima as possible. For other problems it may be
desirable to get rid of local optima and only concentrate on hunting the global one.
For the situation illustrated in the figure it may be desirable to find all local optima.
This offers the practitioner the possibility to choose among different solutions with
different characteristics. For example, in engineering, such an alternative solution
could require different materials. If there is a shortage of any kind of material type,
an alternative solution might allow the flexibility to change the production process.

There are many standard mechanisms in Genetic Algorithms that aim at coping
with local optima. A population targets at increasing the chance of exploring parts
of the solution space apart from the majority of the existing solutions. Mutation
operators provide the possibility for jumps outside of a niche by allowing large
steps in solution space with a small but positive probability. Most selection operators

© Springer International Publishing AG 2017
O. Kramer, Genetic Algorithm Essentials, Studies in Computational
Intelligence 679, DOI 10.1007/978-3-319-52156-5_4

31

32 4 Multimodality

Fig. 4.1 Multimodal fitness
landscape with four optima

have a positive probability for worse solutions of being selected, although they are
outperformed by solutions in attracting niches.

Apart from the standard Genetic Algorithm mechanisms like populations,
mutation, and selection operators, strategies have been proposed that explicitly aim
at taking care of multimodal solution spaces. Restart strategies repeat the search
multiple times, each time from different parts of the solution space. Fitness sharing
assigns the same fitness to numerous solutions in a niche to maintain diversity in
the population. Novelty strategies aims at exploring new parts of the solution space.
Niching strategies detect potential locations of optima and search in each niche until
the corresponding optima are approximated.

4.2 Restarts

A simple strategy against getting stuck in local optima and waste time in approximat-
ing a basin of the solution space that might not be the global one is to perform random
restarts. The Genetic Algorithm is started multiple times, see the illustration in
Fig. 4.2. Starting from different parts in solution space, each optimization process
approximates the closest local optimum. It may be reasonable to change parameters
in each run. This change can include the starting position, but also population sizes,
mutation rates, and selection pressure. A famous strategy is to double the population
size for each new restart. This is applied in a restart variant of the CMA-ES for exam-
ple [70]. Doubling the population size increases the chance of exploring different
parts of solution space. When reaching the same local optima in successive Genetic
Algorithm runs, this is a good indicator that the current parameterization should
be adapted to a more explorative strategy with larger population sizes and mutation
rates.

4.2 Restarts 33

Fig. 4.2 Illustration of
restart strategy. Starting from
different parts in solution
space each optimization
process approximates the
closest local optima

starting points

local optima

A perspective on restart strategies is that the Genetic Algorithm performs
some kind of random walk in the space of local optima. Each run reaches one of the
closer local optima. But the Genetic Algorithm does not exploit information of
neighboring local optima and instead simply restarts the evolutionary process from
an arbitrary point in solution space.

More focused on controlling the global search in the space of local optima is the
idea to globally control the mutation rate. For example, in [52] we combine local
search that is usually associated with detecting a local optimum in a basin of the
solution space with a mutation rate mechanism that acts on a global level. Algorithm 5
illustrates the local mutation rate control idea. It increases the global mutation rate,
if the same local optimum is repeatedly reached to achieve exploration. The search
is not restarted at a random position, but uses the last local optimum as basis for the
mutation with the global mutation rate. In turn, the mechanism decreases the mutation
rate on the global level, if new solutions are found after each local approximation.
The mechanism is similar to Rechenberg’s success, but reverses its direction. The
decision, how often a local optimum must be reached until the mutation rate is
increased, is a performance tradeoff problem. The probability of being sure that
the same local optimum is reached, increases with the number of repetitions, which
might be expensive. The proper choice of the magnitude of the change of the mutation
rate depends on the solution space characteristics. The same holds for the threshold
that defines the similarity of solutions. For example, if we are not interested in local
optima that differ more than 10−2, we should define this threshold accordingly and
we may be able to terminate the search in each local optimum after stagnation in the
range of 10−3.

Algorithm 5 Global mutation rate control
1: repeat
2: mutate local optimum
3: local search
4: if same local optimum then
5: increase mutation rate
6: else
7: decrease mutation rate
8: end if
9: until termination condition

34 4 Multimodality

4.3 Fitness Sharing

Fitness sharing is the idea of assigning the same fitness to numerous solutions in
a niche to maintain diversity in the population. A simple but effective variant is to
assign all solutions in a region to their average fitness value. The selection operator
cannot distinguish between the solutions anymore and is forced to treat them in
the same kind of way. This allows numerous worse solutions to survive and thus
hinders the evolutionary process to converge too fast to optima in niches. Promising
solutions can continue their walk in solution space. However, such a mechanism
hinders convergence against attractive areas, which is the typical tradeoff between
exploration and exploitation.

If solutions spread over a hilly fitness landscape, see Fig. 4.3, fitness sharing makes
this region look like a plateau (dashed blue line). Fitness sharing directly interacts
with the selection operator. Most selection operators like elitist selection and fitness
proportional selection will randomly choose any of the solutions with shared fitness
instead of concentrating on the local optima of the hilly region. This will allow the
search leaving this region and moving into a novel attractive area like the larger basin
on the right hand side.

Fitness sharing requires the specification of the candidate solutions that share the
same fitness. This can simply be defined by a randomly chosen solution within a
neighborhood. For this sake, the size of the neighborhood in solution space must be
specified. Clustering, which will be explained in more detail later in this chapter in the
context of niching strategies, is another possibility to identify groups of chromosomes
that should share the same fitness function values. Clustering aims at identifying
groups of solutions with similar characteristics.

It is important that the fitness sharing mechanism can be switched off in the course
of the optimization process to allow convergence to potential optima. More advanced
are mechanisms that adapt the fitness sharing mechanism. The combination with
novelty search operators, see next section, will allow biasing the search faster away
from the fitness plateaus. Within a region of the solution space that is protected against
selection with fitness sharing, novelty search allows a walk towards unexplored parts.

best local optimum

Fig. 4.3 Illustration of fitness sharing for avoiding getting stuck in hilly parts of the solution space

4.4 Novelty Search 35

4.4 Novelty Search

Novelty search is an interesting technique that aims at exploring unknown areas of
the solution space. Unknown areas may accommodate local or even global optima.
If local optima attract the search, the exploration of unknown areas may allow the
detection of potential basins useful to search in. Novelty search requires the evaluation
of the novelty and uniqueness of solutions. Various measures are available for this
evaluation. A reasonable measure is the distance of a solution to the solutions in a
population or to the solutions in an archive that is managed during the search process.
Various distance measures are reasonable in this context. Most often, the Euclidean
distance is used.

An exemplary mechanism for novelty search for generating a candidate solution
is presented in Algorithm 6. After initialization of the population new solutions are
generated with crossover and mutation. The variant checks, if the new solution can
be classified as outlier. If this is true, the novelty condition is fulfilled and the loop is
exited. The rest of the Genetic Algorithm works as usual. When the population
is complete, it is evaluated on the fitness function for selection of the new parental
population.

Algorithm 6 Novelty search operator
1: repeat
2: crossover
3: mutation
4: outlier check
5: until novelty condition fulfilled

The novelty of a solution can also be evaluated on the prediction error of a meta-
model of the fitness function. This idea is based on the assumption that a novel
solution from an unknown part of the solution space results in a bad meta-model
accuracy as the solution space is sparsely covered with solutions in that area. The
meta-model or surrogate concept will be introduced in Chap. 8. It is a machine learn-
ing method that is trained on an archive of past solutions. The solutions play the
role of patterns while the fitness function values are the corresponding labels. This
novelty measure is not unproblematic. The prediction error can also be large in case
of noise and highly structured data spaces. But also in such solution space areas,
further search is reasonable.

4.5 Niching

Niching is a technique that separates Genetic Algorithm optimization processes
to focus on specific parts of the solution space. The idea of niching is that attractive
basins in solution space exist that must first be identified. Then, independent evolu-
tionary processes concentrate on optimization within these niches. Biological niches

http://dx.doi.org/10.1007/978-3-319-52156-5_8

36 4 Multimodality

in nature allow species to share an environment without competing for the same
resources. Avoiding competition results in more genetic diversity at one place. This
also holds for the search with Genetic Algorithms. If there is no global selection
pressure on the whole population, but only in niches, the search can maintain enough
diversity to approximate local optima in these basins (Fig. 4.4).

Often, clustering methods are employed to detect niches in multimodal fitness
landscapes. Clustering groups patterns according to intrinsic properties of the data.
It belongs to the class of unsupervised learning methods in machine learning. Unsu-
pervised methods do not employ label information for learning, but learn models
solely based on the intrinsic structure of patterns. Densities and variances in data
sets allow the identification of groups that belong together and consequently define
a cluster. Numerous clustering methods have been introduced in literature. One of
the most popular ones is k-means that iteratively repeats assigning solutions to the
closest cluster centers and re-computing the cluster centers of all assigned solutions.

Within a niche, the search can be focused by adapting the mutation rate to a
setting that makes it improbable to leave. From the perspective of the exploration and
exploitation dilemma the operators of the Genetic Algorithm care for exploring
new promising regions in solution space while the clustering approach cares for the
maintenance and therefore for the exploitation of explored regions, in which the
convergence process can safely be conducted.

Figure 4.5 illustrates clustering with density-based spatial clustering of appli-
cations with noise (DBSCAN) and belongs to the density-based clustering meth-
ods [25]. With a user-defined radius, illustrated by the grey circles, and a minimum
number of patterns, the density of points is estimated. If the density exceeds a cer-
tain threshold and more points lie within the radius, a point is classified as core
point. All core points that lie within the radius of others belong to the same cluster.
Points at the border that are no core points but lie within the radius of a core point
also belong to that cluster. Patterns that are neither core points nor corner points are
noise. Density clustering methods are attractive as they do not require an estimate of
the number of clusters in the data sets and as they allow the detection of clusters of
arbitrary shape. Instead, they depend on the specification of density properties. How-
ever, most density-based clustering methods suffer from the curse-of-dimensionality
problem in high-dimensional data spaces. This is particularly disadvantageous for
high-dimensional solution spaces. Further clustering methods that might be more
appropriate to the particular solution spaces can be applied instead.

Fig. 4.4 Niching allows
maintaining diversity in
different basins of solution
space, here for two niches

niche 1 niche 2

4.6 Summary 37

corner point
core point

noise

Fig. 4.5 Illustration of DBSCAN. Core points and corner points are defined via density parameters
and result in clusters

4.6 Summary

Multimodal solution spaces are difficult challenges for optimization heuristics. The
task is to approximate as many local optima as possible. This chapter gave an intro-
duction to multimodal optimization methods. There are many strategies for detecting
numerous local optima. Besides the standard mechanisms based on population sizes
and parameter control, this chapter introduced numerous corresponding methods.

Restart strategies perform genetic search multiple times and can reach different
local optima with the help of different starting points and conditions. With this
strategy they try to approximate new local optima, which can potentially be the global
ones. More focused on exploiting knowledge from the past search is the strategy to
control a global mutation rate with the help of tracking successively reached local
optima. Other techniques concentrate on maintaining diversity in a population. This
can be achieved with fitness sharing that hinders selection from the reduction of
diversity by assigning the same fitness to a set of solutions. Novelty search favors
solutions that are different from the main population. Outlier detection methods can
be used to test the novelty of a solution. Niching aims at explicitly detecting basins
in the solution space and focusing the search in each niche. Niches are often detected
with clustering algorithms. The techniques can also be combined to improve the
success of finding as many local optima as possible. Niching strategies slow down
the convergence process as they aim at maintaining diversity in the population. This
tradeoff between exploration and exploitation is the usual price that has to be paid
for dealing with multimodal optimization problems and algorithms. It is the task of
the practitioner to carefully choose Genetic Algorithm extensions like the ones
presented in this chapter and to tune their relevant parameters in order to allow an
effective and efficient optimization process. The development of methods that allow
balancing the tradeoff between exploration and exploitation for certain classes of
optimization problems is an active research field.

Chapter 5
Constraints

5.1 Introduction

Many practical optimization problems involve one or more constraints. Constraints
reduce the solution space to a feasible subset. They can have numerous origins.
Mathematical and logical restrictions, physical conditions like material constraints,
and numerous further examples reduce a combinatorial or continuous solution space
to a feasible subset. From the perspective of Genetic Algorithms a mechanism
must be offered that allows treating the case that a solution is not feasible. This can
be implemented with a constraint function. Similar to fitness functions the objective
is to find the optimum with few constraint function calls. Different scenarios are
possible. Constraint function calls might be cheap. In this case, a lot of sampling
is possible to generate feasible solutions, which can be checked for their fitness in
the second step. In case of expensive constraint function calls it is worth to spend
effort on mechanisms that reduce their number significantly. Further, it is possible
that we get different information about an infeasible solution. The solely information
if a solution is feasible carries less information than detailed information about the
magnitude of constraint violations of one or even more constraint functions.

For optimization with Genetic Algorithms the question comes up how con-
straints can be considered. One attempt is to adapt the genetic operators so that they
can generate feasible solutions efficiently. In this chapter we introduce constraint
handling techniques for Genetic Algorithms. The easiest one is death penalty
that repeats generating solutions until a feasible one is available. Penalty functions
deteriorate the fitness of constrained solutions to allow the search in infeasible parts
of the solution space. Decoders map the constrained solution space to an alternative
one that is not constrained or that employs easier constraints. There are numerous
further constraint handing techniques, which are shortly overviewed in this chapter.

© Springer International Publishing AG 2017
O. Kramer, Genetic Algorithm Essentials, Studies in Computational
Intelligence 679, DOI 10.1007/978-3-319-52156-5_5

39

40 5 Constraints

5.2 Constraints

Constraints reduce the feasible solution space to a smaller one (Fig. 5.1). In practice
constraints can be logical restrictions, material characteristics, physical conditions,
runtime bounds, and many more. The result can be that a solution is not applicable
since it is not realizable, for example, a solution might crash a simulation model. For
optimization purposes constraints are handled as functions that restrict the feasible
solution space. For example, in continuous solution spaces, constraints can be for-
mulated as equations and inequations. An equation can be expressed via two inequa-
tions with different signs. Without loss of generality, we can reverse the inequality
by changing its sign. One can be transferred into the other by changing the sign.
The result of a constraint function call can be a binary value indicating feasibility
or infeasibility. But it can also be more detailed information giving insights into the
magnitude of the constraint violation.

One way to handle constraints, which sounds simple at first, is to avoid them. The
question is how to choose a representation and how do design genetic operators such
that all restrictions are immediately fulfilled and all possible solutions are feasible.
An example is the traveling salesman problem. A feasible solution starts at a city,
visits all cities only once, and returns to the first at the end. If the solution to this
problem is represented as list of cities, genetic operators might generate solutions that
are not feasible. For example, the standard n-point crossover operator can generate
solutions, which do not contain all cities or which visit the same city multiple times.
The solution is the design of an operator that takes care of repeatedly visited and
missing cities. Partially mapped crossover is a special recombination operator that
has been designed to tackle this problem [32]. It changes a part of the genome
of a combinatorial representation like the one of the traveling salesman problem
and afterwards replaces all swaps that took place to avoid duplicates and restore
deletions. The design of such feasibility preserving constraint handling methods can
be a tedious task. A relatively simple variant for continuous solution spaces will be
introduced in the following.

Fig. 5.1 Illustration of
solution space with one
linear constraint that divides
the solution space into a
feasible and an infeasible
part

feasible

x
2

x1

infeasible
constraint boundary

5.3 Death Penalty 41

5.3 Death Penalty

One of the simplest methods to handle constraints is death penalty. Death penalty
is sometimes referred to as penalty function, see the following section. But as it
often significantly differs in its use and implementation, we devote it an own section.
Death penalty belongs to the feasibility preserving constraint handling methods.
Algorithm 7 shows the pseudocode of genetic operators that are forced by death
penalty to generate feasible solutions. After crossover and mutation, the feasibility
of the novel solution is checked. If the solution is not feasible, the process is repeated
until its feasibility is fulfilled.

Algorithm 7 Death penalty
1: repeat
2: crossover
3: mutation
4: check constraints
5: until solution is feasible

Death penalty is obviously an easy mechanism to handle constraints. However,
there are good reasons not to use it. First, if the ratio of feasibility in the solution
space is very low, death penalty is an inefficient method. Many tries may be required
to generate one or even more feasible solutions. This tedious undertaking may be
very inefficient in practice, in particular because the optimum often lies at the border
or even in a corner of the feasible solution space part surrounded by constraints.

If the success rate is very low, meaning that it is very improbable to generate
feasible solutions, a major problem is premature mutation rate reduction. With a
mutation control mechanism like Rechenberg’s success rule or self-adaptation, the
mutation rates may drop due to decreasing success probabilities when employing
death penalty. This phenomenon will be discussed later in this chapter.

5.4 Penalty Functions

A famous constraint handling approach is the reduction of the fitness of infeasible
solutions with penalty functions. Penalty functions deteriorate the fitness of a con-
strained solution to make it less attractive for being selected for a new generation. In
case of maximization problems the fitness is reduced. In turn, in minimization prob-
lems, the fitness is increased. The ratio of fitness changes depends on the amount
of constraint violation, which may further be scaled by a penalty factor α. A con-
straint function g(x) measures the constraint violation. The value is higher for larger
constraint violations. Hence, in case of minimization problems, the fitness can be
deteriorated but adding a positive value. A typical penalty function

f ′(x) = f (x) + α · g(x) (5.1)

42 5 Constraints

feasible

x
2

x1

infeasible

optimum

unconstrained
optimum

constraint boundary

Fig. 5.2 Illustration of penalty function principle. It penalizes solutions in the infeasible part of
the solution space and allows searching in the infeasible part of the solution space

implements this idea and scales the fitness deterioration with a continuous penalty
factor α.

Penalty functions allow the search to take place in the infeasible part of the solution
space. Figure 5.2 illustrates this situation. Darker solutions employ a higher fitness.
The ones closer to the unconstrained optimum are penalized due to their constraint
violation. Search near the border of feasibility is advantageous, as the optimum is
often located at the border. Penalty functions can most efficiently be applied, if the
magnitude of infeasibility can be measured with the constraint function yielding more
than only a binary value. The penalty factor controls the balance between infeasible
and feasible solutions by controlling the magnitude of the penalty. Penalty functions
can only be applied, if the fitness of solutions can be measured or at least estimated
although being infeasible.

As the choice of the penalty factor depends on the problem instance, there is no
general recommendation. Instead, it may be reasonable to adapt the penalty factor in
the course of the genetic optimization process [44]. Under the assumption that the
optimum lies at the border of the feasible solution space, it is reasonable to balance the
search. If the majority of the solutions is feasible, the penalty factor can be weakened
to let the search take place in the infeasible part. In turn, the penalty factor can be
increased, if too many solutions are infeasible. Such balancing approaches have been
proposed recently in [61]. This approach implements the described mechanism by
taking into account the feasibility of solutions during the last generations. It tries to
keep the feasibility rate approximately around 1/5th, similar to the success rule of
Rechenberg’s mutation rate control, see Chap. 3.

http://dx.doi.org/10.1007/978-3-319-52156-5_3

5.5 Repair 43

Fig. 5.3 Illustration of
repair approach. An
infeasible solution is repaired
by linear projecting with the
help of the closest feasible
solution or the fittest one

feasible
solution space

infeasible
solution space

optimum

closest

constraint boundary

5.5 Repair

Repair approaches make infeasible solutions feasible. We mentioned the traveling
salesman problem as example for a constrained problem at the beginning of the
chapter. An infeasible solution would visit two or more cities multiple times or
would not visit some cities at all. Such a solution could be repaired by removing
duplicates or by adding missing ones. This can be done in a naive way by simple
deletion and insertion processes. More sophisticated repair operators would consider
the tour length when adding or removing cities.

For continuous solution spaces repair operators project an infeasible solution to
a feasible one. Such a projection can be done by searching on a line between the
infeasible solution and a feasible reference. Figure 5.3 illustrates the repair approach
for a solution space with an infeasible solution and two solutions in the feasible
region. The closest solution that is feasible is a good reference point for the projec-
tion process. The strategy to consider the tour length when repairing an infeasible
traveling salesman tour is similar to considering the fittest solution in a population
when repairing it. In continuous solution spaces a repaired solution can be based
on the projection between the infeasible solution and the fittest solution, also see
the illustration in Fig. 5.3. Repair approaches require knowledge about the solution
space and have to be adapted to the employed representation. They might either be
part of the genetic operators or of the generational loop.

5.6 Decoders

Decoders map the constrained solution space to an unconstrained one or at least to a
solution space with less difficult conditions. The genetic optimization process takes
place in the unconstrained space, which can make the optimization process much
easier. The trick is that a mapping must be available that covers as much solution
space as possible with similar characteristics. A mapping back from the decoder
space is also necessary for getting the original chromosome encoding a solution to
the problem.

44 5 Constraints

Fig. 5.4 Decoder functions
map a complicated
constrained solution space to
an easier one, where the
search is less difficult to
perform

feasible feasible

infeasible infeasible

decoder

constraint boundary

Figure 5.4 illustrates the concept of a decoder function. The original constrained
solution space has a curved constraint boundary and holes. After the decoder function
mapping the solution space is smoother without holes but with a linear constraint
boundary. For the latter a linear constraint boundary meta-model can be learned, see
Chap. 8.

The key question is how to design such a decoder function. This is surely a
difficult challenge and significantly depends on the solution space. Kernel functions
known from support vector machines [103] can be employed for this mapping. Kernel
functions are mainly known in machine learning for the purpose of handling nonlinear
data spaces. A mapping back from the kernel space to the original space can be a
tedious task.

5.7 Premature Stagnation

A problem that often occurs in case of solution space conditions with low success
probabilities is premature stagnation of the fitness function approximation process.
Constrained problems may suffer from premature stagnation at the boundary of the
feasible solution space. The reason is mainly a major decrease of mutation rates
caused by low success probabilities.

Figure 5.5 illustrates the continuous situation for the Sphere function with one
linear constraint. Here, premature stagnation can occur because the area of success,
which is the area with better fitness, has disadvantageous properties. The closer
the search comes to the optimum of the constrained problem, the less the direction
of the optimum attracts the search. Contour lines of the fitness function, two are
exemplarily shown in Fig. 5.5, lie almost parallel to the linear constraint when being
close to the optimum. Hence, the constraint boundary attracts solutions that are no
directed to the optimum. There are even solutions (dark blue) that are further away
from the optimum but employ a better fitness than solutions that are closer with
worse fitness (light blue). Further, the probability of generating feasible solutions
when using death penalty as constraint handling method and a spherical mutation

http://dx.doi.org/10.1007/978-3-319-52156-5_8

5.7 Premature Stagnation 45

feasible

x
2

x1

infeasible

optimum

constraint boundary

Fig. 5.5 Premature stagnation can occur at the constraint boundary in continuous solution
spaces [50]

operator like Gaussian mutation, significantly decreases in the neighborhood of the
constraint boundary.

To prevent premature stagnation in this specific case, numerous strategies can be
employed. A mutation operator that is able to adapt to the shape of the constraints is
advantageous, for example correlated mutation that can rotate an elliptical Gaussian
shape to the angle of the constraint line [50, 94]. Further, a minimum mutation rate
can prevent premature stagnation [50, 62]. To allow convergence to the optimum,
a mechanism is required that reduces the minimum mutation rate in the course of
the optimization process. Such a reduction mechanism can be based on the rate of
infeasible solutions, which increases when coming closer to the constraint boundary
and decreases, when the mutation rate is reduced.

5.8 Summary

Constraints can make a difficult optimization problem even more difficult to solve.
In this chapter we introduced the constrained optimization problem for Genetic
Algorithms. We discussed various definitions of constraints. The emphasis of the
chapter was on introducing constraint handling techniques for Genetic Algo-
rithms. One of the simplest and most successful mechanism is death penalty that
discards infeasible solutions until enough feasible are available. Penalty functions
decrease the fitness of solutions that are infeasible. They are easy to implement,
easy to control and allow the search taking place in the infeasible region of solution
space. With a controllable penalty factor, penalty functions can be adapted to put an
emphasis on the infeasible part of the solution space.

46 5 Constraints

Repair approaches repair infeasible solutions based on mechanisms that are
adapted to the solution space characteristics, for example linear projections in case
of continuous solution spaces. Decoder functions map the constrained solution space
to a decoder space with simpler properties, where the search with Genetic Algo-
rithms is easier to perform.

There are numerous further ways to handle constraints in Genetic Algorithms.
An interesting one is the treatment of constraints as separate objectives that have
to be taken into account. For this sake, evolutionary multi-objective optimization
techniques can be used [68] that are introduced in the next chapter. They balance
constraint violation and fitness function optimization. The result is a Pareto-front of
solutions with different degrees of constraint violation and fitness. At the end of the
optimization process the search concentrates on feasibility of the solutions.

A further interesting aspect in constraint handling is the reduction of the number
of constraint function calls. This can be achieved with a constraint meta-model.
Chapter 8 will introduce such a meta-model that can be used instead of the real
constraint function to reduce the number of constraint function calls.

http://dx.doi.org/10.1007/978-3-319-52156-5_8

Chapter 6
Multiple Objectives

6.1 Introduction

Up to now we only considered single-objective problems. In practice many opti-
mization problems involve two or more conflictive objectives. Conflictive means
that when getting better in one objective, at least one other objective deteriorates.
In such cases we call an optimization problem multi-objective. There are numerous
examples for conflictive objectives in practice. A typical conflict occurs between cost
efficiency and performance. The better the performance of a system is, the larger its
costs usually become. A further typical conflict occurs between weight and stabil-
ity. The lighter a system is the worse is its stability. If the practitioner is aware of
the weights between objectives, this information can be used to transfer a problem
with multiple objectives into a single-objective problem. In such case the result-
ing objective function is the sum of all weighted objective functions, for example
f = w · f1 + (1 − w) · f2 in case of objective functions f1 and f2 and weight
w ∈ [0, 1] that balances between both objectives.

Without a decision for a weight of the objectives, it is difficult to solve the optimiza-
tion problem. As no unambiguous comparison between solutions that are optimal
concerning at least one objective is possible, solutions of that kind are incomparable.
However, solutions that are worse in all objectives are outperformed and from this
perspective useless. Once a weight has been chosen, the optimization problem can be
treated as single objective problem. However, the challenge in multi-objective opti-
mization is to approximate a set of solutions that constitute a compromise between
all objectives. The goal becomes to evolve a set of solutions that are not dominated
by other solutions meaning that they are not worse in all objectives. This set is also
known as Pareto-set. The fitness values of the solutions in a Pareto-set build the
Pareto-front. As Genetic Algorithms are based on populations of solutions, the
evolution of Pareto-sets is naturally possible.

The key in evolving a Pareto-front with multi-objective Genetic Algorithms
is the selection operator. Most selection operators are based on two steps. The first
step is usually non-dominated sorting that sorts the solutions according to the level of

© Springer International Publishing AG 2017
O. Kramer, Genetic Algorithm Essentials, Studies in Computational
Intelligence 679, DOI 10.1007/978-3-319-52156-5_6

47

48 6 Multiple Objectives

Fig. 6.1 With two
objectives a solution divides
the objective space into four
quadrants, here for a
minimization problem

f
2

f1

dominated

dominating
not com-
parable

not com-
parable

domination. The second step builds upon the non-dominated solutions and optimizes
a secondary criterion, mostly targeting at spreading solutions across the Pareto-front.
This chapter will introduce three examples for such secondary selection criteria. Non-
dominated sorting maximizes the Manhattan distance of the neighboring solutions.
Rake selection spans parallel lines in objective space and selects the closest solu-
tions to each rake. Hypervolume-based selection maximizes the dominated objective
space. All three secondary mechanisms aim at achieving a good coverage of solutions
on the Pareto-front (Fig. 6.1).

6.2 Multi-objective Optimization

Multi-objective optimization is the problem of optimizing two or more conflictive
objectives at a time. Conflictive means that getting better in one objective usually
results in getting worse in another one. This leads to the definition of optimality
in multi-objective optimization. A solution is Pareto-optimal, if it is not dominated
by any other solution in solution space. Figure 6.2 shows how one solution divides
the objective space into four quadrants. The lower left quadrant contains solutions
that dominate the solution we consider. All solutions in this quadrant are better with
regard to both objectives. Solutions in the upper right quadrant are dominated by the
considered solution. The upper left and the lower right quadrant contain solutions
are not comparable. The set of non-dominated solutions consists of solutions that lie
in such quadrants with regard to all other solutions.

The set of non-dominated solutions corresponds to a subset of solutions in decision
space. The Pareto-set is the set of non-dominated solutions with regard to the whole
solution space and corresponds to the optimum in single objective optimization. The
fitness values of the solutions in the Pareto-set build a Pareto-front in objective space.
Most figures in this chapter illustrate a typical Pareto-front. Neither the Pareto-set

6.2 Multi-objective Optimization 49

Fig. 6.2 Non-dominated
sorting sorts all solutions
with regard to their
non-domination rank. The
non-dominated solutions are
closest to the Pareto-front in
comparison to solutions of
higher rank f

2

f1

rank 1

rank 2

rank 3

Pareto-front

nor the Pareto-front have to be connected. In solution space different areas can exist
that result in neighboring positions on the Pareto-front. Further, for positions on the
Pareto-front numerous alternative solutions may exist in objective space. Niching
techniques can be applied for identification of such equivalent Pareto-subsets [57].
Like in single-objective multimodal optimization, the advantage of approximating
many optimal, near-optimal, or Pareto-optimal solutions is that the practitioner can
choose among alternatives, if a favored solution becomes infeasible.

6.3 Non-dominated Sorting

Non-dominated sorting [17] is the first step of most multi-objective optimization
approaches like NSGA-II, rake selection, and selection based on the hypervolume
indicator. It sorts the Genetic Algorithm’s population with regard to the non-
domination rank. Each solution that is not dominated by another solution belongs to
the first rank. If the solutions of the first rank are removed, the second rank consists of
solutions that are not dominated anymore. This process is continued until the set of
solutions is empty. Figure 6.2 shows an illustration of solutions belonging to different
ranks. The blue squares represent solutions that are not dominated. The dark grey
squares belong to the second rank of non-dominated solutions, the light grey to the
third rank. The non-dominated solutions of the first ranks are basis of a secondary
selection process.

Secondary criteria that push the solutions towards the Pareto-front and that aim
at achieving a broad coverage of solutions on the Pareto-front are introduced in the
remainder of this chapter. Often, more solutions are required for the secondary step
than the first subset of non-dominated solutions employs. In such cases it is a common
practice to take solutions from the second, third, or even higher ranks.

50 6 Multiple Objectives

6.4 Crowding Distance

The non-dominated sorting Genetic Algorithm, which is commonly known as
NSGA, is a very famous multi-objective Genetic Algorithm. The successor
NSGA-II is even more successful and will be introduced in the following. As first
step, NSGA-II is based on non-dominated sorting. Among the non-dominated solu-
tions or a union of the first ranks of non-dominated solutions, NSGA-II seeks for a
broad coverage. This is achieved with the crowding distance, see Fig. 6.3. It selects
the solutions among the ones that have been selected via non-dominated sorting.
Figure 6.3 illustrates the optimization objective of NSGA-II. For each solution the
crowding distance, which corresponds to the Manhattan distance of two neighboring
solutions for two objectives, is computed. The ones with the largest crowing distance
are finally selected.

Instead of computing the two closest solutions on both sides of each solution and
then computing their Manhattan distance, an alternative approach is presented in the
original paper introduced by Deb et al. [17]. Algorithm 8 illustrates the approach.
The idea is to sort the population with regard to each objective. For each solution it
sums up the fitness difference of the two neighbors in this sorting. The first and the
last solution in this sorting are assigned to an infinite crowding distance and are thus
immediately selected.

Algorithm 8 NSGA-II
1: for each objective do
2: sort population with regard to objective
3: take first and last solution
4: for each solution do
5: add distance between left and right neighbors
6: end for
7: end for

Fig. 6.3 Illustration of
crowding distance, which is
the Manhattan distance
between left and right
neighboring solution for two
objectives

crowding distance

f
2

f1

Pareto-front

6.4 Crowding Distance 51

In case the practitioner has weights in mind for each objective the multi-objective
problem can be translated into a single-objective one as pointed out in the intro-
duction. This shrinks the area of interest to a line in objective space defined by the
weights. But it still might be desirable to approximate the Pareto-front while having
the weights in mind. Friedrich et al. [29] introduced an approach that allows the
combination of weights with the crowding distances. They propose to multiply the
crowding distance with the weights in the NSGA-II crowding distance computation.
In Algorithm 8 this comes into play in the last step. For each objective and for each
solution the distance between the left and the right neighbors is added weighted with
the corresponding objective weight. The result of this procedure is a Pareto-front
with a bias towards the objectives with larger weights.

6.5 Rakes

A straightforward approach of maintaining a uniform spread of solutions in objective
space is rake selection. Similar to NSGA-II it is first based on non-dominated sorting.
Among the solutions of the first non-domination rank, the ones are selected that
are closest to parallel lines in objective space. These lines are placed equidistantly
employing a rake base as connection between the extreme solutions with the best
fitness for each objective.

Figure 6.4 shows an illustration of rake selection. Algorithm 9 presents the corre-
sponding pseudocode. The rakes are placed orthogonally on the rake base and thus
reach into the area of the objective space, where non-dominated solutions lie. For
each rake the closest point among the solutions with rank one is selected. If the num-
ber of non-dominated solutions is too small, solutions from the next rank can take
part in this selection process. The distances between points and lines can efficiently
be computed regardless of the objective space dimensions.

The optimal points that are basis of the rake base can be computed first by opti-
mizing each single objective and second by computing the further coordinate points

Fig. 6.4 Illustration of rake
selection. The rake base
connects the optimal
solutions with regard to the
single objectives. Rakes are
placed orthogonally to the
rake base, often
equidistantly. For each rake
the closest solution is
selected

f
2

f1

rakes

Pareto-front

52 6 Multiple Objectives

in objective space with the fitness for the remaining objectives. Alternatively, the rake
base can be computed with the best solutions with regard to each objective of the
current population. This on-the-fly computation of the rake base will result in vary-
ing positioning of rakes, but allows their flexible adaptation during the optimization
process.

Algorithm 9 Rake selection
1: generation of population
2: non-dominated sorting
3: computation of rake base
4: placement of rakes
5: selection with regard to each rake

The rake approach works best for Pareto-fronts that have a linear shape. The more
curved the front is, the less parallel it is cut by the rakes. An adaptation of the rakes
according to the shape of the current set of non-dominated solutions is possible. A
similar mechanism has been introduced in [58], where a ratio is computed to adapt
the rake distances in each step based on the connection between the rakes and selected
solutions.

6.6 Hypervolume Indicator

A prominent approach to approximate the Pareto-front is maximization of the hyper-
volume indicator that is also known as S-metric [4]. The hypervolume indicator
measures the area in solution space that is dominated by a population. Considering
a reference point that is dominated by all solutions, the dominated hypervolume can
be computed.

Figure 6.5 shows the dominated objective space of a whole population. The grey
reference solution in the upper right part of the objective space serves as opposite cor-
ner of the rectangles and therefore as reference for the computation of the dominated
area. The overlap of rectangles has to be considered for a correct area computation.
For more than two objectives the resulting space is a hypervolume. Maximizing the
hypervolume has two effects. First, it leads to a good coverage of the non-dominated
solutions for a broad spread among the approximated Pareto-front. Second, it pushes
the solutions towards the real Pareto-front as maximization of the hypervolume leads
to a movement away from the dominated reference point.

The computation of the hypervolume can become a complicated undertaking for
more than two objectives. In particular in case of many objectives, the volumes often
overlap and are not easy to compute. Moreover, the selection of the best solutions
that maximize the hypervolume is a combinatorial optimization problem. The task
is to find the subset of solutions, for which the metric is maximized. To avoid this,
Genetic Algorithms with hypervolume indicator employ a (µ + 1) population
scheme. In each generation only one solution is generated, the contribution of each
solution to the overall hypervolume is computed and the one is discarded with the

6.6 Hypervolume Indicator 53

Fig. 6.5 Illustration of a
Genetic Algorithm that
maximizes the dominated
hypervolume in objective
space. For the hypervolume
computation a dominated
reference solution is required

f
2

f1

hypervolume

reference point

Pareto-front

least volume contribution. Figure 6.5 highlights the contribution of one solution to
the hypervolume with the light blue area as part of the overall hypervolume.

6.7 Summary

Many practical optimization problems involve the optimization of more than one
objective. If the objectives are conflictive, not all solutions are comparable. If a solu-
tion is worse in all objectives, it is dominated. Solutions that are non-dominated are
interesting for the practitioner, as they approximate the Pareto-set. The counterpart
of the Pareto-set in objective space is the Pareto-front. The set of non-dominated
solutions is interesting when searching for the Pareto-set. Genetic Algorithms
are excellent methods for approximating multi-objective problems as they are based
on solution sets.

Non-dominated sorting is part of most multi-objective Genetic Algorithms.
It assigns each solution to a rank of domination and pushes the search towards the
Pareto-front. A secondary selection criterion is applied afterwards to improve the
spread among the Pareto-front. NSGA-II maximizes the space between solutions
on the Pareto-front to avoid agglomerations. Rake selection minimizes the distance
between solutions and lines that are equidistantly distributed in objective space.
The Genetic Algorithm with hypervolume indicator maximizes the dominated
objective space and pushes the solutions towards the Pareto-front, which is only
indirectly the case for NSGA-II and rake selection. For the latter mechanisms can
also be implemented that maximize the distance to a dominated reference point.

Further, a hybridization between the different mechanisms is possible. For exam-
ple, half of the solutions could be selected according to the rakes in solution space
while the other half can be based on maximizing the hypervolume. A hybrid may
profit from the different characteristics of the employed methods. Many further

54 6 Multiple Objectives

approaches for multi-objective Genetic Algorithms and variants have been pro-
posed in the past. Examples are NSGA-3 [107] and SPEA [96].

Multi-objective optimization finds many applications, for example in robot-
ics [18]. A further interesting application is balancing of machine learning methods,
in particular model complexity and runtime versus accuracy. On the one hand side,
prediction models should be as accurate as possible, on the other hand, they should
not suffer from long runtime and should not be too complex to avoid overfitting.
Chapter 9 presents a similar approach for balancing machine learning ensembles.

http://dx.doi.org/10.1007/978-3-319-52156-5_9

Part III
Advanced Concepts

Chapter 7
Theory

7.1 Introduction

In the early decades of Genetic Algorithms theoretical investigations were seen
as less important or even questionable. But for a consistent expertise in Genetic
Algorithms, expert knowledge from practical investigations should be comple-
mented by theoretical results. The theoretical analysis of Genetic Algorithms
can significantly contribute to the understanding of their practical behavior. Today, a
collection of theoretical results and tools has been introduced to support and extend
the important knowledge of the practitioner.

The theoretical analysis of Genetic Algorithms mainly concentrates on the
two properties runtime and convergence. Runtime analysis makes statements about
the time algorithms need for solving a particular problem class. It neglects constants
and thus focuses on complexity classes. Convergence analysis puts a focus on the
analysis, how good an algorithm is able to approximate the optimal solution. The
peculiarities of Genetic Algorithms are their iterative improvement of solutions
and their randomness, which complicate the theoretical analysis.

This chapter gives an introduction to theoretical concepts with examples. It starts
with an introduction of the proof technique of fitness-based partitions for runtime
analysis. Then it shows how Markov chains can be used to analyze the conver-
gence properties of populations. The behavior of Genetic Algorithms in contin-
uous solution spaces can be characterized with progress rate analysis. Progress rates
describe the movement towards the optimum with regard to the actual generation.
The no free lunch theorem states that there is no superior algorithm or parame-
terization for every problem, but there is always a problem, for which a particular
Genetic Algorithm will fail. The schema theorem analyzes the behavior of short,
low-order chromosome parts and their behavior within evolutionary processes. The
chapter closes with a short introduction to the building block hypothesis, which aims
at explaining the behavior of crossover operators when dealing with such schemata.

© Springer International Publishing AG 2017
O. Kramer, Genetic Algorithm Essentials, Studies in Computational
Intelligence 679, DOI 10.1007/978-3-319-52156-5_7

57

58 7 Theory

7.2 Runtime Analysis

Runtime analysis focuses on the runtime of algorithms on specific problems depend-
ing on their size. The latter is usually measured via the length of the input fed into
the solving algorithm. For example, in case of the traveling salesman problem, the
problem size is the number of cities the salesman has to visit. In case of bit string
problems the problem size corresponds to the bit string length. Runtime analysis is a
powerful tool in theoretical computer science. For deterministic algorithms runtimes
can be guaranteed, in which the optimal solutions are found. In case of the employ-
ment of randomness this is not directly possible. But theory can still prove expected
average and worst case behaviors.

The fitness-based partitions proof gives an upper bound on the average runtime.
An example for its successful application is the runtime analysis of a (1 + 1)-Genetic
Algorithm on the problem OneMax. The optimization problem is to maximize the
number of ones in a bit string, which is obviously a quite simple optimization problem,
but interesting from a theoretical perspective. The (1 + 1)-Genetic Algorithm is
only employing bit flip mutation and accepts the better of two solutions in each
generation. The runtime analysis aims at proving an upper bound of O(N log N) on
the average runtime. This is better than quadratic or exponential runtime of many
optimization approaches. The fitness-based partitions proof can be applied, if the
solution space can be divided into sets of solutions with same or similar fitness.
These sets are called partitions.

Figure 7.1 illustrates the concept of a partitioned solution space. All solutions with
the same fitness belong to a partition that is represented as blue or grey rectangle.
The partitions are sorted from low fitness at the bottom to high fitness at the top. In
case of the OneMax problem each partition contains the bit strings with the same
number of ones. Hence, N +1 partitions exist, if the length of the bit string is N . The
probability to leave for a partition with higher fitness is the probability for flipping
one of the zeros to a one while not flipping a one back to zero. The reciprocal of this
probability is the expected number of generations, as it corresponds to a Bernoulli
experiment. With the harmonic series we get the runtime O(N log N).

The key principle of partition-based proofs is to find a partitioning of the solution
space with as few partitions as possible and a high probability to leave the current

Fig. 7.1 Fitness-based
partitions divide the solution
space into disjoint sets of
equal fitness. For the proof
the probability for mutating
into any partition with higher
fitness has to be determined

current solution

7.2 Runtime Analysis 59

partition for any partition with better fitness. The larger the probability to jump into
higher partitions the lower is the corresponding expected number of steps for success.
Numerous further tools have been introduced for evolutionary runtime analysis, of
which many have been introduced in [80], recently applied, for example in [19] for
a runtime analysis of a (1 +λ)-Genetic Algorithm on OneMax. For the latter
Gießen and Witt [30] analyze the interactions of population sizes and mutation rates.

7.3 Markov Chains

Many theoretical analyses for Genetic Algorithms focus on the behavior of popu-
lations with Markov chains, which are tools that treat the population at one generation
as state. Markov chains are a general tool for analyzing stochastic processes. To model
the stochastic influences of genetic operators, each state is described by probabilities
to transfer into a successive state called transition probability. A matrix is used to
describe the probabilities for transitions to any other state given the current state.
In a canonical Genetic Algorithm each state only depends on the individuals in
binary representation [91]. Random changes of the genes in a population that are
caused by the genetic operators are modeled in a transition matrix. Each state tran-
sition corresponds to a matrix multiplication. The transition matrix is the product of
stochastic matrices each modeling crossover, mutation, and selection, respectively.
Hence, it is possible to model the convergence of the whole population. An important
property for Markov chain analysis is the independence of predecessor states and the
assumption of a finite number of states. Such a Markov chain is called homogeneous.

Eiben et al. [21] studied the convergence properties of Genetic Algorithms
as one of the first early works in this field. They showed that under certain condi-
tions, a Genetic Algorithm optimizing a function over an arbitrary finite space
converges to an optimum with probability one. Rudolph [91] comes to the conclu-
sion that convergence to the global optimum is no inherent property of a canonical
Genetic Algorithm without elitism. Instead, with elitist selection the convergence
is guaranteed. Although Markov chain analysis leads to a deeper understanding of
Genetic Algorithms, its applicability is restricted to simple cases as the resulting
transition matrices are large growing with the dimensionality of the problem.

7.4 Progress Rates

The progress rate analysis has been developed for Genetic Algorithms in con-
tinuous solution spaces like evolution strategies [5, 6]. Progress rates are local per-
formance measures evaluating the amelioration power of Genetic Algorithms. If
the progress is measured in terms of fitness values, it is called progress gain [5]. We
consider the progress rate in solution space. It is defined as the expected distance of
the population center from the optimum. Figure 7.2 illustrates the movement towards

60 7 Theory

optimum

1
2

progress
contour
areas

spherical
distances

Fig. 7.2 The progress rate is defined as the expected movement towards the optimum in solution
space, here exemplarily shown for one optimization step

the optimum in solution space for one step of a Genetic Algorithm. The progress
rate depends on numerous factors, for example on the problem with its fitness func-
tion and on the Genetic Algorithm type. In many theoretical investigations the
progress rate can only be determined for comparatively simple fitness functions.

Most progress rate analyses focus on the Sphere function, which is symmet-
ric and its fitness values only depend on the distance to the optimum. Beyer and
Schwefel [5] summarize some results based on progress rate analysis. For example,
Genetic Algorithms with plus selection always have positive progress, which
is independent of the chosen mutation rates. They continuously converge to the
optimum. Further, Genetic Algorithms with comma selection can converge, if
the mutation rate is chosen appropriately. This is a result that we assume in prac-
tice when facing parameter adaptation problems. If the mutation rate is chosen too
large, the Genetic Algorithm shows divergent behavior moving away from the
optimum. Another result is that the progress rate increases with an offspring popu-
lation larger than one. This is a good argument for employing populations instead of
simple Genetic Algorithms that are only based on one parent and one child. Fur-
ther, a population-based Genetic Algorithm for continuous solution spaces with
plus selection always performs better than the corresponding Genetic Algorithm
with comma selection. The best performance is achieved with arithmetic crossover
employing the whole parental population as parents. Interestingly, Genetic Algo-
rithms with crossover improve their performance using higher mutation rates. Fur-
ther results are available for noisy problems. For the Sphere function with noise the
(1 + 1)-Genetic Algorithm degrades increasingly with the noise magnitude. In
contrast, multi-recombination strategies perform well.

7.5 No Free Lunch 61

7.5 No Free Lunch

There ain’t no such thing as a free lunch. This statement was adapted into a theory
on optimization strategies by Wolpert and Macready [105]. Generally speaking, the
no free lunch theorem states that there is no overall superior optimization algorithm
that is able to solve all kinds of optimization problems. Nothing is free means that an
algorithm that is adapted to a certain problem class and specific problem instances,
where it performs considerably well, will be outperformed by other algorithms on
other problems. The no free lunch theorem is an impossibility theorem. Originally,
it assumes that all problems are equally likely inputs to the Genetic Algorithms.
The consequence is that all Genetic Algorithms approximately show the same
performance over all objective functions. However, as the theoretically possible num-
ber of strategies is limited in practice, it is actually possible to develop algorithms
that perform best, at least for practical problem classes. A further argument that is
frequently discussed in the context of no free lunch is the reevaluation of solutions.
The better performance of a Genetic Algorithm, which reevaluates a solution
in comparison to a Genetic Algorithm that does not, can be independent of the
specialization to the particular optimization problem.

The no free lunch theorem can hardly be adapted to natural evolution. This is
because fitness spaces in nature are structured by laws of nature while the theoret-
ically possible number of problems and fitness functions is not restricted. But this
independence of structure is a necessity in the reasoning of the no free lunch theorem.

7.6 Schema Theorem

John Holland introduced the famous schema theorem for the analysis of Genetic
Algorithms [39, 40]. The schema theorem analyzes the proportion of schemata,
which are candidate solutions in bit string representation with wildcards. Hence,
a schema represents a set of solutions, which coincide at the bit positions, where
no wildcards are. Schemata also known as building blocks define hyperplanes in
solution space. The schema theorem states that short above-average fitness schemata
in solutions spread in the population with higher probability. This is illustrated in
Fig. 7.3, where the blue schema spreads in the population over the course of genera-
tions. The increase of such schemata during the genetic optimization process is also
known as genetic drift.

The proportion of individuals representing a schema at subsequent time steps is
given by the product of its probability of being selected and the counter probability
of being disrupted. The probability of the disruption of a schema can be computed
taking into account the probability for crossover multiplied with the probability that
one-point crossover chooses a location within the end points of the schema. With
such a definition solutions with high fitness get more copies in the course of the
evolutionary process while below-average strings get few copies. Interestingly, the

62 7 Theory

schemata

...

...

generations

Fig. 7.3 According to the schema theorem short above-average fitness schemata spread in the
course of the genetic optimization process

schema theorem only considers the disruptive effects of mutation and crossover.
Although diversity is achieved with mutation, the mutation probability must be low
to weaken its disruptive effect.

Some criticism about the schema theorem has been introduced by Holland him-
self. An analysis on the so-called royal road functions has shown that bad solution
fragments may be inherited in early phases of the optimization process while being
bound to good schemata and the consequently high fitness of the overall solution.
This observation is also called hitchhiking, as the bad solution parts participate in
the spread while not being responsible for the success.

7.7 Building Block Hypothesis

The building block hypothesis tries to explain the meaning of crossover. While the
schema theorem only considers the disruptive effects of crossover, the building block
hypothesis focuses on its constructive effects. Numerous experiments have shown
that crossover and mutation work well in practice. Goldberg [31] and Holland [40]
developed the building block hypothesis, which claims that crossover combines short,
low-order schemata with high fitness to increasingly fit offspring solutions. These
schemata, now called building blocks, are combined with crossover in the course of
the genetic optimization process.

In the nineties Forrest and Mitchell [28] introduced an experimental setting for
the building block hypothesis and came to the conclusion that a simple hill-climbing
algorithm is faster than a Genetic Algorithm with crossover on problems that
fit the conditions of the building block hypothesis. Later, Jansen and Wegener [43]
introduced a function, for which it can be shown that crossover is advantageous.
Figure 7.4 illustrates the function based on bit strings with an optimum at x∗ =
(1, . . . , 1). A Genetic Algorithm finds many bit strings with N − k and also with
k ones. For crossover probabilities lower than 1/N the runtime is O(N 2 log N) while
mutation alone requires O(N k) generations. The interesting question comes up, if
practical problems will be identified in the future, for which a theoretical result for
the benefit of crossover can be found.

7.8 Summary 63

Fig. 7.4 Illustration of a
fitness function, for which it
has been proven that
crossover can improve the
runtime

f(x)

x: number of ones

N

optimum

N - k0

7.8 Summary

Theoretical investigations help the practitioner with solid knowledge that supports
practical experiences. Various theoretical tools for Genetic Algorithms have been
developed in the last decades. Theoretical results may be difficult to obtain despite
their simplicity. A long line of research is sometimes required for proofs that look
simple at the end. Often, theoretical results are only possible for simple algorithms
and simple problems. Furthermore, many statements may be comparatively general
and less precise than necessary for practical applications, for example runtime results
with large constants. Nevertheless, they pave the way for a deeper understanding of
Genetic Algorithms.

A theoretical analysis for many discrete and combinatorial problems is possible
with a set of runtime tools. One of the simplest is the fitness-based partitions proof
we introduced for the OneMax problem. Markov chains allow the analysis of con-
vergence properties, if the solution space can conveniently be modeled with finite
populations. To describe the convergence locally in the course of the evolutionary
process, progress rate analysis is an adequate tool, which is in particular far devel-
oped for continuous Genetic Algorithms. Locality is a frequent assumption for
many heuristics and proof principles.

Progress rate analysis has revealed many interesting results for the continuous
Sphere function. The no free lunch theorem shows that no Genetic Algorithm
performs best on all problems, although no free lunch loses importance for the class of
problems that can be computed in practice. The schema theorem analyzes the spread
of low-order solutions during the optimization process. The constructive effect of
crossover operators within the schema theorem is analyzed in the building block
hypothesis. For crossover examples from runtime analysis demonstrate its success
on artificial functions.

64 7 Theory

The future will surely bring up more and more theoretical results in the area of
Genetic Algorithms and also for related randomized search heuristics. This may
even lead to a unified theoretical perspective on most existing probabilistic optimiza-
tion methods with an impact on decisions for the choice of methods, mechanisms,
and the design of novel algorithms.

Chapter 8
Machine Learning

8.1 Introduction

Machine learning is the discipline of learning from data and observations. It combines
statistics and learning paradigms from artificial intelligence. This chapter introduces
concepts to support Genetic Algorithms with machine learning. For a detailed
introduction to this field see [56]. Machine learning evolved to a very successful area
of research in the last decades. It can mainly be divided into the two parts supervised
and unsupervised learning. Supervised learning means learning from data with labels.
Labels are additional information available for some training data. The task is usually
to predict them for unknown data. If the labels are binary or discrete, the learning
task is a classification problem. If labels are continuous, the task is called regression
problem.

Unsupervised learning means learning without labels, but exclusively from the
structure of the data itself. Clustering and dimensionality reduction are two variants
of unsupervised learning. In the past numerous examples have shown that machine
learning provides excellent tools to support Genetic Algorithms reaching from
covariance matrix estimation to visualization of optimization runs with dimension-
ality reduction.

First, this chapter will introduce the concept of covariance matrix estimation
for adapting the Gaussian distribution in continuous solution spaces. Then, it will
present supervised learning models for replacing the fitness function during the
course of evolution and also the constraint function in constrained optimization.
To visualize high-dimensional optimization processes, dimensionality reduction can
be employed. Chapter 9 will give an example for the reverse direction, which is the
application of Genetic Algorithms to machine learning problems.

© Springer International Publishing AG 2017
O. Kramer, Genetic Algorithm Essentials, Studies in Computational
Intelligence 679, DOI 10.1007/978-3-319-52156-5_8

65

http://dx.doi.org/10.1007/978-3-319-52156-5_9

66 8 Machine Learning

8.2 Covariance Matrix Estimation

For continuous solution spaces we introduced the Gaussian mutation in Chap. 2. It
makes the reasonable assumption that chromosomes in solution space are Gaussian
distributed. But the distribution often differs from a symmetric isotropic Gaussian
shape. Instead, it might be scaled in some direction corresponding to separate vari-
ances in each dimension. Moreover, such a scaled Gaussian distribution might even
be rotated resulting in correlations between the dimensions. Mathematically, this
can be described with a covariance matrix, which consists of entries that describe
the correlation between any two variables with covariances. If such a covariance
matrix, or more specifically its decomposition, is multiplied with isotropic Gaussian
distributed numbers, the results are random numbers that are distributed accord-
ing to a scaled and rotated Gaussian distribution. In statistics numerous covariance
matrix estimation techniques have been proposed. Empirical covariance matrix esti-
mation is a famous instance. We introduced a variant of Genetic Algorithms with
Ledoit-Wolf covariance matrix estimation and analyzed its performance on a set of
benchmark problems [54].

Figure 8.1 shows an illustration of the covariance matrix estimated during an
optimization run of a continuous Genetic Algorithm on the Sphere function. The
plot shows the contour lines of equal fitness corresponding to contour lines of equal
probability when sampling from the Gaussian distribution. The spherical conditions
can clearly be observed. Such an estimate is helpful in continuous optimization
processes.

Genetic Algorithms with covariance matrix estimation belong to the class of
estimation of distribution algorithms [65], which are based on iteratively sampling
from a distribution, selecting the fittest candidate solutions, and estimating the new
distribution. The covariance matrix adaptation evolution strategy (CMA-ES) [36] is a
popular variant. It does not estimate the covariance matrix directly, but approximates
it during evolution. Besides the covariance matrix estimation, the CMA-ES also
employs a derandomized mutation rate update rule, which is called cumulative step
size adaptation [37, 82]. Numerous variants of the CMA-ES have been proposed in

Fig. 8.1 Illustration of a
covariance matrix estimated
during the optimization run
of a continuous Genetic
Algorithm on the Sphere
function, oriented to [54]

http://dx.doi.org/10.1007/978-3-319-52156-5_2

8.2 Covariance Matrix Estimation 67

the past, for example a computationally efficient variant for limited memory [71] and
a variant capable of handling noisy objective functions [63].

Algorithm 10 Covariance matrix estimation
1: initialize population
2: initialize C
3: repeat
4: repeat
5: crossover
6: mutation with C
7: fitness computation
8: until population complete
9: selection of parents

10: estimation of C from parents
11: until termination condition

Algorithm 10 shows how covariance matrix estimation can be integrated into a
Genetic Algorithm. After initialization of the population and of the covariance
matrix C, the main evolutionary loop generates new candidate solutions via crossover,
mutation, and fitness computation. The mutation operator uses the covariance matrix
that is estimated based on the selected parental population for the following genera-
tion. Covariance matrix estimation uses a set of the best recent solutions. This set can
simply be the current parental solution. To save computational time, some approaches
approximate the covariance matrix with an update rule performed every generation
like the CMA-ES.

8.3 Fitness Surrogates

One of the main interests in optimization is to find the optimum with a minimum
number of fitness function evaluations. Each evaluation might be expensive and
a significant cost reduction can be achieved, if their number is minimized. This
can even be more important for the practitioner than short runtimes. If we want to
minimize the number of fitness function evaluations while time and computation are
no limiting factors, we can learn a supervised machine learning model of the fitness
function. This model can serve as surrogate that replaces the original fitness function.
The model has the task to be a good estimator for fitness function values based on
evaluations from the past. The tasks include the ability to interpolate the fitness
function values in areas, where the solution is surrounded by other chromosomes,
but also to extrapolate the fitness function values in areas, where no evaluation has
been observed yet.

Figure 8.2 illustrates the fitness meta-model principle. The fitness function repre-
sented as solid line is evaluated for each solution represented as blue squares. The
meta-model estimate is represented as grey dotted line. It almost fits to the actual

68 8 Machine Learning

Fig. 8.2 Illustration of
meta-model principle. The
horizontal axis represents the
solution space, the vertical
axis illustrates the fitness
function values

meta-model

fitness function curvature with small deviations and is used to replace fitness function
evaluations in case of the grey squares, where the predictions nearly match the real
function values.

A machine learning model f̂ is trained to predict the fitness function values f
of novel solutions. Training is an optimization process for the model parameters.
A candidate solution serves as pattern, its fitness as label. Training means that the
parameters of the model are adapted such that they minimize the empirical risk, which
is the deviation of the model predictions and the true labels. Such a minimization is
only possible, if labeled data is available. The risk for overfitting the model to the
training data is high, when the error is minimized on the training set. To avoid this,
cross-validation divides the training set of labeled data into training and validation
set. The training set is used to feed the model with patterns and labels, the validation
set is used to examine the quality of the model on independent data. Based on the
labels we know and the prediction of the training set, we can measure the model
quality.

Algorithm 11 Meta-model operator
1: generate candidate solution
2: evaluate solution on f̂
3: if solution fitness surrogate f̂ fulfills quality

criterion then
4: evaluate solution fitness on f
5: put evaluation into training set
6: else
7: discard solution
8: end if

A meta-model management strategy is necessary for the decision, when to use it,
to plan model updates, to tune parameters, and to plan exploration steps. In the course
of the evolutionary process all solutions and their fitness evaluations are stored in an
archive. This archive serves as training set. The learning model predicts the fitness
of a new candidate solution. Algorithm 11 shows a genetic operator based on the
meta-model. The solution is evaluated on the real fitness function, if the meta-model
predicts a fitness that fulfills a certain quality, otherwise, it is discarded. In [55], we
compare the fitness prediction to the fitness of the k-th best solution in the population.

8.3 Fitness Surrogates 69

If its fitness is predicted to be equal or better, it is worth to be tested on the real fitness
function. Each evaluation on the real fitness function f will be put into the archive.
Depending on the difficulty of the prediction problem and the employed machine
learning algorithm, a new training and tuning of the model with grid-search and
cross-validation might be necessary.

Numerous prediction methods have been proposed in the past. Famous ones
are linear regression and nearest neighbor regression. Also support vector regres-
sion [92], the regression variant of support vector machines, have proven to be good
surrogate models [72]. Support vector machines will be introduced in the next section.

8.4 Constraint Surrogates

In Chap. 5 constraints have been introduced. They reduce the allowed solution space
to a feasible subset. A solution can be feasible or infeasible. From the perspective
of meta-models, this can be treated as binary classification problem. Similar to the
archive of fitness function calls introduced in the previous section, an archive of
constraint function calls is managed that serves as training set. For the constraint
surrogate similar mechanism have to be employed like for fitness function surrogates.
Constraint surrogates can be used to pre-evaluate a solution.

Similar to regression methods, numerous classification methods are available in
literature. Prominent examples are support vector machines [8, 92], which place a
linear decision boundary in data space in a way that it correctly separates patterns
of different classes and at the same time maximizes the distance of the patterns to
this boundary. This distance is known as margin. Figure 8.3 illustrates support vec-
tor machine-based classification. The optimization problem to maximize the margin
while patterns of different classes lie on different sides of the boundary is a con-
strained optimization problem. It can efficiently be solved with convex optimization

Fig. 8.3 Illustration of
support vector
machine-based classification.
The support vector machine
maximizes the margin while
fulfilling the constraint that
patterns of different classes
lie on the correct side of the
decision boundary x

2

x1

decision boundary

margin

http://dx.doi.org/10.1007/978-3-319-52156-5_5

70 8 Machine Learning

methods. Kernel functions and slack variables allow handling classification problems
that are not linearly separable.

Our experiments have shown that the employment of constraint surrogates does
not lead to a reduction of fitness function evaluations. Instead, it significantly reduces
the number of constraint function calls while keeping the fitness function calls
constant. When the constraints deliver continuous values as constraint violations,
a regression model can be applied similar to the fitness surrogate case of the previous
section.

8.5 Dimensionality Reduction for Visualization

Genetic Algorithm optimization processes may take place in high-dimensional
solution spaces, which cannot be visualized anymore. Besides the possibility to visu-
alize only two or three dimensions at once, high-dimensional solution spaces can
be mapped to two or three dimensions with dimensionality reduction approaches.
Dimensionality reduction algorithms compute a set of low-dimensional counterparts
of high-dimensional solutions without losing essential information. The maintenance
of high-dimensional properties mainly concerns distances and neighborhoods. In
other words, patterns that are neighboring in high-dimensional space should be neigh-
boring in low-dimensional space as well. Moreover, patterns that are close to each
other in high-dimensional space should be close to each other in low-dimensional
space, and vice versa for patterns that are far away from each other.

Numerous dimensionality reduction methods exist. Principal component analysis
(PCA) [45, 83] is a dimensionality reduction approach for linear data. It detects the
axes in the data that employ the highest variances. Figure 8.4 illustrates the PCA
concept. The projections of the patterns onto these axes, which are the principal
components, are the novel low-dimensional representations. They can efficiently be

Fig. 8.4 Illustration of
PCA-based dimensionality
reduction. PCA identifies the
axis in the data with the
highest variances and
computes the projections
onto these principal
components

principal
component

projectionsx2

x1

8.5 Dimensionality Reduction for Visualization 71

Fig. 8.5 Example for
dimensionality
reduction-based visualization
of a high-dimensional
Genetic Algorithm run
with isometric mapping

computed based on the covariance matrix of the data and the eigenvectors with the
largest eigenvalues. Moreover, nonlinear dimensionality reduction methods allow the
mapping of high-dimensional nonlinear data to low-dimensional spaces. Isometric
mapping [100] and locally linear embedding [90] are methods for nonlinear data.

Algorithm 8.5 shows the pseudocode of the dimensionality reduction-based visu-
alization approach. First, the Genetic Algorithm runs on the optimization prob-
lem as usual. An archive of candidate solutions that should be visualized is managed
during optimization. Afterwards, the dimensionality reduction approach maps the
population to a two-dimensional space. This process is also known as embedding.
To colorize the low-dimensional space, a mesh-grid of points within the convex hull
of embedded solutions is computed. A prediction model is trained with the embedded
points as patterns and the corresponding fitness values as labels to interpolate the
fitness of the points within this convex hull. If colors are employed, an interpolated
contour plot is the corresponding result. Last, the best solutions can be connected to
illustrate the movement of the evolutionary process. In [59], we employed isometric
mapping for the visualization process.

Algorithm 12 Visualization
1: run Genetic Algorithm
2: embed population
3: compute convex hull
4: generate mesh-grid
5: interpolate contour plot
6: connect best solutions

Figure 8.5 shows an example for solution space visualization using the approach
of Algorithm 12 with isometric mapping. The figure visualizes the (1 + 1)-Genetic
Algorithm run of Chap. 2. The plot shows the embeddings of the last 20 solutions
on the 10-dimensional Sphere function. The spherical contour lines of the Sphere
function are clearly visible. The lines follow the course of the optimization process.

http://dx.doi.org/10.1007/978-3-319-52156-5_2

72 8 Machine Learning

8.6 Summary

Machine learning comprises a rich set of methods for learning prediction models
and for mapping from high-dimensional to low-dimensional spaces. This chapter
has shown how supervised learning can be used to reduce the number of fitness and
constraint function evaluations. Regression models are applied for fitness function
evaluations, classification models for constraint functions. A meta-model manage-
ment mechanism is necessary for saving function evaluations and for organizing
model updates and tuning parameters. Also unsupervised learning approaches find
applications in Genetic Algorithms. We presented a dimensionality reduction
approach for visualizing high-dimensional solution spaces with isometric mapping.

The niching approach introduced in Chap. 4 is a successful example for the appli-
cation of clustering in Genetic Algorithms. After an initial sampling of the solu-
tion space and the selection of the best solutions, the clustering approach identifies
potential basins that are locations of local optima. Many interesting hybridizations
between Genetic Algorithms and machine learning will be subject to future
research.

http://dx.doi.org/10.1007/978-3-319-52156-5_4

Chapter 9
Applications

9.1 Introduction

Numerous applications demonstrate the success of Genetic Algorithms. In this
chapter we show various examples from different domains. An overwhelming num-
ber of applications showed the strength of Genetic Algorithms in convenient
modeling, easy implementation, and efficient problem solving in the past. New and
improved applications are regularly presented at Genetic Algorithm conferences
like the Genetic and Evolutionary Computation Conference (GECCO), the Congress
on Evolutionary Computation (CEC), and EvoStar, which have special devoted tracks
for this purpose. Recent applications of Genetic Algorithms include the biomed-
ical domain [12, 78], arts [14], architecture [2], music [95], games [67, 69], the
energy domain [10, 87], engineering [99], and machine learning applications [79,
85].

This chapter presents various examples for the successful application of Genetic
Algorithms in different domains. It starts with the application of Genetic Algo-
rithms to machine learning problems like unsupervised regression for dimensional-
ity reduction. Evolutionary multi-objective optimization is used to balance ensembles
of classifiers. Genetic Algorithms are excellent methods for selection and tun-
ing of features in prediction models. A corresponding example for feature tuning in
wind power prediction is presented. Wind turbines are more efficient, if wake effects
are avoided. We use Genetic Algorithms to find optimal turbine positions that
fulfill geographical constraints while maximizing the power output. Last, Genetic
Algorithms are used to optimize the control rules of virtual power plants.

© Springer International Publishing AG 2017
O. Kramer, Genetic Algorithm Essentials, Studies in Computational
Intelligence 679, DOI 10.1007/978-3-319-52156-5_9

73

74 9 Applications

9.2 Unsupervised Regression

An interesting line of research is the optimization of machine learning models with
Genetic Algorithms. They can be used for tuning the parameters of machine learn-
ing methods, but can also serve as main optimization methods for machine learn-
ing models. For example, Genetic Algorithms have successfully been applied
in balancing support vector machines [77] and for tuning dimensionality reduction
techniques [73]. Dimensionality reduction methods compute a mapping from high-
dimensional patterns to low-dimensional points. For a comprehensive introduction
to dimensionality reduction we refer to the depiction by Lee and Verleysen [66]. The
results can be used for visualizing high-dimensional data sets or as preprocessing
step for supervised learning methods like classification and regression.

Among the huge variety of dimensionality reduction methods unsupervised
regression is a very promising one [76]. The concept of unsupervised regression is
based on the idea of mapping low-dimensional points, which are the embeddings we
are seeking for, to the high-dimensional observed patterns. Many regression methods
can be used within this setting, but methods that allow mapping more than one label
at once are most appropriate. Nearest neighbor regression and kernel regression, also
known as Nadaraya-Watson estimation, allow the mapping to multiple labels. The
optimization problem is the minimization of the error between this mapping and the
original patterns. This is also referred to as data space reconstruction error, as the
patterns in data space have to be reconstructed by the mapping from low-dimensional
space to the high-dimensional one. This optimization problem is quite difficult to
solve. Figure 9.1 shows that the placement of only one point in low-dimensional space
is already a multimodal optimization problem. The figure visualizes the data space
reconstruction error when embedding a pattern into an existing solution on a sample
test data set [53] with nearest neighbor regression. For the optimization of numerous
patterns at once the fitness landscape becomes far more multimodal with many local
optima. As a complete solution consists of the coordinates of all low-dimensional
representations, the dimensionality of the optimization problem increases with the
number of patterns. When employing kernel regression the optimization problem can
be solved with gradient descent, as the derivative of the data space reconstruction

Fig. 9.1 Solution space of
unsupervised regression
when embedding one pattern
on a sample test data set

9.2 Unsupervised Regression 75

error with the Nadaraya-Watson estimator is analytically derivable. However, due to
the numerous local optima the employment of Genetic Algorithms is an attrac-
tive approach. In [73], we analyzed the use of Genetic Algorithms with Gaussian
mutation and mutation rate control to optimize unsupervised regression learning. It
turns out that the combination of gradient descent with Genetic Algorithms,
for example by alternating both optimization approaches, leads to the best results.
Genetic Algorithms overcome local optima, gradient descent approximates the
basins of attraction in solution space.

9.3 Balancing Ensembles

Ensembles of machine learning methods are famous for their ability to outperform
their pure counterparts. The idea is also known as wisdom of the crowd. The predic-
tions from numerous classifiers are combined to one single prediction. For classifi-
cation and regression methods, but also for unsupervised algorithms and even opti-
mization approaches, the hybridization turns out to be an effective way for improving
accuracies. A key property of an ensemble is its diversity. The accuracy profits from
varying training sets and parameterizations of the involved single classifiers. The
drawback of numerous classifiers is the computational overhead that has to be man-
aged. The most important objective in supervised learning is accuracy. Of course, this
also holds for ensembles of classifiers. But another important objective is the compu-
tation time. Both objectives are obviously conflictive resulting in a multi-objective
optimization problem. The number of ensemble members of each type and their
parameters are the variables of the optimization problem. The parameters are bound
constrained, as an upper bound on the number of classifiers is reasonable from a
computational perspective and also the parameters space of machine learning meth-
ods is usually restricted. For discrete optimization variables NSGA-II with random
resetting or Gaussian mutation with rounding can be applied.

Balancing ensembles of classifiers can be applied to a huge variety of ensem-
ble variants. The experimental results in [81] show that multi-objective Genetic
Algorithms are excellent approaches to evolve Pareto-fronts of ensemble clas-
sifiers. Table 9.1 shows an exemplary result of this work for an artificial bench-
mark classification data set generated with make_classification from the

Table 9.1 Error and corresponding runtime of nearest neighbor ensembles and random forests for
minimizing error and for minimizing runtime, oriented to [81]

Ensemble Minimum error Minimum runtime

Error Runtime Error Runtime

Nearest neighbors 0.240 24.4 0.419 0.006

Random forests 0.160 40.2 0.441 0.009

76 9 Applications

sklearn machine learning library [84] for nearest neighbors ensembles and for
random forests [9]. The results show the classification error in terms of root mean
square error and the ensemble runtime in seconds after multi-objective optimiza-
tion with NSGA-II. The left part of the table shows the results for the ensembles
that achieve a minimum error, the right part shows the corresponding results for the
fastest ensembles. The figures show the price that has to be paid for the best accuracy
in terms of runtime. In turn, the fastest ensembles only achieve a bad accuracy. A
Pareto-set of ensembles is very useful in practical scenarios for the choice of an
alternative a posteriori, i.e., after the optimization process.

9.4 Feature Tuning

For the integration of wind into the power grid the precise prediction of wind energy
has an important part to play. Besides numerical models that simulate the atmosphere,
models based on data have proven their success in the recent past. In [102] we
could show that for the same location and timespan, the regression-based prediction
outperforms the classic numerical models for short time horizons.

The idea of data-based models is to measure the wind power in the environment of
a target turbine and to employ the regression techniques for mapping from the current
wind power situation to the future. Figure 9.2 illustrates the situation. The possible
time horizon depends on the temporal and spatial resolution of the wind power data.
The wind speed must be related to the spatial dimensions of the surrounding turbines
as well as to the temporal resolution of the time series data. The question comes up,
which surrounding turbines are the best ones for the wind prediction problem, in
particular with regard to the employed regression method. In [101] we use nearest
neighbor regression as machine learning model.

To optimize the influence of the particular turbines in the environment, we employ
Genetic Algorithms. Each solution is a vector of weights with the dimensionality
of the number of turbines the wind prediction model makes use of. This weight
vector scales the components of the wind time series patterns for the regression-

Fig. 9.2 The data-driven
wind power prediction
model is based on the time
series data of the wind
turbines that surround a
target turbine, for which the
prediction is computed

surrounding turbines

target turbine

x1

x2

x3

x4
x5

x6
x

7

9.4 Feature Tuning 77

Table 9.2 Wind feature tuning of data-driven predictions with Genetic Algorithms, taken
from [101]

Park Persistence GA start GA final

Tehachapi 21.58 22.95 ± 0.67 16.45 ± 0.01

Reno 36.41 35.33 ± 1.15 27.24 ± 0.06

based prediction. Such a feature tuning is a common way in machine learning for
helping regression and classification models focusing on specific dimensions. The
Genetic Algorithm that solves this continuous optimization problem is based on
Gaussian mutation and Rechenberg’s mutation rate control. It is a bound constraint
optimization problem, as negative weights are not allowed. The bound restrictions
are handled with death penalty.

In [101] we could show that the feature tuning process improves the prediction
results significantly. In particular, for regression models that have no mechanism
for tuning the feature importance like nearest neighbor regression, the Genetic
Algorithm optimization of weights yields large improvements in comparison to the
untuned counterparts. Table 9.2 shows exemplary results for turbines near Tehachapi
in California and Reno in Nevada for one-hour ahead predictions. The persistence
model is a benchmark for comparison based on the assumption that the wind does not
change within the prediction horizon. The prediction model is based on nearest neigh-
bor regression employing 12 surrounding turbines with three past measurements. The
table shows that the prediction model has a similar quality like persistence at the start
of the optimization process. After 100 generations of the Genetic Algorithm sig-
nificantly better wind power prediction accuracies were achieved. The integration of
numerous meteorological information can further improve the prediction accuracies.

9.5 Wind Turbine Placement

To increase the efficiency of wind turbines in wind farms, it is important to consider
wake effects. Wake effects occur, when turbines stand in front of each other with
regard to the wind direction. By reducing the kinetic energy of air molecules and by
inducing turbulences, the wind power behind a turbine is decreased. This effect can be
modeled in different kinds of ways in a simulation. We employ the model by Kusiak
and Song [64] for modeling wake effects. It is based on the wind distribution that
models frequencies and magnitudes of wind speeds from different directions. We use
wind distribution data from the German Weather Service for locations in the northern
part of Germany in our analysis, for example in [74]. The resulting energies achieved
with the wind speeds that arrive at the turbines are computed with the power curves
of real wind turbines. All these computations are required for the computation of the
power output of a whole wind farm, which finally represents the fitness function for
a Genetic Algorithm in the wind turbine placement optimization scenario.

78 9 Applications

x3

x2

x1

turbine

building

wake effect

constraint

Fig. 9.3 Exemplary area of wind turbines with wake effects and building constraints. On the left,
a turbine stands in the area of the wake effect of a neighboring one degrading its power output

Figure 9.3 shows an exemplary area of wind turbines with wake effects that reduce
the power generation of neighboring turbines. A solution to the wind turbine place-
ment problem is a vector of positions for all wind turbines. It turns out to be a
constrained optimization problem as turbines have a least distance to other turbines
and to buildings, streets, woods, and further geographical phenomenons. For a real-
istic scenario we use geo-information from OpenStreetMap [35], which contains
coordinates and important properties for our wind park modeling. Figure 9.3 also
illustrates the concepts of restricted areas induced by buildings.

The turbine placement problem can be treated as constrained continuous optimiza-
tion problem. The application of a Genetic Algorithm with Gaussian mutation
is a good choice and turns out to deliver satisfying results in the end. We tested
different operators and population sizes in [74] and later also experimented with
various penalty functions to handle constraints [75]. The evolutionary tuning of
the turbine positions significantly improves the power output of a wind farm. The
Genetic Algorithm places them in rows orthogonally to the main wind direction.
The advantage in comparison to a manual placement is that some turbines are placed
in configurations that would probably not be found without Genetic Algorithms.
The turbine placement problem can be extended by taking into account arbitrary
additional conditions. Administrative conditions or the preferences of customers can
simply be considered within the constraint functions. The model also allows handling
different kinds of turbines, in particular from different manufacturers and devices
with different sizes. Related work on the use of Genetic Algorithms for turbine
placement without constraints [33] and for large numbers of wind turbines [24] has
also been published recently.

9.6 Virtual Power Plants 79

9.6 Virtual Power Plants

The integration of renewable energy resources into the power grid is a tedious task
because of their fluctuations. For a stable grid the fluctuations of varying wind and
solar power have to be compensated. The concept of virtual power plants is to bundle
multiple different power resources to a single unit that fulfills certain properties.
Virtual power plants often employ a fast conventional power plant that is able to
compensate fluctuations and a power storage that is able to save over-capacities. In
case of sudden power dropouts and undersupply the storage can inject saved energy
while the control power plant has to increase its power generation in case of an empty
storage. In case of over-capacities of power the storage can be charged. With one or
multiple power consumers the overall consumption of power should be equal to the
overall production.

The optimization problem is to minimize the absolute value of power in the system
by controlling the actors, which are reserve power plants and storages, with a rule
base. The rule base is optimized with Genetic Algorithms, an approach known as
learning classifier systems. The rule base contains rules that control actors depending
on the current system states. The strategy consists of rules with conditional parts that
are selected according to the system states and action parts, see Fig. 9.4 that shows an
exemplary rule base with a small set of rules. The system states depend on properties
like wind speed, solar power, and storage load. The action part controls the actors
of the system focusing on the battery and the reserve power plant. In [60] we model
a solution as sequence of loading and injection steps for a storage facility and for
powering up and down the reserve power plant.

The learning classifier system variables consist of discrete and continuous vari-
ables. The conditional part of each rule is randomly generated. With a minimum
number of rules the space of system states will be sufficiently covered. The action
part of the rule base is evolved with the Genetic Algorithm. The evolved control
strategies allow the virtual power plant to act flexibly and to balance power consump-
tion and generation. Virtual power plants will play an increasing role in the future.

condition 1

condition 2

condition 3

condition 4

action 1

action 2

action 3

action 4

current state

GA
optimizes

state space

closest perform

Fig. 9.4 Rule base of virtual power plant with four rules consisting of conditional and action parts.
The conditional parts are randomly distributed in state space. The Genetic Algorithm optimizes
the action part. In each step the rule is performed that is closest to the current system state

80 9 Applications

Besides the effort of modeling learning classifier rules by hand and tuning them man-
ually, their automatic optimization will lead to improved results for complex control
strategies.

9.7 Summary

Numerous applications have proven the success of Genetic Algorithms in practi-
cal applications. An important aspect for this success story is their broad applicability.
Once arrived in the world of Genetic Algorithms, it sounds appealing to model
every optimization problem with fitness functions and to adapt and employ Genetic
Algorithms for solving them. Also the design of appropriate genetic operators and
the choice of parameters is usually a convenient task. Moreover, the most successful
Genetic Algorithms in applications incorporate expert knowledge. This includes
initialization procedures, for example the use of solutions that are already known
as parents in the first generation, and the modification of solution parts with expert
designs. In applications the practitioner can be part of an interactive optimization
loop. The visualization and even sonification of Genetic Algorithm runs can
support the integration of human decisions into an automated optimization process.

In this chapter we have shown successful examples for the application of Genetic
Algorithms in dimensionality reduction, classifier ensembles, feature tuning for
wind power prediction, wind turbine placement, and learning classifier systems. It
will be interesting to see the number of successful applications growing in the future.

Part IV
Ending

Chapter 10
Summary and Outlook

10.1 Summary

Genetic Algorithms belong to the most important and successful algorithms in
learning and optimization. For difficult optimization problems Genetic Algo-
rithms are excellent solution strategies. Based on the concept of iteratively approx-
imating a solution, they are applicable to a broad class of problems. Their relation
to natural evolution make them interesting and powerful algorithms. For beginners
the evolutionary concepts are attractive for learning and understanding of optimiza-
tion processes. For researchers borrowing novel concepts from evolution is an inex-
haustible source of inspiration. Genetic Algorithms are typically used in an online
setting when optimizing an unknown problem. This means that the practitioner is
part of the search process by trying different settings, parameters, and algorithmic
variants.

Numerous extensions have been proposed in the past. We concentrated on a selec-
tion of the most important algorithms and concepts for Genetic Algorithms to
search in multimodal, constrained, and multi-objective solution spaces. Extensions
for multimodal solution spaces are based on niches and diversity maintenance. Con-
straint handling techniques allow dealing with restrictions that have to be considered
during optimization. Multi-objective techniques allow the approximation of a whole
set of Pareto-optimal solutions at once.

Meanwhile, a remarkable set of theoretical tools and analyses for Genetic
Algorithms has been proposed. Genetic Algorithms might have started from
a weakly understood cradle of heuristic methods, but have meanwhile grown to a
rich set of methods with theoretical and practical support. Further, Genetic Algo-
rithms profit from other branches of computer science and artificial intelligence like
machine learning. If the search is equipped with methods from learning, for example
the concept of fitness and constraint surrogates, the optimization process is often
significantly improved. Covariance matrix estimation supports the search in contin-
uous solution spaces while dimensionality reduction methods can be employed for
visualization of high-dimensional optimization processes.

© Springer International Publishing AG 2017
O. Kramer, Genetic Algorithm Essentials, Studies in Computational
Intelligence 679, DOI 10.1007/978-3-319-52156-5_10

83

84 10 Summary and Outlook

10.2 Outlook

Genetic Algorithms will surely play an important role in many optimization
settings in the future. The broad set of methods that have been developed for a huge
variety of problem classes will be applicable to an enormous set of applications in the
future. Moreover, Genetic Algorithms will continue their development. Besides
the extension of Genetic Algorithms with heuristic mechanisms, which adapt
them to specific problem classes, various applications will play a significant role for
their growth. In Chap. 9 we already presented a small set of potential application
domains. Hundreds and even thousands more exist in literature and will also be
subject to future research and developments.

A promising yet surprisingly old research area is parallelization. Genetic Algo-
rithms are easy to parallelize, in particular, if numerous solutions can be generated
and evaluated at the same time. Parallelization on graphical processing units (GPUs)
celebrates its success with deep learning currently, but also approaches for Genetic
Algorithms have successfully been introduced [34]. Deep learning is a revolu-
tionary technique as an extension of artificial neural networks to architectures with
many layers and hundreds of neurons. We expect a similar success for Genetic
Algorithms in the near future based on massive parallelization, also in the area of
evolving deep learning networks with Genetic Algorithms.

We hope that this book has served as a convenient introduction and overview
to Genetic Algorithms and will thus contribute to a fruitful development in
Genetic Algorithm-based research in the future. The depiction will continuously
be improved and updated to capture latest developments in research and applications.

http://dx.doi.org/10.1007/978-3-319-52156-5_9

References

1. T. Bäck and M. Schüctz. Intelligent mutation rate control in canonical genetic algorithms. In
Foundation of Intelligent Systems, pages 158–167. Springer, 1996.

2. S. H. Bak, N. Rask, and S. Risi. Towards adaptive evolutionary architecture. In Evolutionary
and Biologically Inspired Music, Sound, Art and Design (EvoStar), pages 47–62, 2016.

3. W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin. Genetic Programming: An Intro-
duction: on the Automatic Evolution of Computer Programs and Its Applications. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

4. N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective Selection based on
Dominated Hypervolume. European Journal of Operational Research, 181(3):1653–1669,
2007.

5. H. Beyer and H. Schwefel. Evolution strategies - A comprehensive introduction. Natural
Computing, 1(1):3–52, 2002.

6. H.-G. Beyer. On the performance of (1, λ)-evolution strategies for the ridge function class.
Transactions on Evolutionary Computation, 5(3):218–235, 2001.

7. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, Inc., New York, NY, USA, 1999.

8. B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers.
In Workshop on Computational Learning Theory (COLT), pages 144–152, New York, NY,
USA, 1992. ACM.

9. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
10. J. Bremer and S. Lehnhoff. A decentralized PSO with decoder for scheduling distributed

electricity generation. In Applications of Evolutionary Computation (EvoStar), pages 427–
442, 2016.

11. J. Chen, Q. Yang, J. Ni, Y. Xie, and S. Cheng. An improved fireworks algorithm with landscape
information for balancing exploration and exploitation. In IEEE Congress on Evolutionary
Computation (CEC), pages 1272–1279, 2015.

12. R. Clausen, E. Sapin, K. A. D. Jong, and A. Shehu. Evolution strategies for exploring protein
energy landscapes. In Genetic and Evolutionary Computation Conference (GECCO), pages
217–224, 2015.

13. C. Darwin. On the Origin of Species. John Murray, London, 1859.
14. E. Davies, P. Tew, D. R. Glowacki, J. Smith, and T. Mitchell. Evolving atomic aesthetics and

dynamics. In Evolutionary and Biologically Inspired Music, Sound, Art and Design (EvoStar),
pages 17–30, 2016.

15. W. de Landgraaf, A. Eiben, and V. Nannen. Parameter calibration using meta-algorithms. In
IEEE Congress on Evolutionary Computation (CEC), pages 71–78, 2007.

© Springer International Publishing AG 2017
O. Kramer, Genetic Algorithm Essentials, Studies in Computational
Intelligence 679, DOI 10.1007/978-3-319-52156-5

85

86 References

16. W. A. de Landgraaf, A. E. Eiben, and V. Nannen. Parameter calibration using meta-algorithms.
In IEEE Congress on Evolutionary Computation (CEC), pages 71–78, 2007.

17. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

18. B. Desjardins, R. Falcon, R. S. Abielmona, and E. M. Petriu. A multi-objective optimization
approach to reliable robot-assisted sensor relocation. In IEEE Congress on Evolutionary
Computation (CEC), pages 956–964, 2015.

19. B. Doerr and C. Doerr. A tight runtime analysis of the (1+(λ, λ)) genetic algorithm on onemax.
In Genetic and Evolutionary Computation Conference (GECCO), pages 1423–1430, 2015.

20. M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a colony of cooperating
agents. Transactions on Systems, Man, and Cybernetics, 26(1):29–41, 1996.

21. A. E. Eiben, E. H. L. Aarts, and K. M. van Hee. Global convergence of genetic algorithms: A
markov chain analysis. In Parallel Problem Solving from Nature (PPSN), pages 4–12, Berlin,
1991. Springer.

22. A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary algorithms.
Transactions on Evolutionary Computation, 3(2):124–141, 1999.

23. A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Natural Computing
Series. Springer, Berlin, 2003.

24. A. Emami and P. Noghreh. New approach on optimization in placement of wind turbines
within wind farm by genetic algorithms. Renewable Energy, 35(7):1559–1564, 2010.

25. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In International Conference on Knowledge
Discovery and Data Mining (KDD), pages 226–231. AAAI Press, 1996.

26. T. C. Fogarty. Varying the probability of mutation in the genetic algorithm. In International
Conference on Genetic Algorithms, pages 104–109, San Francisco, 1989. Morgan Kaufmann
Publishers Inc.

27. L. Fogel, A. A.J. Owens, and M. Walsh. Artificial Intelligence through Simulated Evolution.
Wiley, 1971.

28. S. Forrest and M. Mitchell. Relative building-block fitness and the building block hypothesis.
In Foundations of Genetic Algorithms (FOGA), pages 109–126, 1992.

29. T. Friedrich, T. Kroeger, and F. Neumann. Weighted preferences in evolutionary multi-
objective optimization. International Journal of Machine Learning and Cybernetics,
4(2):139–148, 2013.

30. C. Gießen and C. Witt. Population size vs. mutation strength for the (1+λ) EA on onemax. In
Genetic and Evolutionary Computation Conference (GECCO), pages 1439–1446, 2015.

31. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison
Wesley, 1989.

32. D. E. Goldberg and R. Lingle. Alleles, loci, and the traveling salesman problem. In Interna-
tional Conference on Genetic Algorithms and Their Applications, pages 154–159, 1985.

33. J. S. Gonzalez, A. Gonzalez Rodriguez, J. C. Mora, J. R. Santos, and M. B. Payan. Optimization
of wind farms using an evolutive algorithm. Renewable Energy, 35(8):1671–1681, 2010.

34. S. Gupta and G. Tan. A scalable parallel implementation of evolutionary algorithms for multi-
objective optimization on gpus. In IEEE Congress on Evolutionary Computation (CEC), pages
1567–1574, 2015.

35. M. M. Haklay and P. Weber. Openstreetmap: User-generated street maps. IEEE Pervasive
Computing, 7(4):12–18, 2008.

36. N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions in evolution
strategies: The covariance matrix adaptation. In IEEE Congress on Evolutionary Computation
(CEC), pages 312–317, 1996.

37. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strate-
gies. Evolutionary Computation, 9(2):159–195, 2001.

38. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer, New York, Heidelberg, 2009.

39. J. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975.

87

40. J. Holland. Hidden Order: How Adaptation Builds Complexity. Helix Books, 1996.
41. J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering,

9(3):90–95, 2007.
42. G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learning.

Springer Texts in Statistics. Springer, New York, Heidelberg, 2013.
43. T. Jansen and I. Wegener. Real royal road functions-where crossover provably is essential.

Discrete Applied Mathematics, 149(1–3):111–125, 2005.
44. J. Joines and C. Houck. On the use of non-stationary penalty functions to solve nonlinear

constrained optimization problems with GAs. In D. B. Fogel, editor, IEEE Congress on
Evolutionary Computation (CEC), pages 579–584, Orlando, Florida, 1994. IEEE Press.

45. I. T. Jolliffe. Principal component analysis. Springer Series in Statistics. Springer, New York
u.a., 1986.

46. G. Karafotias, M. Hoogendoorn, and Á. E. Eiben. Parameter control in evolutionary algo-
rithms: Trends and challenges. Transactions on Evolutionary Computation, 19(2):167–187,
2015.

47. J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE International Conference
on Neural Networks (IJCNN), pages 1942–1948, 1995.

48. S. Kirkpatrick, C. G. Jr, and M. Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

49. J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, 1992.

50. O. Kramer. Self-Adaptive Heuristics for Evolutionary Computation, volume 147 of Studies
in Computational Intelligence. Springer, 2008.

51. O. Kramer. Evolutionary self-adaptation: a survey of operators and strategy parameters. Evo-
lutionary Intelligence, 3(2):51–65, 2010.

52. O. Kramer. Iterated local search with powell’s method: a memetic algorithm for continuous
global optimization. Memetic Computing, 2(1):69–83, 2010.

53. O. Kramer. Dimensionality Reduction with Unsupervised Nearest Neighbors, volume 51 of
Intelligent Systems Reference Library. Springer, 2013.

54. O. Kramer. Evolution strategies with ledoit-wolf covariance matrix estimation. In IEEE
Congress on Evolutionary Computation (CEC), pages 1712–1716, 2015.

55. O. Kramer. Local fitness meta-models with nearest neighbor regression. In Applications of
Evolutionary Computation (EvoStar), pages 3–10, 2016.

56. O. Kramer. Machine Learning for Evolution Strategies, volume 20 of Studies in Big Data.
Springer, 2016.

57. O. Kramer and H. Danielsiek. Dbscan-based multi-objective niching to approximate equiva-
lent pareto-subsets. In Genetic and Evolutionary Computation Conference (GECCO), pages
503–510, 2010.

58. O. Kramer and P. Koch. Rake selection: A novel evolutionary multi-objective optimization
algorithm. In Advances in Artificial Intelligence (KI), pages 177–184, 2009.

59. O. Kramer and D. Lückehe. Visualization of evolutionary runs with isometric mapping. In
IEEE Congress on Evolutionary Computation (CEC), pages 1359–1363, 2015.

60. O. Kramer, B. Satzger, and J. Lässig. Managing energy in a virtual power plant using learning
classifier systems. In International Conference on Genetic and Evolutionary (GEM), pages
111–117, 2010.

61. O. Kramer, U. Schlachter, and V. Spreckels. An adaptive penalty function with meta-modeling
for constrained problems. In IEEE Congress on Evolutionary Computation (CEC), pages
1350–1354, 2013.

62. O. Kramer and H. Schwefel. On three new approaches to handle constraints within evolution
strategies. Natural Computing, 5(4):363–385, 2006.

63. J. W. Kruisselbrink, E. Reehuis, A. H. Deutz, T. Bäck, and M. Emmerich. Using the uncer-
tainty handling CMA-ES for finding robust optima. In Genetic and Evolutionary Computation
Conference (GECCO), pages 877–884, 2011.

88 References

64. A. Kusiak and Z. Song. Design of wind farm layout for maximum wind energy capture.
Renewable Energy, 35(3):685–694, 2010.

65. P. Larranaga and J. Lozano. Estimation of Distribution Algorithms. A New Tool for Evolu-
tionary Computation. Kluwer Academic Publishers, 2001.

66. J. A. Lee and M. Verleysen. Nonlinear Dimensionality Reduction. Springer Series in Statistics.
Springer, 2007.

67. D. Lessin and S. Risi. Darwin’s avatars: A novel combination of gameplay and procedural
content generation. In Genetic and Evolutionary Computation Conference (GECCO), pages
329–336, 2015.

68. X. Li, S. Zeng, S. Qin, and K. Liu. Constrained optimization problem solved by dynamic
constrained NSGA-III multiobjective optimizational techniques. In IEEE Congress on Evo-
lutionary Computation (CEC), pages 2923–2928, 2015.

69. D. P. Liebana, J. Dieskau, M. Hunermund, S. Mostaghim, and S. M. Lucas. Open loop
search for general video game playing. In Genetic and Evolutionary Computation Conference
(GECCO), pages 337–344, 2015.

70. I. Loshchilov. CMA-ES with restarts for solving CEC 2013 benchmark problems. In IEEE
Congress on Evolutionary Computation (CEC), pages 369–376, 2013.

71. I. Loshchilov. A computationally efficient limited memory CMA-ES for large scale opti-
mization. In Genetic and Evolutionary Computation Conference (GECCO), pages 397–404,
2014.

72. I. Loshchilov, M. Schoenauer, and M. Sebag. Self-adaptive surrogate-assisted covariance
matrix adaptation evolution strategy. In Genetic and Evolutionary Computation Conference
(GECCO), pages 321–328, 2012.

73. D. Lückehe and O. Kramer. Leaving local optima in unsupervised kernel regression. In Arti-
ficial Neural Networks and Machine Learning (ICANN), pages 137–144, 2014.

74. D. Lückehe, M. Wagner, and O. Kramer. On evolutionary approaches to wind turbine place-
ment with geo-constraints. In Genetic and Evolutionary Computation Conference (GECCO),
pages 1223–1230, 2015.

75. D. Lückehe, M. Wagner, and O. Kramer. Constrained evolutionary wind turbine placement
with penalty functions. In IEEE Congress on Evolutionary Computation (CEC), pages 4903–
4910, 2016.

76. P. Meinicke, S. Klanke, R. Memisevic, and H. Ritter. Principal surfaces from unsupervised
kernel regression. Transactions on Pattern Analysis and Machine Intelligence, 27(9):1379–
1391, 2005.

77. I. Mierswa. Controlling overfitting with multi-objective support vector machines. In Genetic
and Evolutionary Computation Conference (GECCO), pages 1830–1837, 2007.

78. Á. Monteagudo and J. S. Reyes. Evolutionary optimization of cancer treatments in a cancer
stem cell context. In Genetic and Evolutionary Computation Conference (GECCO), pages
233–240, 2015.

79. G. Morse and K. O. Stanley. Simple evolutionary optimization can rival stochastic gradient
descent in neural networks. In Genetic and Evolutionary Computation Conference (GECCO),
pages 477–484, 2016.

80. F. Neumann and C. Witt. Bioinspired Computation in Combinatorial Optimization: Algo-
rithms and Their Computational Complexity. Natural Computing Series. Springer, Berlin,
2010.

81. S. Oehmcke, J. Heinermann, and O. Kramer. Analysis of diversity methods for evolutionary
multi-objective ensemble classifiers. In Applications of Evolutionary Computation (EvoStar),
pages 567–578, 2015.

82. A. Ostermeier, A. Gawelczyk, and N. Hansen. Step-size adaption based on non-local use
of selection information. In Parallel Problem Solving from Nature (PPSN), pages 189–198,
1994.

83. K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine, 2(6):559–572, 1901.

References 89

84. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

85. S. Peignier, C. Rigotti, and G. Beslon. Subspace clustering using evolvable genome structure.
In Genetic and Evolutionary Computation Conference (GECCO), pages 575–582, 2015.

86. I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. Fromman-Holzboog, 1971.

87. F. H. Rios, L. König, and H. Schmeck. Stigmergy-based scheduling of flexible loads. In
Applications of Evolutionary Computation (EvoStar), pages 475–490, 2016.

88. F. Rosenblatt. The perceptron. a probabilistic model for information storage and organization
in the brain. Psychological Reviews, 65:386–408, 1958.

89. H. Rosenbrock. An automatic method for finding the greatest or least value of a function. The
Computer Journal, 3(3):175–184, 1960.

90. S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290:2323–2326, 2000.

91. G. Rudolph. Finite markov chain results in evolutionary computation: A tour d’horizon.
Fundamenta Informaticae, 35(1-4):67–89, 1998.

92. B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.
93. H. Schwefel. Numerische Optimierung von Computer-Modellen. Birkhäuser, 1977.
94. H. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.
95. M. Scirea, J. Togelius, P. W. Eklund, and S. Risi. Metacompose: A compositional evolutionary

music composer. In Evolutionary and Biologically Inspired Music, Sound, Art and Design
(EvoStar), pages 202–217, 2016.

96. H. Seada and K. Deb. Effect of selection operator on NSGA-III in single, multi, and many-
objective optimization. In IEEE Congress on Evolutionary Computation (CEC), pages 2915–
2922, 2015.

97. G. Syswerda. Simulated crossover in genetic algorithms. In Foundations of Genetic Algorithms
(FOGA), pages 239–255, 1992.

98. Y. Tan and Y. Zhu. Fireworks algorithm for optimization. In Advances in Swarm Intelligence,
pages 355–364, 2010.

99. M. A. M. Teixeira, F. Goulart, and F. Campelo. Evolutionary multiobjective optimization of
winglets. In Genetic and Evolutionary Computation Conference (GECCO), pages 1021–1028,
2016.

100. J. B. Tenenbaum, V. D. Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290:2319–2323, 2000.

101. N. A. Treiber and O. Kramer. Evolutionary feature weighting for wind power prediction with
nearest neighbor regression. In IEEE Congress on Evolutionary Computation (CEC), pages
332–337, 2015.

102. N. A. Treiber, S. Späth, J. Heinermann, L. von Bremen, and O. Kramer. Comparison of
numerical models and statistical learning for wind speed prediction. In European Symposium
on Artificial Neural Networks (ESANN), pages 71–76, 2015.

103. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.
104. F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1:80–83, 1945.
105. D. H. Wolpert and W. G. Macready. No free lunch theorems for search. Technical report,

Santa Fe, 1995.
106. X.-S. Yang. Nature-Inspired Metaheuristic Algorithms. Luniver Press, 2008.
107. E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative Case Study

and the Strength Pareto Approach. Transactions on Evolutionary Computation, 3(4):257–271,
1999.

Index

A
Ant colony optimization, 7
Artificial intelligence, 4

B
Building block hypothesis, 62

C
CEC, 73
Chromosome, 12, 15
Clustering, 36
Computational intelligence, 4
Constraint surrogate, 69
Constraints, 39, 46, 69
Contour line, 66
Covariance matrix, 66
Crossover, 12, 26, 62
Cross-validation, 69
Curse-of-dimensionality problem, 36

D
DBSCAN, 36
Death penalty, 41
Decoder, 6, 43
Deterministic control, 23
Dimensionality reduction, 70, 74
DNA, 5
Drift, 14

E
Energy, 76
Ensembles, 75
Evolution strategies, 6

Evolutionary programming, 6
EvoStar, 73
Experiments, 18
Exploitation, 34
Exploration, 34

F
Firefly algorithm, 7
Fireworks algorithm, 7
Fitness, 15
Fitness-based partitions, 58
Fitness sharing, 34
Fitness surrogate, 67
Fuzzy logic, 4

G
(1+1)-GA, 5, 71
Gaussian mutation, 6, 14, 66
GECCO, 73
Genetic programming, 6
Genotype, 12, 15
Genotype-phenotype mapping, 15
Grid-search, 69

H
Hypervolume indicator, 52

L
Latin hypercube sampling, 22
Log-normal mutation, 26

M
Machine learning, 65, 74

© Springer International Publishing AG 2017
O. Kramer, Genetic Algorithm Essentials, Studies in Computational
Intelligence 679, DOI 10.1007/978-3-319-52156-5

91

92 Index

Markov chains, 59
Meta-GA, 22
Meta-model, 18, 44, 67, 69
Multi-objective, 16, 48, 75
Multimodal, 31
Mutation, 13, 22–24, 27
Mutation rate, 13, 33

N
Niching, 35
No free lunch, 61
Non-dominated sorting, 49
Novelty search, 35
NSGA, 50, 75

O
Optimization, 3, 21, 31, 39

P
Parameter control, 21
Parameter tuning, 22, 74
Pareto-front, 47
Pareto-set, 47
Partially mapped crossover, 40
PCA, 70
Penalty factor, 42
Penalty function, 41
Phenotype, 15
Premature stagnation, 44
Progress rate, 59
Python, 10

R
Rake selection, 51
Reachability, 13
Rechenberg rule, 6, 24
Repair, 43
Representation, 11

Restarts, 32
Rule base, 79
Runtime analysis, 58

S
Scalability, 14
Schema theorem, 61
Selection, 16

comma, 17
plus, 17
survival, 17
tournament, 17

Self-adaptation, 6, 26
Sklearn, 10
S-metric, 52
Sphere function, 4, 32
Step size, 13
Support vector machines, 10, 22, 44, 69
Swarm intelligence, 7

T
Termination, 17
Theory, 57
Traveling salesman problem, 3, 40, 43
Turbine placement, 77

U
Unbiasedness, 14
Unsupervised regression, 74

V
Virtual power plant, 79
Visualization, 70

W
Wind, 76

	Contents
	Abstract
	Foundations
	1 Introduction
	1.1 Optimization
	1.2 From Biology to Genetic Algorithms
	1.3 Genetic Algorithm Variants
	1.4 Related Optimization Heuristics
	1.5 This Book
	1.6 Further Remarks

	2 Genetic Algorithms
	2.1 Introduction
	2.2 Basic Genetic Algorithm
	2.3 Crossover
	2.4 Mutation
	2.5 Genotype-Phenotype Mapping
	2.6 Fitness
	2.7 Selection
	2.8 Termination
	2.9 Experiments
	2.10 Summary

	3 Parameters
	3.1 Introduction
	3.2 Parameter Tuning
	3.3 Meta-Genetic Algorithm
	3.4 Deterministic Control
	3.5 Rechenberg
	3.6 Self-adaptation
	3.7 Summary

	Solution Spaces
	4 Multimodality
	4.1 Introduction
	4.2 Restarts
	4.3 Fitness Sharing
	4.4 Novelty Search
	4.5 Niching
	4.6 Summary

	5 Constraints
	5.1 Introduction
	5.2 Constraints
	5.3 Death Penalty
	5.4 Penalty Functions
	5.5 Repair
	5.6 Decoders
	5.7 Premature Stagnation
	5.8 Summary

	6 Multiple Objectives
	6.1 Introduction
	6.2 Multi-objective Optimization
	6.3 Non-dominated Sorting
	6.4 Crowding Distance
	6.5 Rakes
	6.6 Hypervolume Indicator
	6.7 Summary

	Advanced Concepts
	7 Theory
	7.1 Introduction
	7.2 Runtime Analysis
	7.3 Markov Chains
	7.4 Progress Rates
	7.5 No Free Lunch
	7.6 Schema Theorem
	7.7 Building Block Hypothesis
	7.8 Summary

	8 Machine Learning
	8.1 Introduction
	8.2 Covariance Matrix Estimation
	8.3 Fitness Surrogates
	8.4 Constraint Surrogates
	8.5 Dimensionality Reduction for Visualization
	8.6 Summary

	9 Applications
	9.1 Introduction
	9.2 Unsupervised Regression
	9.3 Balancing Ensembles
	9.4 Feature Tuning
	9.5 Wind Turbine Placement
	9.6 Virtual Power Plants
	9.7 Summary

	Ending
	10 Summary and Outlook
	10.1 Summary
	10.2 Outlook

	Appendix References
	Index

