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Preface

Industrial engineers deal with a variety of problems which require mak-
ing decisions involving multiple criteria, uncertainty, and risk. Hence, the 
subject of this book, multiple criteria decision analysis, is essential for many 
areas of industrial engineering. In fact, a primary activity of industrial engi-
neers is making decisions with respect to a system’s design and operation.

This book is meant to be used as a text for a one-semester course in deci-
sion analysis for advanced undergraduate or graduate-level students. It is 
especially designed for students who are studying industrial engineering, 
but it can also be used in a program designed for business and management 
students.

The book arises from the author’s experience of more than 30 years in 
teaching, research, and consulting in decision analysis, simulation modeling 
and analysis, and industrial engineering in general. Two unique features of 
the book are, first, its comprehensive coverage of multiple criteria decision 
analysis and related areas, including simulation optimization; and, second, 
its emphasis on applications involving industrial engineering.

Following an introductory chapter, Chapter 2 focuses on problem struc-
turing, including the generation of alternatives, objectives, and attributes 
(performance measures) for a decision situation; the problem structuring 
activity is an essential first step in a decision analysis. Chapter 3 covers mul-
tiobjective methods for decision making in deterministic situations with 
only a few alternatives to consider. These methods include the assessment 
and use of multiattribute value functions, Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS), the analytic hierarchy process (AHP), 
and outranking methods.

Chapter 4 addresses deterministic decision situations with a large num-
ber of alternatives—that is, multiple objective mathematical programming, 
with a focus on goal programming. In this case, the alternatives are defined 
in terms of combinations of values assigned to decision variables; hence, 
because of the large number of “alternatives,” not all of them can be explic-
itly evaluated.

Chapter 5 provides a brief review of probability. This chapter may be 
skipped, or just covered in a cursory fashion for students with a good back-
ground in probability and statistics. Chapter 6 covers the modeling of a 
decision-maker’s preferences in probabilistic situations involving (1) a sin-
gle attribute (single attribute utility functions) and (2) multiple attributes 
(multiattribute utility functions). Chapter 7 presents methodologies which 
allow for the “probabilistic mapping” of alternatives into a single attribute 
or multiple attributes, and includes decision trees and influence diagrams.



xviii Preface

Chapter 8 discusses the determination of probabilistic inputs for simula-
tion models (including models of decision trees and influence diagrams) of 
decision situations. These probabilistic inputs are represented as probability 
distributions. This chapter is divided into two main parts, depending upon 
whether or not data are available for developing these probabilistic inputs.

Finally, Chapter 9 presents the use of simulation as a tool to execute the 
modeling methodologies (including decision trees and influence diagrams) 
presented previously. Included in this chapter is a discussion on simulation 
optimization.

Each methodology and technique (e.g., assessment of a multiattribute 
value or utility function, evaluation of a decision tree to choose an initial best 
alternative, simulation optimization via ranking and selection) is described 
with an easy to follow “step-by-step” process. In addition, through the use of 
numerous cited references, information on the theoretical backgrounds, as 
well as criticisms and comparisons to other techniques are provided.

Numerous examples of the various methodologies are presented through-
out the book in order to illustrate the applications in various areas of indus-
trial engineering. In addition, each chapter contains both Material Review 
Questions and Exercises that students can use to test their knowledge of the 
material.

Various software packages were employed to develop the examples found 
in the book and to solve the exercises at the end of the chapters. These pack-
ages include Expert Choice™ for executing the analytic hierarchy process, 
Arena™ for developing and executing simulation models, OptQuest™ for 
solving optimization models interfaced with simulation, LINGO™ for solv-
ing optimization models, and Precision Tree™ for developing and solving 
decision trees.

Materials for the instructor are also provided. These materials include files 
containing PowerPoint slides that correspond to each respective chapter, and 
solutions to the exercises at the end of each chapter.
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1

1
Introduction

1.1 Decision Making Is Important

Decision making is an important aspect of any human endeavor, whether 
that endeavor is accomplished by an individual or as part of an organiza-
tion. Analyzing a decision situation and then making a “good decision” is 
a prelude to accomplishing important endeavors. As such, both individuals 
and organizations make decisions in order to solve problems and to take 
advantage of opportunities. Some examples of personal decisions made by 
individuals include the following:

 1. A high school student decides where to attend college and what to 
study.

 2. A consumer decides which type of automobile to purchase.
 3. A newly married couple decides whether to honeymoon in Florida 

or Hawaii.
 4. A patient, in conjunction with his or her doctor, decides whether to 

use chemotherapy or radiation to treat his or her cancer.

In fact, personal decisions, especially those having to do with our health and 
safety, can even result in death (Keeney, 2008).

Here are some examples of decision problems faced by private industry:

 1. General Electric decides whether or not to develop a new MRI 
machine with a larger opening for the patient (Welch, 2005, pp. 74, 75).

 2. An electric utility cooperative decides whether or not to add an 
additional transmission line to link with an electric utility (Borison, 
1995).

 3. A corporation decides where to locate a new production facility.
 4. An automobile manufacturer decides whether or not to produce a 

new line of cars.
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Examples of decision problems faced by individuals (within professional 
settings) include the following:

 1. A machine operator decides which part to process next.
 2. An industrial engineer designs a layout for a new production facility.
 3. A plant manager selects a new quality engineer from among several 

applicants.
 4. An information systems manager selects an accounting system for 

his or her organization.

Finally, some examples of decisions made by public institutions such as 
local or federal governments include the following:

 1. A state government (in conjunction with the local metropolitan gov-
ernment and the federal government) chooses a location for a new 
bridge in the metropolitan area.

 2. The federal government decides whether or not commercial air-
planes should have special protection against surface-to-air missile 
attacks by terrorists (von Winterfeldt and O’Sullivan, 2006).

 3. The Department of Energy decides how to allocate a limited budget 
among various R&D projects (Parnell, 2001).

In its most elemental form, a decision problem involves a situation in which 
one alternative must be selected from among several feasible alternatives. 
In fact, the word “decide” is derived from the Latin decidere, which means 
“to cut off.” When we decide on something, we “cut off” the other alterna-
tives from further consideration by selecting one alternative. For example, 
the corporation in the aforementioned example might be considering three 
alternatives for the location of a new production facility: Evansville, Indiana; 
Lexington, Kentucky; and Nashville, Tennessee. When they choose one of 
the locations (i.e., they make a decision), they cut off the other two from fur-
ther consideration.

This book is concerned with problems and situations involving decision 
making and optimization. Of particular interest are situations in which 
multiple objectives and uncertainty (and resulting risk) must be considered. 
When the number of alternative decisions in a particular situation is so large 
that evaluation of all alternatives is not possible, then some type of optimiza-
tion technique is desirable as part of the solution process. Examples of situa-
tions involving such a large number of alternatives would be one involving 
continuous “decision variables,” such as the amount of product produced by 
a company in the next month, or a combination of discrete/integer decision 
variables, such as the number of machines of various types to include in a 
production facility.
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1.2 Characteristics of Decision Situations

1.2.1  Decisions Are Made to Solve Problems or to 
Take Advantage of Opportunities

As mentioned in the previous section, a decision is made to solve a prob-
lem or, alternatively, to take advantage of an opportunity. A problem can 
be defined as a gap between a current state of affairs and some desired 
state of affairs. For example, in the situation described earlier involving 
the protection of commercial airplanes, the “problem” might be defined 
as “there is a gap between the perceived current level of safety and the 
desired level of safety because of a possible terrorist attack on a commer-
cial airplane.” As another example, a personal problem might be defined 
as “there is a gap between my current salary and the salary I would like 
to receive.”

Note that in many cases, the “state of affairs” is defined in a fairly nebulous 
fashion so that in order to proceed in the evaluation of various alternatives, 
one must clearly define the performance measures that determine the state 
of affairs. The concept of a “problem” will be discussed in much more detail 
in Chapter 2.

1.2.2  A Good Decision May Not Always Result in a Good Outcome 
(and a Bad Decision May Not Always Result in a Bad Outcome)

The timed sequence of processes/events that occur in a decision situation 
might be defined as follows:

 1. Decision analysis
 2. Selection of a decision to implement
 3. Implementation of a decision
 4. Occurrence of the results of the decision

The results of a decision are typically uncertain in nature, often depending 
on many uncertain parameters.

As a simple example, consider a friend of yours named Harry who is down 
to his last $2000. Suppose that Harry is considering two alternatives for the 
use of this money:

 1. Invest the money in an educational course that will give him a 9 out 
of 10 chance of procuring a better job with an increase in annual sal-
ary of $10,000 over his current salary.

 2. Purchase lottery tickets that will give him a probability of 1 chance 
in 10 million of winning $1 million.
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Most people would consider the first alternative the best one. But if Harry 
does not procure a better job after the course (a 10% chance), then the result 
(or outcome) would be bad. One of the purposes of a decision analysis pro-
cess would be to maximize the chances of getting a good outcome. Although 
it may not always turn out this way, over the long run the results of your 
decisions should be better outcomes through the use of a good decision anal-
ysis process.

1.2.3  Decisions Can Often Be Categorized as Being 
Strategic, Tactical, or Operational in Nature

Decisions must be made in a variety of situations. For example, one cat-
egorization of decision situations is strategic (e.g., decisions that influence 
outcomes more than a period of 1–10 years or longer), tactical (affecting out-
comes more than a period of 1–12 months), and operational (affecting out-
comes more than a period of one to a few days). Typically, decisions made 
at the strategic level place constraints on decisions made at the tactical and 
operational levels, and decisions made at the tactical level constrain deci-
sions made at the operational level.

As an example, an organization’s strategic decision of where to locate a 
new manufacturing facility will probably affect tactical decisions regarding 
transportation policy. Hence, one wants to at least implicitly consider the 
tactical and operational decisions resulting from strategic decisions in a stra-
tegic decision analysis. By the same token, one wants to implicitly consider 
the relevant operational decisions in an analysis for a tactical decision.

1.3 Steps in the Process of Decision Making

The major steps in the process of decision making are as follows:

 1. Generate alternative solutions (or just alternatives) for the problem.
 2. Determine the performance measures for the problem situation.
 3. Rank the alternatives in terms of the performance measures.
 4. Implement the first-ranked alternative.

Of course, each of these major steps involves several related activities. For 
example, steps 1 and 2 involve the consideration of the values and objectives 
associated with the person/organization making the decision as well as the 
decision situation. In order to generate the values and objectives of an orga-
nization or a decision situation, one must consider the decision makers and 
stakeholders involved.



5Introduction

For example, the first thing that the couple who were about to marry had 
to do was to generate potential locations for their honeymoon. This could 
have been accomplished through the gathering of information (e.g., through 
the Internet, by talking with friends and travel agents, and by visiting the 
library) about different possibilities. The next step, as described earlier, 
involves the determination of performance measures. The performance 
measures in this case could have involved such measures as the projected 
cost of the trip and the amount of “fun” that the couple could expect to 
have. Note that the first performance measure is quantitative (or objective) 
in nature, while the second one is qualitative. In addition, there may be 
some uncertainty about the outcome associated with a performance mea-
sure for a particular alternative. For example, the amount of “fun” that the 
couple has on a trip to Florida may be dependent on the weather in Florida 
while they are there.

The third step in the process involves ranking the alternatives. This could, 
and probably would, involve making trade-offs between pairs of perfor-
mance measures. For example, the honeymooning couple would probably 
have to trade off between “fun/enjoyment” and “cost.”

Finally, the decision must be implemented. In the case of the honey-
mooning couple, this would involve the purchase of tickets, making reser-
vations, and so on.

Of course, most decisions are made without the explicit consideration of 
these formal steps. The contention associated with decision analysis is that 
better decisions will be made through the explicit use of the methodologies 
and processes such as those described in this book.

1.4 Elements in a Decision Analysis Process

The steps of the decision-making process described earlier involve several 
elements/agents. These elements include the following:

 1. The people involved: decision maker(s), stakeholders, and analysts
 2. Alternative solutions to the problem
 3. Ways to measure the performance of an alternative: criteria, perfor-

mance measures, and attributes
 4. Constraints on the alternatives
 5. A forecast associated with various states of nature
 6. Models/techniques for the evaluation of alternatives
 7. Models/techniques for the ranking of feasible alternatives and/or 

the selection of a best alternative
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 8. An optimization technique for use in situations where it is impos-
sible to explicitly enumerate all of the feasible alternatives

 9. A procedure for implementing the chosen solution

A decision maker is a person responsible for making the decision about a best 
course of action (i.e., alternative) for solving a problem. Typically, a problem 
will have several decision makers. For example, a group of corporate execu-
tives may be decision makers with respect to determining the projects on 
which the company should bid. As such, decision makers should be involved 
in all elements of the decision-making process. In particular, decision makers 
should be heavily involved in the development of the criterion for ranking 
alternatives since a criterion must account for the decision makers’ trade-offs 
among multiple performance measures.

A stakeholder is someone who is affected by the decision problem and 
its ultimate solution but has no direct say in how the problem should be 
solved. For example, in a decision problem involving the bidding problem 
discussed in the aforementioned paragraph, the workers in the company 
involved would be stakeholders, since they would be performing the work 
associated with the projects bid on and received. As such, the decision mak-
ers should certainly consider the preferences of the stakeholders as a part of 
their decision analysis process.

An analyst is someone who aids the decision makers in the decision-making 
process. This can include the use of methods for the development and defi-
nition of alternatives, defining the performance measures, evaluating the 
alternatives in terms of the performance measures, quantifying trade-offs 
that the decision makers are willing to make between the various pairs of 
performance measures, and finally choosing the best alternative or ranking 
the alternatives. As such, the analyst should be educated in the methodology 
of decision analysis as well as related methodologies, such as probability 
and statistics, optimization, and simulation. The analyst does not necessarily 
have to be trained in the application area of the decision situation, since the 
decision makers themselves add this expertise.

Alternative solutions are the various possible (mutually exclusive) courses of 
action for solving a problem. Depending upon how well defined the problem 
is, these alternative solutions can be very general in nature or very specific. 
For example, a general alternative to a transportation problem for a metro-
politan area might be “construct another bridge across the river that divides 
the area,” while a more specific alternative might be “construct a bridge of a 
particular type at a particular location on the river.” Sometimes, alternative 
solutions are defined in terms of a set of values given to a particular set of 
decision variables; such is the case with mathematical programming (optimi-
zation) problems.

Performance measures or attributes represent ways of measuring how well 
an alternative does with respect to important problem objectives. For exam-
ple, if an important problem objective is to maximize the production rate of 
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a system, an attribute corresponding to this objective could be the average 
number of parts produced in a typical day.

Constraints are used to restrict the set of alternative solutions. For example, 
the decision makers for a particular problem may determine that no solution 
with an initial cost of more than $100,000 should be considered. As such, 
constraints can be used as inputs to a process for generating alternative solu-
tions or as inputs to an evaluation model for the automatic restriction of the 
solution space. In the second case, constraints are an important part of a 
mathematical programming model. As noted by Miser and Quade (1985), 
one should be very careful in the use of constraints, especially in the early 
stages of problem solving, so that potentially optimal solutions are not cut 
off from further consideration.

A state of nature is represented as a set of values assigned to important 
problem parameters. These problem parameters are variables that affect the 
outcome (in terms of performance measure values) associated with an alter-
native, but the decision maker(s) have no control over these variables. An 
example would be a situation in which a company must decide whether or 
not to expand its main factory. The future demand for the items produced 
by the factory will affect the amount of profit associated with either alterna-
tive. The decision maker has no control over this future demand; hence, this 
would be one of the variables that would have to be considered as part of the 
state of nature. For example, one might have

Probability of high demand 0.2
Probability of medium demand 0.6
Probability of low demand 0.2

An evaluation model allows a decision maker to “map” the various alterna-
tives into their associated outcomes (as measured by the attributes) given a 
particular state of nature. Many types of evaluation models exist, and the 
type to use for a particular situation depends upon many factors includ-
ing how well defined the alternatives and attributes are, the amount of 
time available for making the decision, the abilities of the decision mak-
ers to understand quantitative methodologies, the availability of data for 
building the model, the number of alternative solutions and performance 
measures to consider, and the importance of the decision to be made, 
among other factors. For example, one would probably not want to build 
an elaborate simulation model for a decision that has to be made by the 
end of the day.

Examples of types of evaluation models include

• Simulation models
• Analytic queuing network models
• Decision trees
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• Influence diagrams
• Analytic models (e.g., consisting of a set of equations)
• Judgmental models

A judgmental model is one that employs the expertise of one or more 
experts in order to predict the outcome associated with the various fea-
sible alternatives. As such, a judgmental model is not explicit in nature 
and therefore cannot be explicitly analyzed in the same ways as the other 
models.

Once the outcomes, in terms of multiple attributes, have been forecast for 
each of the alternatives, a criterion or ranking/optimization model can be used 
for selection of the best alternative. As such, a criterion should consider all 
of the attributes simultaneously through the use of objectives, goals, con-
straints, and so on.

As an example of a ranking/optimization model, consider a decision-
making situation where the two relevant attributes are the following:

 1. Initial system cost, measured in thousands of dollars
 2. System reliability, measured in terms of probability of no failure 

within the first 6 months of system operation

A criterion for this situation could be expressed by the following model:

Minimize initial system cost
Subject to

System Reliability ≥.95

Note that given a set of performance measures/attributes, objectives, goals, 
and so on, for a particular situation, there are typically a large number of 
ways to combine these into a ranking/optimization model. For example, 
one could employ a format where one attribute is optimized, subject to con-
straints on the other attributes (as in the aforementioned example), or one 
could employ a utility/value function approach that combines all of the attri-
butes into a single performance measure function. A third approach would 
involve a goal programming model.

In solving a ranking/optimization model representing a criterion (i.e., 
determining the best alternative for the given criterion), one sometimes has 
to use a sophisticated optimization technique. For example, when the num-
ber of feasible alternatives as defined by the constraints is very large, it may 
not be practical to evaluate every alternative solution since this evaluation 
process might require more time than is available. In these cases, there are 
many optimization techniques available for use depending upon the type of 
criterion model one is considering. For example, if one has a linear program 
as an optimization model, the revised simplex method can be used. If the 
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optimization model is an integer program, the branch-and-bound optimiza-
tion method can be used.

Once a particular alternative has been chosen (i.e., a decision has been 
made) through the use of the ranking/optimization model, that alternative 
must be implemented. Implementation of an alternative may involve a whole 
new decision situation involving the question of

What is the best way to implement the decision?

Implementing the decision may involve the use of project management tech-
niques as described in Meredith and Mantel (2012).

Figure 1.1 illustrates some of the relationships among the various elements 
discussed in this section.

Example 1.1: A Game Show Example

The purpose of this example is to illustrate how just the development of 
a model is helpful in thinking about a decision situation. The example 
involves the construction of a simple decision tree in order to answer a 
question concerning the best of two alternatives. The example is derived 
from Leonard Mlodinow’s excellent book, The Drunkard’s Walk: How 
Randomness Rules Our Lives (2008, 43–45).

Implementation

Chosen alternative solution

Evaluation
models

Alternative
solution

Performance
measures Constraints Scenarios

Analysts

Stakeholders

Decision makers
Feedback

Ranking/optimization
models

FIGURE 1.1
Elements in the process of decision making.
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A game show contestant is supposed to select one of three doors. Behind 
two of the doors are goats, but behind the third door is a new automobile. 
The contestant will receive the “prize” that is behind whichever door he 
or she selects. After the contestant selects one of the doors (but does not 
open it), the game show host selects one of the two doors that wasn’t chosen 
by the contestant and opens it to reveal a goat. The contestant is then given 
the option of switching his or her choice to the unopened door that he or 
she did not choose in the first place. Should he or she switch his or her choice?

On first reading, most people would say that it should make no 
difference—that is, the contestant would have the same probability of 
selecting the door with the car behind it whether or not he or she switches. 
After all, the automobile is still behind the same door that it was prior to the 
initial choice of the contestant. But in her column (Ask Marilyn) in Parade 
Magazine where this riddle first appeared in September of 1990, Marilyn vos 
Savant said that the contestant should switch his or her choice. As detailed 
in Mlodinow’s book, Marilyn received thousands of letters on the issue, and 
92% of the letter writers, many of them mathematicians, disagreed with her.

Let’s analyze and think about this problem by developing a simple 
decision tree. The basic decision is to switch to the other door or to stay 
with the initial choice. Figure 1.2 illustrates the decision situation in the 
form of a decision tree.

In Figure 1.2, the squares are called decision nodes and the circles are 
called outcome nodes. Arcs emanating from decision nodes represent 
mutually exclusive, alternative decisions, while the set of arcs emanat-
ing from outcome nodes represent a partition of the sample space—that 
is, a set of mutually exclusive outcomes that represent all of the possible 
outcomes. The numbers associated with the arcs emanating from the 
outcome nodes are probabilities. The decision tree indicates that there 
is a 2/3 (or about 67%) chance of getting the automobile if the contestant 
switches his or her choice of doors, but only a 1/3 chance if he or she 
doesn’t. The question is “why these probabilities?”

First, note that Figure 1.2 does not exactly represent a decision tree 
(which will be discussed later in Chapter 7) since it does not represent 
time moving forward as one moves from left to right in the figure.

Also, without loss of generality, we are assuming that the contestant 
initially chooses door 1 in the diagram. If the contestant chose door 2 
or door 3 initially, we could draw equivalent respective diagrams that 
would lead to the same conclusions regarding the probabilities associ-
ated with the outcomes of car or goat as a function of the choice made 
with respect to switching doors or not.

Now, thinking about Figure 1.2, the contestant has a choice of switch-
ing doors or not switching doors (following the opening of a door by 
the host); these switching or not switching alternatives are represented 
by the arcs emanating from node 1. For either alternative, there is a 1/3 
chance of the car being behind each of the three respective doors, as 
shown by the sets of arcs emanating from nodes 2 and 3, respectively.

Now, consider the arcs emanating from node 4, which assumes that 
the car is behind door 1, according to the figure. The host has a choice of 
opening either door 2 or door 3, for which we can assume that there is 
a 50% (1/2) chance of each. If the host opens door 2, then the contestant, 
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who initially chose door 1, will switch and open door 3 and will there-
fore receive the goat. If the host opens door 3, then the contestant will 
switch to door 2 and still receive a goat.

Similar reasoning can be done for the rest of the figure.
The probability of any particular outcome can be computed by mul-

tiplying the probabilities along the arcs of a path, since the events asso-
ciated with these arcs are independent. So, if the contestant decides to 
switch doors, there are four different paths that can be followed:

 1. 2–4—The host opens door 2 and the contestant opens door 3 
and receives a goat: Probability of (1/3) * (1/2) = 1/6.

 2. 2–4—The host opens door 3 and the contestant opens door 2 
and receives a goat: Probability of (1/3) * (1/2) = 1/6.

 3. 2–5—The host opens door 3 and the contestant opens door 2 
and receives a car: Probability of (1/3) * (1) = 1/3.

 4. 2–6—The host opens door 2 and the contestant opens door 3 
and receives a car: Probability of (1/3) * (1) = 1/3.

So, the probability that the contestant will receive the goat if he or she 
switches his or her choice from door 1 is the sum of the probabilities 
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FIGURE 1.2
A “decision tree representation” of the door switch decision (assuming the contestant’s initial 
choice is door 1).
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associated with the first two paths: 1/6 + 1/6 = 1/3. The probability that the 
contestant will receive the car if he or she switches his or her choice is the 
sum of the probabilities associated with the last two paths: 1/3 + 1/3 = 2/3.

The same type of analysis can be performed with the second decision 
arc emanating from node 1, the arc associated with the decision of not to 
switch doors. With this analysis, we would find that the probability of 
receiving the goat would be 2/3 and the probability of receiving the car 
would be 1/3.

In summary, the contestant can double his or her chances of receiving the 
car if he or she switches doors following the opening of a door by the host.

1.5 Applications in Industrial Engineering

Industrial engineering entails the design and operation of complex systems, 
and this design and operation necessitates making and implementing a vari-
ety of decisions. Virtually, all of these decisions require the consideration of 
multiple conflicting objectives, and these decisions are usually made under 
conditions involving much uncertainty and risk. In the following sections, 
we briefly discuss a few of the application areas of industrial engineering 
that require decisions involving multiple objectives under conditions of 
uncertainty and risk. In addition to the areas listed, the methodologies asso-
ciated with multiple criteria decision analysis are also important for areas 
such as routing and distribution, production and inventory control, produc-
tion scheduling, and facility location and layout.

1.5.1 Project Management and Control

A project is a temporary endeavor involving the development of a prod-
uct or service. Decisions made in project management include (1) deter-
mining which projects to undertake (project selection); (2) deciding when 
to schedule the various activities of a project; (3) selecting vendors, sup-
pliers, and subcontractors; and (4) allocating resources to project activi-
ties, among others. Uncertainties/risks in making these decisions arise 
from uncertainties associated with activity durations, finish times of 
preceding activities, vendor/supplier delivery times, strike probabilities, 
weather considerations, costs and benefits associated with projects, and 
so on. Objectives/performance measures associated with the various deci-
sions relate to project duration (typically set so that a specific duration is 
achieved), achievement of a bonus, for example, as associated with com-
pleting a project early, avoidance of a penalty (e.g., related to not exceeding 
a maximum project duration), minimization of direct/indirect costs, and 
leveling of resource usage over time.
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1.5.2 Quality Control: Acceptance Sampling and Process Control Charts

Acceptance sampling and process control charts are important subject areas 
within quality control. There are several types of acceptance sampling 
schemes, including single sample acceptance sampling and multiple sample 
acceptance sampling.

Single sample acceptance sampling involves (randomly) selecting a few 
items from a lot of items (say as received from a vendor/supplier), inspecting 
those items from the randomly selected sample, and then “accepting” the 
entire lot if the number of defective items is less than or equal to a so-called 
acceptance number. Even if the lot is accepted, the defective items in the 
sample are reworked, discarded, or returned to the supplier. If the lot is not 
accepted, then either (1) the entire lot is inspected (and the defective items 
are reworked, discarded, or returned to the supplier) or (2) the entire lot is 
just returned to the supplier.

The decisions to be made in single sample acceptance sampling include 
the values set for the sample size (typically denoted as n) and the acceptance 
number (typically denoted as a). Uncertainties in the outcome of the pro-
cess result from the laws of probability; for example, the number of defective 
items in a randomly selected sample of 20 items selected from a lot of 1000 
items that contain, say, 50 defective items will be a random variable with a 
hypergeometric distribution. Objectives/performance measures associated 
with this decision situation include the sampling, inspection, and rework 
costs, along with the quality of the outgoing lot (e.g., as measured by the 
number of defective items in this lot). See Evans and Alexander (1987) for a 
more detailed discussion of multiobjective decision analysis applied to sin-
gle sample acceptance sampling.

There are also several different types of process control charts, including 
X control charts, R control charts, and p control charts, among others. Just as 
the name indicates, the purpose of these process control charts is to control 
production processes. The basic decisions associated with these charts have 
to do with the setting of control parameters. For example, in X control charts, 
the values for the upper control limit and lower control limit must be set. As 
with acceptance sampling plans, the uncertainties associated with the out-
come (expressed in terms of the costs of implementing the control chart and 
the quality of the process output) associated with this process can be derived 
from the basic concepts of probability and statistics.

1.5.3 Design and Operation of Supply Chains

There are many complex and difficult decisions associated with the design 
and operation of a supply chain. These various decisions can be categorized 
as strategic, tactical, or operational, as referred to in the earlier discussion 
in this chapter. Also, as noted in Section 1.2.3, strategic decisions con-
strain tactical decisions, which in turn constrain the operational decisions. 
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See Shapiro (2007) or Bramel and Simchi-Levi (1997) for a discussion of the 
various decisions associated with a supply chain.

Examples of some of the many decisions associated with the design and 
operation of supply chains include those related to the locations and capaci-
ties of facilities (including production plants, warehouses, and distribution 
centers); selection of vendors/suppliers; production schedules; inventory pol-
icies, for example, as related to reorder points and reorder levels; routings; 
and shipping schedules.

Uncertainties associated with the outcomes of these decisions are a result 
of uncertainties in customer demands and in the reliability of production/
other resources, among other entities. Outcomes are measured through the 
use of many different performance measures, including lateness/tardiness 
related to deliveries/production, inventory costs (holding, ordering, back 
orders, and lost sales), and customer satisfaction, among others.

Uncertainties/risks result from the demands of different customers, reli-
ability of production and other resources, task durations (e.g., related to pro-
duction and shipping), travel times, and so on.

1.5.4 Workforce Scheduling

Workforce scheduling involves determining work shifts and assigning work-
ers of various skills and skill levels to these shifts. This application area is 
especially important in the operation of service-oriented systems such as call 
centers, hospitals, and restaurants. Important performance measures could 
be categorized according to the stakeholder/decision maker: system man-
ager/owner, worker, and customer. Uncertainty/risk arises from uncertainty 
associated with demands (e.g., related to customer arrival rate) over time.

1.6 Taxonomy and a Look Ahead

The various modeling and solution methodologies for multiple criteria 
decision analysis can be classified according to the following problem or 
representation categories:

 1. Number of objectives/performance measures
 a. One objective/performance measure
 b. Multiple objectives/performance measures
 2. Mapping from the alternative space to the outcome space
 a. Deterministic, but not explicit
 b. Deterministic, but represented as a closed-form function from a 

decision variable space to an outcome space
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 c. Probabilistic, but modeled analytically
 d. Probabilistic, but modeled using simulation
 3. Number of alternatives
 a. A finite, but “small” number
 b. A very large, perhaps infinite, number

Choosing one descriptor from each of the three categories allows us to 
define the type of modeling/solution methodology to be used.

In this book, we will not address the modeling/solution methodologies 
that involve descriptor a (one objective/performance measure) from cate-
gory 1 and either descriptor a or b from category 2—that is, anytime, we are 
considering only one objective/performance measure, then we will also be 
considering uncertainty/risk in the process.

In addition, in our terminology, when considering the area of multiattrib-
ute value (MAV) functions, which allows the combination of several per-
formance measures into a “value,” we will consider this to be within the 
domain of descriptor b from category 1.

The simpler probabilistic situations of category 2 will allow the use of 
analytic models, while the more complex circumstances require the use of 
simulation—hence the differentiation associated with descriptors c and d in 
category 2.

With respect to category 3, some situations allow for an “evaluation” of 
every alternative (the case of descriptor a, involving a relative small number 
of alternatives), while other situations (category b involving a very large or 
even an infinite number of alternatives) do not allow for the explicit evalua-
tion. Hence, the case of category b requires the use of some type of optimiza-
tion scheme that allows for an “implicit evaluation.”

Each chapter of this book, except for Chapters 2, 5, and 8, can be identified 
with a combination from the taxonomy shown earlier. Chapter 2 addresses 
the area of problem structuring, which discusses how to better define or gain 
a perspective on a problem; more specifically, this chapter presents method-
ologies for generating alternative solutions to a problem and for determining 
good performance measures to use in solving a problem. Chapter 5 provides 
a brief review of probability theory. Chapter 8 discusses the determination 
of probabilistic inputs for the models required for situations involving cat-
egories 2c and 2d.

Chapter 3 addresses the area given by a combination of 1b, 2a, and 3a. Of 
particular interest in this chapter is the formation/assessment of an MAV 
function, which represents a mapping from the outcome (or attribute value) 
space to a value space. In this chapter, we assume that each alternative has 
an associated (deterministic) outcome, and the number of alternatives/out-
comes is relatively small. Hence, each of these alternatives/outcomes can be 
explicitly evaluated (i.e., without an optimization scheme).
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Chapter 4 covers the areas given by a combination of 1b, 2b, and 3b. The 
title used for this method of study is multiple objective optimization or mul-
tiple objective mathematical programming. The particular emphasis in this 
chapter is goal programming. As the categorization indicates, the number 
of alternatives allowed is large or even infinite; these alternatives are repre-
sented as respective combinations of values assigned to decision variables. 
The mapping from the alternative space to the outcome space is determinis-
tic in nature.

Chapter 6 addresses the area of utility functions—both single attribute 
and multiattribute utility functions are presented in this chapter. The focus 
here is on representing a decision maker’s preferences over probabilistic out-
comes. As such, the categorization addressed is 1a (for single attribute utility 
functions) or 1b (for multiattribute utility functions), while for the second 
category, the categorization scheme would be either 2c or 2d, depending on 
whether one wants to use an analytic model or a simulation model to repre-
sent the mapping from the alternative space to the outcome space.

The main topics for Chapter 7 are decision trees and influence diagrams. 
Both of these areas present models that allow for a probabilistic mapping 
from the alternative space to the outcome space. In many cases, these map-
pings can be evaluated analytically (i.e., without the use of simulation as a 
tool). As such, the categorization scheme for this chapter is 1a/1b, 2c, and 3a.

Chapter 9 discusses the use of simulation, in particular Monte Carlo simu-
lation, as a tool for multiple criteria decision analysis. The emphasis in this 
chapter will be on the analysis of the output from these simulation models. 
Simulation modeling is a particularly useful tool for a decision tree or an 
influence diagram, as discussed in Chapter 7, which has continuous param-
eter values and/or continuous decision variables. As such, this chapter 
addresses the areas categorized as 1a/1b, 2d, and 3a/3b.

Material Review Questions

1.1 What Latin word is the word “decide” derived from?
1.2 With respect to a time frame, what are the three categorizations of a 

decision?
1.3 What is the difference between a stakeholder and a decision maker?
1.4 What is a state of nature for a decision situation?
1.5 What is the difference between an “evaluation model” and a “ranking/

optimization model?”
1.6 What are the two types of nodes in a decision tree?
1.7 List several areas of industrial engineering for which multiple crite-

ria decision analysis can be used. For what types of decisions in these 
areas can decision analysis be applied?
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Exercises

1.1 Identify a past situation in which you made a decision that turned out 
to have a good outcome. Were you just lucky, or was there some process 
you went through that helped you have a good result?

1.2 Consider an important decision recently made (or to be made soon) by 
your organization or by you personally. (An organizational decision is 
preferred.) The decision might have to do with where to locate a new 
facility, a major expansion, investment in a new technology/product, 
where to live, which job offer to accept, and so on. Write brief descrip-
tions of the following important elements associated with this decision 
(there is no correct or incorrect answer associated with any of these— 
there are some you may not be able to answer—don’t worry about that).

 a. Most decisions address a particular problem or problem area 
(e.g., losing market share). How did the problem addressed by this 
decision arise? How is this problem related to other problems?

 b. Who were the decision makers for the situation? Who were the 
stakeholders (people affected by the decision)?

 c. What alternative solutions were analyzed (e.g., alternate plant 
locations)? How were they generated?

 d. What are the attributes (performance measures) that were consid-
ered? How were they determined?

 e. What types of evaluation models were used, if any (i.e., how were 
the performance measure values determined as a function of the 
various alternative solutions)?

 f. What are the sources of uncertainty/risk in the situation? How are 
these modeled?

 g. What criterion model was used? (i.e., how were trade-offs that 
existed between the various performances considered?).

 h. How could the decision-making process (which was used) be 
improved?
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2
Problem Structuring

2.1 Introduction

As initially encountered, most problems do not lend themselves to the clas-
sical techniques of decision analysis. More specifically, when first encounter-
ing most decision situations, an analyst will not know the identities of all of 
the decision makers (DMs) and stakeholders, many of the good alternative 
solutions, sources of uncertainty and resulting risk, or the relevant perfor-
mance measures, among other important elements. The process of deriving 
these elements is often called problem structuring.

Problem structuring has been applied in a large number of areas, includ-
ing policy analysis for the Home Office Prison Department of the United 
Kingdom (Eden and Ackermann, 2004), reduction of electromagnetic field 
exposure from electric power lines (von Winterfeldt and Fasolo, 2009), orga-
nizational restructuring of the manufacturing function at Shell (Checkland 
and Scholes, 1990), quantification of delay and disruption of a litigation 
process (Ackermann et  al., 1997), and management of a housing co-op 
(Thunhurst and Ritchie, 1992). See Table 2.1, recreated from Mingers and 
Rosenhead (2004) for a listing of applications. In general, the area of problem 
structuring has received much more attention in Europe than in the United 
States.

In this chapter, we present, first, some general concepts associated with 
problems and problem structuring, including the important concept that all 
problems are contained within a network of related problems. Following this 
initial discussion, specific problem structuring techniques/methodologies 
will be presented. These techniques/methodologies can be divided into 
two categories. The first category of methods is helpful in terms of pro-
viding perspective for a problem; that is, they can be used to better define 
an ill-structured problem. In particular, we focus on two approaches: the 
Why-What’s Stopping (WWS) technique and Breakthrough Thinking. To a lesser 
extent, we discuss other methods, such as the Kepner and Tregoe approach 
and cognitive mapping, among others. These specific techniques are dis-
cussed in Sections 2.3 through 2.5.
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TABLE 2.1

Applications of Problem Structuring Methods

Application Area 
Methods/Techniques 

Used References 

General Organizational
Mining performance evaluation Soft systems methodology 

(SSM) cognitive maps, 
queueing theory

Pauley and Ormerod 
(1998)

Evaluating organizational 
performance

SSM critical systems Gregory and Jackson 
(1992)

Career management SSM Bolton and Gold (1994)
Developing competence profiles SSM Brocklesby (1995)
Industrial psychology SSM Kennedy (1996)
TQM SSM system dynamics Bennett and Kerr (1996)
Developing R&D strategies SSM Nakano et al. (1997)
Organizational planning SSM O’Connor (1992)
Designing a parliamentary 
briefing system

Cognitive maps Bennett (1994)

System for organizational learning Cognitive maps Lee et al. (1992)
Assisting community groups Interactive planning 

Systems dynamics (SD)
Magidson (1992)

Teaching entrepreneurship Interactive planning Robbins (1994)
Modeling the San Francisco Zoo Viable systems model 

(VSM)
Dickover (1994)

Organizational change VSM Brocklesby and 
Cummings (1996)

Modeling a municipal 
organization

VSM Rasegard (1991)

Performance improvement in a 
multibusiness

VSM Haynes et al. (1997)

Analysis of the drug trade SD SSM Coyle and Alexander (1997)
Organizational restructuring VSM Walker (1990)
Litigation/project management Cognitive mapSD Ackermann et al. (1997)
Facilities relocation System dynamics soft 

systems
Vos and Akkermans 
(1996)

Developing a business strategy System dynamics soft 
systems

Winch (1993)

Information Systems
Accounting information system SSM Ledington (1992)
Analysis of a CD-ROM network SSM Knowles (1993)
Information systems strategy VSM Schuhman (1990)
Capturing process knowledge SSM process models Boardman and Cole (1996)
Building process models SSM grounded theory Platt (1996)
Developing an information 
systems strategy

Interactive planning 
SSMVSM strategic choice

Ormerod (1996a,b, 1998)

(Continued)
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The results associated with applying the methods in the first category can 
be useful as input to the second category of methods, which are used to 
generate the objectives and attributes (usually in the form of a hierarchy) for 
the decision situation. The objectives and attributes (performance measures) 
are used to evaluate the overall quality of a decision. These techniques are 
discussed in Section 2.6.

TABLE 2.1 (Continued)

Applications of Problem Structuring Methods

Application Area 
Methods/Techniques 

Used References 

Technology, Resources, Planning
New technology and culture 
conflict

SSM Kartowisastro and Kijima 
(1994)

Planning livestock management 
in Nepal

SSM Macadam et al. (1995)

Transport planning SSM Khisty (1995)
Agrotechnology transfer in Hawaii SSM Millspacko et al. (1991)
Natural resource management SSM nonequilibrium 

ecology
Brown and Macleod (1996)

Lake management SSM DSS Gough and Ward (1996)
Energy rationalization SSM QQT Fielden and Jacques (1998)
Integration in transport planning Cognitive maps Ulengin and Topcu (1997)
Regional planning in S. Africa Interactive planning Strumpfer (1997)

Health Services
Outpatient—clinics Systems thinking data 

analysis, queueing, 
simulation

Bennett and Worthington 
(1998)

Problems of disabled users Systems thinking Thoren (1996)
Modeling outpatient services SSM simulation Lehaney and Paul (1994, 

1996)
Nurse management SSM Wells (1995)
Contract management in the NHS SSM Hindle et al. (1995)
Health care information system SSM Maciaschapula (1995)
Resource planning and allocation SSM simulation Lehaney and Hlupic (1995)
Employment for those with 
mental health

Critical systems Midgley and Milne (1995)

Planning hospital organization Interactive planning Lartindrake and Curran 
(1996)

General Research
Qualitative survey research Cognitive maps Brown (1992)
CEO’s cognitive capacity Cognitive maps Calori et al. (1994)
Eliciting knowledge about pesticides Cognitive maps Popper et al. (1996)
Automated knowledge discovery Cognitive maps Billman and Courtney (1993)

Source: Recreated from Mingers, J. and Rosenhead, J., Eur. J. Oper. Res., 152, 530, 2004.
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Finally, we present important attributes for specific categories of decision 
situations in Section 2.7.

2.2  Problems and Problem Structuring 
Methods: General Concepts

The concept of a problem can be defined in any of several different ways. 
For example, Evans (1991, p. 11) notes various definitions from the literature, 
including (1) a gap to be circumvented, (2) a felt difficulty, (3) a dissatisfaction 
with the current state of affairs, (4) a perception of a variance between the 
present and some desired state of affairs, and (5) an undesirable situation. 
Each of these definitions connotes the idea of a gap between the current state 
of affairs and a desired state of affairs. The phrase “state of affairs” implies a 
set of performance measures used to define the current state of affairs.

This gap may be positive, negative, or unknown (Basadur et  al., 1994). 
A negative gap occurs from a drop in performance (e.g., a machine has all of 
a sudden started producing many defective parts). A positive gap exists when 
an opportunity is perceived. For example, Land (Callahan, 1972) attributed 
his Polaroid camera invention to his ability to discover and define a problem 
in terms of an opportunity. Unknown gaps often result from a significant 
change in the base state of affairs, that is, when a policy, technology, or some 
other change causes the previous baseline to become irrelevant.

Simon (1960) identified three types of problems: well structured, semis-
tructured, and ill structured. Well-structured problems come with complete 
information and are typically repetitive or routine. In a well-structured 
problem, the objectives are clear, and the workable alternative solutions 
are often obvious. As examples, most of the problems given in college-level 
engineering/business courses are well structured in nature. (This, at least, 
makes it easy for the instructor to grade the problems.)

As noted by Ackoff (1979), however, most problems encountered in real life 
are ill-structured problems. These ill-structured problems have little or no 
data and unclear performance measures, with no readily apparent specific 
alternatives. In addition, the appropriate DMs may not be apparent. These 
problems tend to be complex, nonroutine, and difficult to define. Potential 
alternative solutions, objective(s) associated with solving these problems, and 
the outcomes associated even with those alternatives that have been defined 
are not known, and the relevant DMs and stakeholders are often not obvious. 
The data required to model the problem are usually not readily available.

These ill-structured problems have also been termed as messes (Ackoff, 
1979), wicked (as opposed to tame) problems (Rittel and Webber, 1973), or 
swamps or swampy situations (Schon, 1987). In more technical terminol-
ogy, an ill-structured problem is “a dynamic situation consisting of complex 
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systems of changing problems that interact with each other” (Ellspermann 
et  al., 2007). Rosenhead (2006, p. 759) notes that the types of problems 
addressed by problem structuring methods include those that involve 
“multiple actors, differing perspectives, partially conflicting interests, and 
perplexing uncertainties.”

As an example of an ill-structured problem, suppose you are a newly hired 
industrial engineer for the XYZ Manufacturing Corporation. On your first 
day at work, your supervisor tells you that there have been too many “safety 
incidents” in the plant and asks you to “solve the problem.” Such a prob-
lem might be called an ill-structured problem because you probably do not 
know the identities of the DMs and stakeholders; the relevant performance 
measures/attributes, objectives, goals, and constraints; or good alternative 
solutions for the problem. In addition, you probably do not have a good 
feel for how this problem is connected to other problems. For example, this 
“number of safety incidents” problem may well be connected to the problem 
of “poor training.” You need to define, formulate, or structure the problem 
first in order to determine (1) how this problem is related to other prob-
lems, (2) the relevant DMs and stakeholders, (3) the performance measures, 
(4) some good alternative solutions, and so on.

Case studies have documented situations where a project involving some 
application of decision analysis has failed, not because of a lack of expertise 
or effort in solving the problem as defined, but because the problem was not 
defined correctly in the first place. As noted by Churchman et al. (1957):

There is an old saying that a problem well put is half-solved. This much 
is obvious. What is not so obvious is how to put a problem well.

In addition, Larson has stated that (Horner, 2004):

70% of the value added of operations research is the correct framing and 
formulation of the problem.

Finally, Keeney (1992) notes that although “alternative-focused thinking” is 
more prevalent and less difficult than “value-focused thinking” (in which 
more thought is given to discovering the underlying values of the stakehold-
ers and DMs prior to generating alternatives), value-focused thinking will 
usually lead to better results.

A classic example of not defining a problem correctly in the first place is 
given in Hesse and Woolsey (1980, p. 3). This problem involved “slow eleva-
tors” in a tall building. The problem was not that the elevators were moving 
too slowly but that the riders perceived the elevators to be moving too slowly. 
The difference in problem definitions is subtle but significant in terms of 
generating good alternative solutions. That is, instead of concentrating on 
making the elevators move faster, alternative solutions should concentrate 
on making the passenger wait more pleasant. The solution then turned out 
to be placing mirrors next to the elevators; attractive people would look at 
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themselves in the mirrors and the less attractive people would look at the 
more attractive people, and hence, the perceived wait for each was less than 
it would have been without the mirrors. (Of course, attractiveness is in the 
eye of the beholder!) Examples of well-structured problems are shown in 
Table 2.2, while examples of ill-structured problems are shown in Table 2.3.

Problem structuring is a critical step in the problem-solving process, espe-
cially for ill-structured problems. For example, Pidd (1989) noted that problem 
structuring should be preliminary to the other aspects of the problem-solving 
process, such as data collection, interviews, modeling, and so on.

The term problem structuring has been defined in a number of ways. For 
example, Pitz et al. (1980) have defined problem structuring as “the activity 
of identifying relevant variables in the problem situation, as well as estab-
lishing relationships between the variables.” Shwenk and Thomas (1983) 
employed an operational definition for problem structuring: “the problem of 
formulating the present set of conditions, symptoms, and causes and trigger-
ing events into a problem or set of problems sufficiently well specified so that 
the risk of using analytic procedures to solve the wrong problem has been 
minimized.” Note how Shwenk and Thomas implicitly stress the impor-
tance of problem structuring early in the problem-solving process. Finally, 
Pidd (1989) gives a somewhat cryptic definition for problem structuring by 
defining it as a process “by which some initially presented conditions and 
requests become a set of issues for further research.”

One important point to note with respect to problem structuring is that 
every problem exists within a system of problems (sometimes called a prob-
lematique). That is, every problem is somehow connected to other problems. 
Realizing these connections can be helpful in generating alternative solu-
tions and in evaluating the system-wide effect of a solution. These problem 

TABLE 2.2

Examples of Well-Structured Problems

We must choose one of two possible vendors to supply a particular purchased part. We have 
all of the relevant data on both vendors (cost, quality, schedule performances, etc.). Which 
vendor should be chosen?

Our firm needs to locate a new manufacturing facility in one of four possible locations. All 
relevant data (e.g., transportation costs, taxes, incentives, potential pool of personnel) have 
been collected, and we know our criterion. Which location should be chosen?

TABLE 2.3

Examples of Ill-Structured Problems

Our employees seem dissatisfied. What, if anything, should we do about it?
Our company is losing market shares. How can we change this trend?
The country’s social security system will go broke within 25 years if nothing is done. Should 
we do something about this, and, if so, what?
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connections can be illustrated through a “network of problems.” In fact, the 
concepts associated with hierarchies, networks, and matrices, which allow 
one to represent the relationships among problem elements, are important 
for many techniques associated with problem structuring, as we shall see 
later in this chapter.

Another important aspect of problem structuring is the idea of assum-
ing an optimistic attitude in addressing the problem. For example, this idea 
is stressed in many problem structuring methods, including Breakthrough 
Thinking (Nadler and Hibino, 1990) and the Why–What’s Stopping method 
(Basadur et  al., 1994). Keeney (1992) in fact refers to the fact that prior to 
choosing an alternative in solving a “problem,” there is always an opportunity 
to create alternatives. Thinking of problems as opportunities helps to place 
an optimistic light on the problem structuring process.

Finally, the importance of “divergent thinking” as opposed to “convergent 
thinking” is stressed in most problem structuring methods. Keeney (1992) 
refers to this as “constraint-free thinking.” Most science and engineering-
based courses rely on convergent thinking, in which a problem statement is 
given in terms of various data, and a student derives a single solution. Many 
students have difficulty with this process since many engineering courses 
focus on convergent thinking. In divergent thinking, for example, one needs 
to generate a whole set of problem statements from a single statement and/
or a whole set of objectives and attributes from a single, overall, objective.

Most of the techniques for problem structuring address one or more of the 
following characterizing features of ill-structured problems:

 1. The existence of several DMs and stakeholders, each with their own 
subjective perspective of the problem.

 2. Closely related to the first feature, the existence of multiple perfor-
mance measures, several of which may be conflicting in nature.

 3. Large amounts of uncertainty (and related risk) associated with 
parameters and relationships of the problem.

 4. The existence of an entire network of problems to which the original 
ill-structured problem is related.

 5. The fact that good alternative solutions to the problem are not read-
ily apparent.

Since there are typically several DMs and stakeholders for ill-structured 
problems (the first characteristic noted earlier), each with their own respec-
tive viewpoints of the problem situation, problem structuring methods 
should be “participative and interactive” in nature (Rosenhead, 1996). This 
often implies the use of a “facilitator” working with a group of DMs and 
stakeholders. The facilitator will moderate a problem structuring meeting to 
make sure that everyone is allowed to express their viewpoints and that a 
DM/stakeholder with a forceful personality will not have disproportionate 



26 Multiple Criteria Decision Analysis for Industrial Engineering

effect on the outcome of the process. The facilitator should be well versed 
in the problem structuring method being used but should have no personal 
stake in the problem.

In the next two respective sections of this chapter, we will discuss two 
specific problem structuring methods: Breakthrough Thinking (Nadler and 
Hibino, 1990) and Why–What’s Stopping analysis (Basadur et al., 1994). This 
will be followed by a section that will briefly detail other problem structur-
ing methods including the Kepner and Tregoe Method (Kepner and Tregoe, 
1981) and cognitive mapping (Eden and Ackermann, 2004).

In addition, see Miser and Quade (1985, Chapter 5), Checkland (2001), 
Joldersma and Roelofs (2004), Mingers and White (2010), Nutt (2001), Shaw 
et al. (2004), and White (2009) for a more detailed discussion of some of these 
and other problem structuring techniques.

2.3 Breakthrough Thinking

Breakthrough Thinking (Nadler and Hibino, 1990) is a technique not only for 
problem structuring but also for problem solving in general. It does however 
place a great emphasis on problem structuring. Its roots lie in the Purpose 
Design Approach pioneered by Nadler and Hibino.

The application of Breakthrough Thinking relies on seven core principles:

 1. The Uniqueness Principle
 2. The Purposes Principle
 3. The Solution-after-Next (SAN) Principle
 4. The Systems Principle
 5. The Limited Information Collection Principle
 6. The People Design Principle
 7. The Betterment Timeline Principle

The uniqueness principle basically states that every problem is unique, which 
runs counter to the old adage “do not reinvent the wheel.” Often, problems 
that may appear at the outset to be the same are actually unique, due to the 
fact that they occur at different times in different environments. This results 
in having different sets of stakeholders, DMs, available technologies for solu-
tion, and so on. For example, the “problems/opportunities” of building a 
simulation model of a distribution system for two different organizations 
may be quite different due to the facts that (1) the DMs for the organizations 
have quite different technical backgrounds, (2) data availabilities for the two 
organizations are different, and (3) simulation software packages owned by 
the two organizations are quite different. Certainly, there may be much value 
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in having already solved one problem when it comes to solving a similar 
problem, but “turnkey solutions” normally require substantial modification 
in order to work well in a new environment.

The purposes principle refers to the fact that prior to doing anything (solving 
a problem, collecting data, etc.), one should always have a purpose. As noted 
by Nadler and Hibino, there are four elements associated with a purpose: 
function, values/goals, performance measures, and objectives. In thinking 
about the purpose of doing something, such as solving a problem, one can 
develop a “purpose hierarchy,” which allows for varying perspectives on 
a problem. For example, let’s suppose that a manufacturing organization 
is having difficulty with achieving on-time deliveries from one of its sup-
pliers. In this case, a purpose hierarchy might be constructed as shown in 
Figure 2.1.

Note that a purpose hierarchy might allow for the generation of alternative 
solutions not readily apparent from an isolated consideration of the initial 
problem only.

The SAN principle refers to the fact that often there is another problem that 
will occur after a solution to the initial problem is implemented and that this 
problem should be foreseen and planned for. An example of this situation 
would be the installation of a new computerized production control system, 
installed to address inefficiencies in a production system. The use of the new 
system might require that new procedures be employed by the production 
system’s personnel, which might best be addressed through a training pro-
gram. Of course, this leads to the problems associated with designing and 
scheduling the training program.

To provide income for our stockholders and to keep our workers employed

To stay in business

To earn a profit

To satisfy our customers

To meet our production schedule for products that contain the parts delivered by the supplier

What is the purpose of achieving on-time delivery from the supplier in question?

FIGURE 2.1
Purpose hierarchy associated with the problem of achieving on-time deliveries from a supplier.
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The systems principle addresses the unintended consequences that often 
occur when a solution to a problem is implemented. For example, most people 
would think that a Federal Aviation Administration (FAA) law requiring that 
parents be required to purchase a separate ticket for their children under the 
age of two for airline flights (instead of having the child held on the parent’s 
lap) would be a good thing in terms of the infant’s safety. However, an analysis 
(Machol, 1996) showed that since many more parents would drive rather than 
fly due to the cost, and since driving is much less safe than flying, many more 
infants would be injured or killed. One’s initial thought process in addressing 
this situation may not have considered the entire transportation system, nor the 
interface between the passenger air transportation system and the private auto 
transportation system, and thereby not realize this unintended consequence.

An aid in the consideration of the systems principle is the systems matrix, 
which allows one to show the relationships between two different categories 
of elements associated with a system. Any specific problem/situation might 
have several different systems matrices developed for it. For example, the 
methodology associated with quality function deployment (Bossert, 1991) 
employs a series of “houses of quality” (essentially systems matrices) that 
allow one to relate product characteristics to engineering characteristics, 
engineering characteristics to part characteristics, part characteristics to pro-
cess plans, and so on. There are many different types of systems matrices 
that one can use to implement the systems principle, but often a systems 
matrix will relate alternative solutions to performance measure values. For 
example, in the case of the FAA law referred to earlier, a systems matrix 
might appear as in Table 2.4. The rows represent alternative decisions, while 
the columns represent performance measures.

The limited information collection principle suggests that one should always 
have some purpose for collecting data, prior to the collection/gathering pro-
cess. Too much data often obscure the problem structuring and problem-
solving processes, and in this day and age, data are typically collected in 
an automatic fashion and are therefore relatively easy to obtain. One of the 
difficulties that often occurs when much data are available is the extensive 
analysis of that data; this analysis often occurs without a clear understand-
ing of its underlying meaning or of the underlying processes that produced 
that data. For example, as noted by experts in the simulation community, one 
should always have an understanding of the underlying processes prior to 
input modeling (the fitting of probability distributions to data). In addition, 

TABLE 2.4

A Systems Matrix for the FAA Law Implementation Decision

Projected Annual 
Airline Travel Deaths 

Projected Annual 
Auto Travel Deaths 

Law implemented
Law not implemented
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using large amounts of data in the problem structuring/solving process may 
give one a false sense of security concerning the quality of that process.

The people design principle suggests that the different perspectives of differ-
ent people are usually extremely useful in the problem structuring process. 
Allowing for various perspectives also aids the divergent thinking processes 
that are important in problem structuring. In addition, many solution imple-
mentations for organizations require buy-in from a large number of people 
within the organization. When these people have been involved in the prob-
lem structuring process, they are much more likely to give their buy-in.

Finally, the betterment timeline principle is closely aligned with the SAN 
principle, in that this principle implies that one should develop a schedule 
for improving on a solution once it is initially implemented. In addition, this 
principle nicely complements the concept of “continuous improvement,” 
employed by many organizations. The benefits realized from the applica-
tion of this principle result from the facts that solutions are implemented 
over time, and these solutions result in effects over time within changing 
systems. Such effects should be monitored and control systems put in place 
to allow for system modifications.

As can be realized from the earlier discussion, Breakthrough Thinking is 
not only an approach for problem structuring but also for problem solution 
and solution implementation.

2.4 Why–What’s Stopping Technique

As noted earlier, every problem exists within a system or network of prob-
lems (a problematique, or a mess) (Ackoff, 1981). In order to be sure that the 
“right” problem is being addressed, one should be aware of this network of 
problems. In addition, being aware of the network of problems is helpful 
in generating alternatives and performance measures and in evaluating the 
effect of various alternatives on a system-wide basis.

The Why–What’s Stopping technique (Basadur et al., 1994) is one approach 
for generating this network of problems. The technique typically involves a 
facilitator and a group of DMs and stakeholders meeting for a “brainstorming 
session.” The output of the session is a network of related problems from which 
one may obtain a set of performance measures, DMs, stakeholders, preliminary 
alternatives, constraints, and so on. By a network, we mean a set of “nodes” 
(each node being a problem statement) connected with arcs. An arc connecting 
two nodes implies a direct connection between these two problem statements. 
A particular node (problem statement) may be connected to several other nodes.

The session commences, following an explanation of the technique by the 
facilitator, with a brief statement of what is thought to be the problem by one 
of the participants (i.e., stakeholder or DM). The facilitator will write this 
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statement on a blackboard (or some other device). For example, suppose that 
the initial problem statement is given by:

There are too many defects in our main product.

This problem statement is transformed into a “challenge” by attaching the 
phrase “how might we …”:

How might we reduce the number of defects in our main product?

The purpose of attaching the phrase “how might we …” is to allow a view-
point in which the problem is perceived as an opportunity, not a difficulty. 
In addition, rephrasing the problem statement in this fashion allows an opti-
mistic tone to the problem structuring process, an important aspect in prob-
lem structuring as noted earlier.

In order to expand on this initial problem statement and therefore start 
the development of the problem network, two types of questions are asked, 
corresponding to a “why” question and a “what’s stopping us” question. For 
example, for the problem statement earlier, a “why” question would be:

Why do we want to reduce the number of defects in our main product?

and a “what’s stopping us” question would be:

What’s stopping us from reducing the number of defects in our main 
product?

Note that upon receiving an initial answer to each of the earlier questions, 
the facilitator would most likely solicit alternative answers to these ques-
tions by asking the session participants why else they would want to reduce 
defects and what else is stopping them from reducing defects.

Answers to the “why” question might be:

So that our main product has a better reputation.
So that we can spend less money in reworking operations.

Answers to the “what’s stopping us” question might be:

Our workers are not well trained.
Our standards are too high.
We have no incentive program to reward our workers for quality work.

Note that each of these answers would be translated into problem statements 
such as the following, respectively, using the “how might we” phrase to lend 
an optimistic tone to the problem statement:

How might we develop a better reputation for our main product?
How might we spend less money on reworking?
How might we train our workers better?
How might we correctly set our standards?
How might we develop an incentive program?
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These “how might we” problem statements would be arranged in the form 
of a problem network with the problem statements represented as the nodes 
and arcs pointing from one node to another node if the second node cor-
responded to an answer to the question from the first node problem state-
ment. The answers corresponding to the “why” questions generated from a 
particular problem statement would be placed above that problem statement. 
The answers corresponding to “what’s stopping us” questions generated from 
a particular problem statement would be placed below that problem statement. 
Hence, one would obtain a problem network such as shown in Figure 2.2.

Note that the reverse process should also work for the question–answer 
sequence. That is, if the answer to a “why” question originating from prob-
lem statement A resulted in problem statement B, then a reasonable answer 
to a “what’s stopping” question originating from problem statement B should 
result in problem statement A. In viewing the network in Figure 2.3, this is 
clearly the case; for example, a reasonable answer to the question:

What’s stopping us from developing a better reputation for our main 
product?

would be:

We have too many defects in our main product.

This problem statement could be restated using the “how might we” phrase as:

How might we decrease the number of defects in our main product?

Throughout the process of generating the problem network, the “reverse” 
question should be asked as a check on the answers given.

Note that the answers given to the “why” questions result in problem 
statements corresponding to a higher-level perspective than the problem 

What’s stopping
us?

How might we
train our workers

better?

How might we
correctly set

our standards?

How might we
develop an

incentive program?

How might we decrease
the number of defects in

our main products?

How might we spend less
money on reworking?

How might we develop a better
reputation for our main product?Why?

FIGURE 2.2
Part of a problem network resulting from applying the Why–What’s Stopping technique.
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statement used to generate the “why” question. Conversely, problem state-
ments resulting from the “what’s stopping us” questions result in problem 
statements corresponding to a lower-level perspective than the problem 
statement used to generate the “what’s stopping us” question.

Note also that one could extend either upward (by asking the “why” ques-
tion) or downward (by asking the “what’s stopping” question) from any 
problem statement in the network. Exactly which question is asked at which 
point in time during the process typically requires an experienced facilita-
tor as well as engaged participants. Focusing on a specific part of the prob-
lem network rather than some other part can very easily lead to solutions 
that would not have been thought of otherwise. For example, upon attaining 
the problem statement “How might we develop a better reputation for our 
main product?,” one might focus on extending downward from this problem 
statement, thus leading to a partial problem network as shown in Figure 2.3. 
Also, as noted by Keeney (1992, p. 27), conversion of a decision problem into a 
decision opportunity (which allows for the creation of additional alternatives) 
can be accomplished by considering the problem from a broader perspec-
tive. See Exercise 2.4 for another example of a situation in which viewing a 
problem from a higher-level perspective leads to a different set of alternative 
solutions.

How might we develop a new good main product?

Our main product is not very good.

What’s stopping us from having a main product that is highly desired by consumers?

How might we develop a main product that is highly desired by consumers?

Our main product is not very highly desired by consumers.

What’s stopping us from developing a better reputation for our main product?

How might we redesign our main
product?

FIGURE 2.3
A partial problem network.
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Note that Figure 2.3 allows the focus to shift from addressing defects in 
the main product to redesigning the product, or developing a completely 
new product.

Note also that some of the answers, in addition to providing alternative 
problem statements, also provide solution alternatives. For example, a solu-
tion to decrease the number of defects in the main product is to develop 
a new training program for workers. Of course, this “solution” leads to a 
whole host of additional problems involving, for example,

 1. What type of training should be done?
 2. How should the training be scheduled?
 3. Should we do the training in-house or contract an outside vendor?

This corresponds to the “SAN” principle of Nadler and Hibino.
Finally, one needs to be concerned with how far to extend the problem 

map. In particular, the map stops at the “top” when we reach the problem 
statement of:

How might we reach happiness and bliss?

This problem statement represents the theoretically broadest challenge and 
in a business setting might equate to:

How might we increase the profitability of our company?

We reach the lowest point (i.e., the most narrowly defined problem state-
ment) when we define some very specific course of action—that is, an idea 
that can be easily executed. For the example problem being addressed, such 
a lowest-level problem statement might be:

How might we contact three vendors to bid on a specific training pro-
gram for our employer?

Note that it’s not absolutely necessary to extend the problem map to its 
extremes in order for the map to be useful. Keep in mind that the basic pur-
pose of the technique is to allow a “better” problem formulation—that is, to 
give a better understanding of the system of problems to the DMs, to allow a 
new “angle” on the problem, to help generate a good set of performance mea-
sures, and to generate some initial solution alternatives. Figure 2.4 depicts an 
overview of the Why–What’s Stopping technique.

As another example of a Why–What’s Stopping analysis, consider the 
problem of childhood obesity in Louisville, Kentucky. A multiresource med-
ical clinic in Louisville addresses this unstructured problem. The staff of 
the clinic includes physicians, nurse practitioners, a nutritionist, an exercise 



34 Multiple Criteria Decision Analysis for Industrial Engineering

physiologist, and a psychiatrist. Two Why–What’s Stopping sessions were 
conducted: first, with the staff of the clinic and, second, with parents of some 
of the children who were patients at the clinic. The networks that arose from 
the sessions are shown in Figure 2.5 for the clinic’s staff and in Figure 2.6 for 
the parents’ of children who are the clinic’s patients, respectively.

The ideal situation would have allowed for both groups (clinic staff and 
parents) to meet together in order to generate a single network. However, one 
can see the different perspectives in each of the two respective networks. For 
example, the clinic staff network (Figure 2.5) places greater emphasis on activ-
ities directly controlled at the clinic. On the other hand, the parents’ network 
(Figure 2.6) emphasizes family and other social relationships. Each network 
does include some of each perspective however. Of course, both perspectives 
are important in order to address the problem from a systems viewpoint.

In addition, each of the networks would allow for the generation of a wide 
variety of alternative solutions to the problem. These alternative solutions 
would basically be generated from the lower-level nodes of the network. For 
example, consider the lower-level node in Figure 2.5:

How might we improve motivational coaching with primary care 
providers?

A solution associated with this node might involve training programs in 
motivational coaching for primary care providers.

Consider a lower-level problem statement from Figure 2.6:

How might we recruit volunteers for after-school activities?

A solution associated with this problem statement would be: “Develop a mar-
keting campaign to recruit and train volunteers for after-school activities.”

More Narrow Problem Statement

(What’s stopping us?)

Initial Problem Statement

(Why?)

Broader Problem Statement

FIGURE 2.4
Network of problems resulting from the Why–What’s Stopping technique.
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2.5 Additional Methods for Problem Structuring

Some additional problem structuring methods are discussed in this section, 
but in less detail than Breakthrough Thinking and the Why–What’s Stopping 
technique just presented. The reader is referred to the references cited in the 
discussion for additional details. In addition, Ackermann (2012) provides a 
relatively recent review of the field. We will briefly discuss two of the more 
popular methods in this section: the Kepner and Tregoe method and cogni-
tive mapping.

The Kepner and Tregoe method originated from social science research 
performed by Charles H. Kepner and Benjamin B. Tregoe at the RAND 
Corporation. It can be thought of as not only an approach to problem struc-
turing but also broadly as an approach to problem solving. The overall 
approach is described in the book The New Rational Manager (Kepner and 
Tregoe, 1981). The book contains numerous examples of actual problems 
and solution processes that are used to illustrate various aspects of the 
method.

The method involves the application of four “patterns of thinking” that 
are related to four questions that should be asked by managers every day. 
These four patterns, along with the four questions in parentheses, are as 
follows:

 1. Assessing and clarifying (What’s going on?)
 2. Cause and effect (Why did this happen?)
 3. Making choices (Which course of action should we take?)
 4. Anticipating the future (What lies ahead?)

The first two patterns listed might be thought of as being related to the area 
of problem structuring, as described in this chapter.

Cognitive maps are “generally records of verbal accounts of issues given 
in interviews by members of the management team” (Eden and Ackermann, 
2004). It consists of nodes and arcs (i.e., a cognitive map is a directed graph), 
where the nodes represent statements concerning a problem and the arcs 
represent causality. For this reason, cognitive maps are sometimes called 
causal maps. The basis for cognitive maps is derived from the personal con-
struct theory of Kelly (1955). A cognitive map often leads to the later develop-
ment of a related influence diagram, which will be discussed in Chapter 7.

The concept of cognitive mapping has been formalized through the devel-
opment of Strategic Options Development and Analysis (SODA) (Eden and 
Ackermann, 2001) and JOintly Understanding Reflecting and NEgotiating 
StrategY (JOURNEY) Making (Eden and Ackermann, 2004). A computer 
software package (decision explorer) has also been developed as an aid for 
cognitive mapping.
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Some other problem structuring techniques/approaches that have been 
developed include mind-mapping (Buzan, 1991), cause-and-effect diagrams 
(sometimes called fishbone diagrams or Ishikawa diagrams) (Ishikawa, 
1990), stairstepping (Huge, 1990), Brightman’s alternative worldview method 
(Brightman, 1988), the five Ws and H technique (VanGundy, 1988, Chapter 3), 
dimensional analysis (VanGundy, 1988, Chapter 3), strengths, weaknesses, 
opportunities, and threats (SWOT) analysis (Fine, 2009), and the Smith 
framework (Smith, 1988).

2.6  Generating Objectives and Attributes 
for a Decision Situation

The methodologies discussed in Section 2.3 through Section 2.5 can be 
thought of as a prelude to the activity discussed in this section: generation 
of objectives and attributes for a decision situation. In order to rank a group 
of feasible alternatives, one must evaluate these alternatives in some way. 
Evaluation implies the use of performance measures or attributes, corre-
sponding in some sense to the objectives of the system under consideration. 
In this section, we present methods by which to obtain the objectives and 
attributes for a decision situation.

Various studies have indicated that, without methods that make DMs focus 
on their objectives and attributes, these DMs omit many relevant objectives 
and attributes for a decision problem (Bond et al., 2008). Without a complete 
set of objectives and attributes, relevant alternatives might not be generated 
for consideration, and alternatives that are evaluated may not be ranked 
appropriately.

2.6.1  Terminology: Criteria, Values, Mission Statements, Vision 
Statements, Objectives, Goals, Constraints, and Attributes

Some of the terminology discussed in this section is often used in an unclear 
way. A reason for this is that terms such as criteria, values, objectives, goals, 
constraints, and attributes are, for the most part, basic terms to people in all 
walks of life. In order to have a single frame of reference throughout this sec-
tion, we provide definitions for these terms.

A criterion is “a standard on which a judgment or decision may be based.” 
(See: http://www.merriam-webster.com/dictionary/criteria.)

The word is often used interchangeably with criteria since typically several 
things go into making up a criterion. Since many different things go into 
making up a criterion (e.g., objectives, goals, constraints), criterion is a very 
general term.

http://www.merriam-webster.com/dictionary/criteria
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As defined by Keeney (1992, p. 6), values are “principles used for evalua-
tion.” One of the tenets of Keeney’s value-focused thinking is that by focus-
ing on one’s values, more and better alternatives can be generated for a 
decision problem. In addition, focusing on values is helpful in the generation 
of a good set of attributes for a decision problem.

The values of organizations are sometimes indicated by their mission/
vision statements but are more likely indicated by their actions; in particular, 
an organization’s actions indicate their preferences toward risk and their value 
trade-offs, for example, between the environment and profits. Some examples 
of organizational mission/vision statements are given in the following:

General Motors Mission Statement

GM is a multinational corporation engaged in socially responsible oper-
ations, worldwide. It is dedicated to provide products and services of 
such quality that our customers will receive superior value while our 
employees and business partners will share in our success and our stock 
holders will receive a sustained superior return on their investment

(See: http://wiki.answers.com/Q/
What_is_General_Motors_mission_statement)

General Motors Vision Statement

Over the past 100 years, GM has been a leader in the global automotive 
industry. And the next 100 years will be no different. GM is committed 
to leading the industry in alternative fuel propulsion.
 GM’s vision is to be the world leader in transportation products and 
related services. We will earn our customers’ enthusiasm through con-
tinuous improvement driven by the integrity, teamwork, and innovation 
of GM people.
 Over the past 100 years, GM has been a leader in the global automotive 
industry. And the next 100 years will be no different. GM is committed 
to leading the industry in alternative fuel propulsion.

(See: http://www.company-statements-slogans.info/list-of-
companies-g/general-motors.htm)

McDonald’s Vision Statement

McDonald’s vision is to be the world’s best quick service restaurant 
experience. Being the best means providing outstanding quality, ser-
vice, cleanliness, and value, so that we make every customer in every 
restaurant smile.

(See: http://www.specimentemplates.org/mission-statements/
mcdonald-visionstatement.htm)

As noted by Bart (1997), an organization’s mission statement should con-
tain three important elements: its key market(s), the contribution of the 

http://www.specimentemplates.org/mission-statements/mcdonald-visionstatement.htm
http://www.company-statements-slogans.info/list-of-companies-g/general-motors.htm
http://wiki.answers.com/Q/What_is_General_Motors_mission_statement
http://www.specimentemplates.org/mission-statements/mcdonald-visionstatement.htm
http://www.company-statements-slogans.info/list-of-companies-g/general-motors.htm
http://wiki.answers.com/Q/What_is_General_Motors_mission_statement
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organization (e.g., in terms of a product/service), and the distinction of the 
organization’s contribution.

An individual’s values are often more difficult to determine than an orga-
nization’s values, even for the individual himself or herself. However, by 
focusing on his or her values, an individual can often develop more and 
better alternatives and, through expansion on these values, often develop a 
more relevant set of attributes for a particular decision problem.

An objective can be thought of as a desired direction of improvement for 
some performance measure. Since the concept of “direction” is often asso-
ciated with objective, one typically attaches one of the words “minimize,” 
“maximize,” “optimize,” or “improve” to an objective. Examples of objec-
tives would be “minimize cost,” “maximize reliability,” “maximize through-
put,” and so on. Objectives should be things that are derived from the values 
of an organization for any particular decision-making context. One of the 
things that makes decision making difficult is that most, if not all, decision 
problems have conflicting objectives. That is, given a set of alternative solu-
tions, some alternatives might do well on some objectives, some might do 
well on other objectives, but there is typically no alternative that optimizes 
all of the objectives simultaneously.

Sometimes, objectives are stated in such a way that the word optimize 
(or maximize/minimize) is implied and not stated. For example, one might 
state “enforce speed limits” as an objective; the implication here is that the 
objective is actually “optimize enforcement of speed limits.”

Another difficulty is that sometimes an objective might be confused with 
an alternative action. For example, “optimize enforcement of speed limits” 
might be thought of as an alternative with respect to an overall objective of 
“optimize transportation safety,” whereas in reality this is an objective. In 
this particular situation, involving speed limit enforcement an alternative 
action might be related to where cameras are placed in order to detect speed-
ing vehicles.

A goal is a desired level for a performance measure. An example would 
be “achieve a throughput of 1000 parts per day.” The concept of a goal is 
often used in conjunction with that of “satisficing,” which can be defined 
as selecting the first solution identified that meets a goal or a set of goals, 
even if additional searching might achieve better results for the respective 
set of objectives associated with the goals. In addition, the concept of goals 
is associated with goal programming, an optimization technique discussed in 
Chapter 4.

A constraint is a restriction placed on a performance measure value, typi-
cally by stating that the performance measure value must be greater than or 
equal to, equal to, or less than or equal to some specific number. An exam-
ple would be that any solution chosen for plant expansion must have a cost 
of less than or equal to $20 million. The concepts of constraints and objec-
tives are important ones in the field of mathematical programming. In addi-
tion, many of the approaches associated with multiple objective mathematical 
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programming, in which multiple conflicting objectives are considered in the 
optimization process, are modeled by considering one of the objectives in 
the objective function and the other objectives through the use of respective 
constraints where the objectives are constrained to achieve a certain value; 
these values are represented as the right-hand values in the constraints. By 
selectively varying the right-hand sides of the constraints and exchang-
ing one objective for another in the objective function, one can explore the 
Pareto optimal surface of the problem. This area will be discussed in more 
detail in Chapter 4.

An attribute can be thought of as a measure of how well an objective is 
achieved. For example, if an objective is to minimize cost, then an attribute 
associated with that objective would be cost in dollars. The term attribute 
is often used interchangeably with the phrase performance measure. Note 
that an attribute should be defined in such a way, as much as possible, so 
that there is no question as to its interpretation. One reason for this require-
ment is that the DMs and stakeholders will typically be answering questions 
concerning their trade-offs between different attribute values in a decision 
analysis application. Hence, there must be a clear understanding on the part 
of stakeholders and DMs as to the meaning associated with various levels of 
an attribute.

Attributes can be categorized along two dimensions as being (1) natural 
attributes or constructed attributes and (2) nonproxy attributes or proxy attributes 
(see Table 2.5). The best situation is if all attributes in a study are natural and 
nonproxy.

The interpretation as to the meanings of various attribute levels is fairly 
straightforward if the attribute in question is a natural attribute. A natural 
attribute is one that is quantitative in nature. Examples of natural attributes 
and their respective associated objectives are shown in Table 2.6. Even with 
natural attributes, especially in decision settings involving highly technical 

TABLE 2.5

Categorization of Attributes

Attributes that are natural and nonproxy Attributes that are constructed and nonproxy
Attributes that are natural and proxy Attributes that are constructed and proxy

TABLE 2.6

Objectives and Associated Natural Attributes

Objective Natural Attribute 

Minimize transportation costs Transportation costs in thousands of dollars
Minimize mean number of defective parts 
produced per day during the month of May

Mean number of defective parts produced 
per day during the month of May

Minimize cost per purchased part for vendor 
selected

Cost per purchased part for vendor selected
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problems, the meaning may not be clear to particular DMs or stakeholders. 
For example, a (nontechnical) governmental DM may not be aware of the 
significance of “tons of SO2 emitted” as an attribute in a decision problem 
involving environmental issues; hence, an analyst would need to be sure 
that the DM became educated in this area if this attribute were used in the 
problem.

Natural attributes can be contrasted with constructed attributes for which 
the interpretation of meaning may not be quite so clear. These constructed 
attributes are typically subjective in nature and also normally require the 
use of a scale with numbers and associated meanings assigned to the num-
bers. As would be expected, constructed attributes are associated with objec-
tives that are somewhat nebulous in nature. An example of such an objective 
would be “optimize reputation” (of the selected vendor). The associated attri-
bute would be vendor reputation, as measured by a scale with numbers and 
associated phrases, as shown in Table 2.7.

Another example of a constructed attribute for the quality of a writing 
assignment is shown in Table 2.8 (derived from work performed by Dr. 
Patricia Ralston, chair of the Department of Engineering Fundamentals at 
the University of Louisville). Note the large amount of detailed information 
shown for each of the ratings. Typically, the more detailed information that 
can be given for each of the numerical rating values associated with a con-
structed attribute, the better. Such detailed information allows for less error 
in interpretation.

One of the keys for the construction of the scale would be that any two rea-
sonable DMs or stakeholders for the problem agree on the mapping for any 
particular outcome into the correct number for the scale. As discussed in the 
next section, these nebulous objectives and associated constructed attributes 
are more likely to occur at the higher levels of the “objectives–attributes” 
hierarchy than at the lower levels.

In addition to reputation and quality, other examples of constructed attri-
butes could be comfort, fun, appearance, pain, attitude, and public accep-
tance. The key point in their identification is the idea that their measurement 

TABLE 2.7

Scale for the Constructed Attribute of Reputation

Number Associated Meaning 

1 World-renowned reputation, achieved from receiving numerous international 
awards

2 National reputation, well known for high-quality work on a national basis; 
not well known outside of the United States

3 Locally prestigious, within the state and local area
4 Has a mixed reputation for the quality of its work
5 Associated with numerous scandals for the quality of its work
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involves the use of a subjective scale. Hence, an attribute that might normally 
be thought of as natural could be a constructed attribute depending on the 
scale used; for example, an attribute like cost, which would typically be a 
natural attribute since it would normally be measured in units such as dol-
lars, could be thought of as a constructed attribute if descriptions for values 
like “very high cost,” “moderately high cost,” and so on were used. In this 
regard, whether an attribute is natural or constructed might depend on the 
amount of effort put forward in the measurement activity.

Whether an attribute is proxy or nonproxy refers to how directly it mea-
sures an objective. As noted by Keeney and Raiffa (1993, p. 55), “a proxy attri-
bute is one that reflects the degree to which an associated objective is met but 
does not directly measure an objective.” Hence, a proxy attribute measures 
an objective in an indirect fashion. For example, a proxy attribute associated 
with the objective of “optimize comfort” might be “deviation of temperature 
from 70° Fahrenheit.” The deviation in temperature is not a direct measure-
ment of comfort, but it is useful as a proxy.

Another example of a proxy attribute is described in Keeney and Raiffa 
(1993, Chapter 2). They describe the use of the proxy attribute of “response 
time” in order to measure the objective of “delivering patients to the hospital 

TABLE 2.8

Constructed Scale for the Quality of a Written Report

Rating Description 

4—Excellent Clearly identifies the purpose including all complexities of relevant 
questions

Accurate, complete information that is supported by relevant evidence
Complete, fair presentation of all relevant assumptions and points of view
Clearly articulates significant, logical implications, and consequences based 
on relevant evidence

3—Good Clearly identifies the purpose including some complexities of relevant 
questions

Accurate, mostly complete information that is supported by evidence
Complete, fair presentation of some relevant assumptions and points of view
Clearly articulates some implications and consequences based on evidence

2—Satisfactory Identifies the purpose including irrelevant and/or insufficient questions
Accurate but incomplete information that is not supported by evidence
Simplistic presentation that ignores relevant assumptions and points of view
Articulates insignificant or illogical implications and consequences that are 
not supported by evidence

1—Poor Unclear purpose that does not include questions
Inaccurate, incomplete information that is not supported by evidence
Incomplete presentation that ignores relevant assumptions and points of 
view

Fails to recognize or generate invalid implications and consequences based 
on irrelevant evidence
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in the best possible condition.” Note that the proxy attribute of response time 
is relatively easy to measure as compared to the patient’s condition when 
arriving to the hospital. Of course, this is the key advantage associated with 
the use of a proxy attribute—ease of measurement—but at the expense of not 
being directly related to the objective being measured.

One error often made with selection of attributes, and often with proxy 
attributes, has to do with using an input in order to measure the “quality” 
of a system; an example of this is the use of per capita student spending in 
order to measure the quality of a school system. The advantage in this case 
of course is that this information is relatively easy to obtain, but with the 
disadvantage being that it’s probably not a good measure of quality.

Of course, in some sense, all attributes are nonproxy since no objective can 
be measured in a completely accurate fashion. However, in most situations, 
it will be clear whether an attribute should be considered as a proxy attribute 
or not.

2.6.2  Formation of a Hierarchy/Network of 
Objectives and Associated Attributes

Objectives for a decision situation or system can typically be structured as 
either a hierarchy or as a network. These hierarchies or networks consist of 
nodes (representing the objectives) and arcs connecting the nodes. An arc 
(line) connecting two nodes (objectives) indicates that these two objectives 
are closely related.

Fundamental (or “high-level”) objectives are structured as hierarchies, 
which are shaped something like a triangle, with just one node at the top and 
an increasing number of nodes at each level of the hierarchy. Means-ends (or 
lower-level) objectives (or sometimes just called means objectives) are typi-
cally formed as a network. See Keeney (1992) and Clemen and Reilly (2001) 
for an additional discussion concerning the differences between fundamen-
tal objectives and means objectives.

The main difference between a network and a hierarchy in this case is that 
in a network, a lower-level objective can be connected to multiple higher-
level objectives, while for a hierarchy, each objective is connected to only one 
other higher-level objective. An example of such a network (as opposed to a 
hierarchy) involving apartment choice is shown later in this section.

A particular objective could be a fundamental objective for one decision 
problem and yet a means objective for another problem, depending on the 
scope of the problem. That is, for a tactical decision problem, an objective 
that might be considered as fundamental could be considered as a means 
objective for a related strategic problem. An example of such a situation is 
provided by Keeney (1992, pp. 87–88) with respect to the objective of mini-
mization of carbon monoxide emissions. Typically, attributes are associated 
with the objectives at the lowest level of the hierarchy or network.
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The process of generating a hierarchy or network of objectives and associ-
ated attributes is subjective in nature. That is, two different reasonable DMs, 
or sets of DMs, could develop two different, yet reasonable, sets of objectives 
and associated attributes for a decision situation. Hopefully, different yet 
reasonable sets of objectives and associated attributes will lead to the selec-
tion of the same alternative as the best, as well as the same (or at least similar) 
rankings of the alternatives.

Having a good set of objectives (through the generation of a hierarchy or 
network) is almost a prerequisite for obtaining a good set of attributes, but 
the generation of each set go hand in hand with each other; however, just 
because one has a good set of objectives does not mean that one will neces-
sarily have a good set of attributes.

Many techniques have been suggested for the formation of these hier-
archies or networks. Most of these techniques are listed in Table 2.9. For 
example, MacCrimmon (1969) suggests three complementary approaches: 
(1) examine the relevant literature, (2) conduct an analytical study, and (3) 
perform causal empiricism. The first approach is especially useful when 
addressing systems/problems arising from the public/governmental sec-
tor. An example of the second approach would be to develop a model of 
the inputs, processes, and outputs of the system under study; the outputs 
and their categorizations could be used in the development of a hierarchy. 
Causal empiricism refers to talking with the DMs and stakeholders associ-
ated with the problem/system. A sensible approach for an analyst without 
much initial knowledge of the system would be to first examine any rel-
evant literature and then interview DMs/stakeholders.

Buede (1986) suggests two systematic approaches: top down (or objective 
driven) and bottom up (or alternative driven). He notes that the top-down 
approach is the one that is most commonly espoused in the literature and is 
especially appropriate for strategic problems or decisions. This approach is 

TABLE 2.9

A List of Approaches for Generating a Hierarchy or Network of Objectives

Device References 

Literature examination, analytical study, causal empiricism MacCrimmon (1969)
Top-down versus bottom-up approaches Buede (1986)
Listing of devices Keeney (1992)
Specification, means-ends Chapter 2 of Keeney and 

Raiffa (1993)
Categorization of stakeholders —
Fundamental versus means objectives Clemen and Reilly (2001)
Questions for moving upward/downward in hierarchy Clemen and Reilly (2001)
Two-stage approach for generating objectives Bond et al. (2010)
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also useful in the development of an objectives’ hierarchy for an entire sys-
tem, as opposed to for a particular decision situation.

As an example of an objective-driven hierarchy, during the 1980s, NASA 
utilized a database system called the Advanced Missions Information 
System, which contained information on various prospective missions to 
outer space over the next 40 years (Evans and Fairbairn, 1989). The objectives 
of this hierarchy could be broadly categorized into two groups: those relat-
ing to costs and those relating to benefits. Figure 2.7 shows part of the ben-
efits hierarchy. Obviously, this hierarchy could be expanded even further.

The bottom-up (or alternative-driven) approach described by Buede is 
useful for tactical decisions in which the alternatives are fairly well defined. 
Basically, in this approach, one looks for differences between the alterna-
tives in order to build up from the bottom of the hierarchy. For example, this 
approach might be useful for someone who was trying to decide which of 
three new cars to purchase. The cars might differ in fuel economy, mainte-
nance costs, comfort, cargo capacity, and so on. In addition, Keeney (1992) 
notes that particular preselected alternatives may be used as prompts in 
order to generate fundamental objectives, and Butler et al. (2006) note that 
by reflecting on prespecified attributes, DMs can generate fundamental 

1

1.   Optimize mapping morphology and mineralogy of the moon, planets, and asteroids.
2.   Optimize benefits associated with research beyond the solar system.
3.   Optimize benefits associated with improving our understanding of astronomy,
      biology, geology, and meteorology.
4.   Optimize benefits associated with improving domestic/global communications.
5.   Optimize benefits related to understanding/controlling of the earth’s climate.
6.   Optimize benefits associated with understanding of the earth’s upper atmosphere.
7.   Optimize benefits associated with the research and development of industrial
      processes.
8.   Optimize benefits associated with providing services such as satellite repair,
      maintenance, and refueling.
9.   Optimize benefits associated with mining of minerals and other resources.

Where the numbers denote the following subobjectives:

Optimize Benefits
of Space Flight

Optimize humanistic
benefits

Optimize utilitarian
benefits

Optimize intellectual
benefits

2 3 4 5 6 7 8 9

FIGURE 2.7
Hierarchy of objectives associated with the benefits of space flight.
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objectives. Each of these latter two approaches can be categorized as bottom-
up procedures, as described by Buede (1986).

Keeney (1992, p. 57) lists the following devices as being useful in identify-
ing relevant objectives:

• A wish list
• Problems and shortcomings
• Consequences
• Goals, constraints, and guidelines
• Different perspectives
• Strategic objectives
• Generic objectives
• Structuring objectives
• Quantifying objectives

For example, if one were developing a wish list associated with a finding 
a new job, one of the things on the list might be a nice office; this could be 
translated into the objective of optimize office amenities. Suppose for this 
same decision situation, the person’s spouse is not happy living far from his 
or her parents. This could be translated into the objective of minimizing the 
distance of the job accepted from the spouse’s parents’ home.

In Chapter 2 of their book, Keeney and Raiffa (1993) suggest the use of spec-
ification and means-ends as devices in developing a hierarchy of objectives. 
Specification refers to stating in more detail what is meant by an objective 
and allows one to expand “downward” from an objective into several, more 
detailed, objectives. For example, in the hierarchy of Figure 2.7, a further 
specification of “humanistic benefits” would be “optimize benefits associated 
with improving domestic/global communications,” among other objectives.

The concept of means-ends allows one to expand in either direction in a 
hierarchy; that is, to expand downward from an objective into several, more 
detailed objectives, one could ask the question: “What is the means by which 
this higher-level objective could be achieved?” To expand “upward” from an 
objective in the hierarchy, one might ask the question: “To what end do we want 
to achieve this objective?” Note that the answer and question for the “means” 
should interchange with the question and answer for the “ends” question.

As an example, in the hierarchy of Figure 2.7, the means by which one 
optimizes the humanistic benefits of space flight is by (1) optimizing benefits 
associated with improving domestic/global communications, (2) optimiz-
ing benefits related to understanding/controlling of the earth’s climate, and 
(3) optimizing benefits associated with understanding of the earth’s atmo-
sphere. Conversely, the end associated with optimizing benefits associated 
with improving domestic/global communications is to optimize the human-
istic benefits of space flight.
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Another way by which one can expand downward in a hierarchy is by 
considering the various stakeholders associated with a system. For exam-
ple, in evaluating strategic decisions for a public university, one might 
want to consider all of its stakeholders, as shown in the partial hierarchy of 
Figure 2.8.

The hierarchy of Figure 2.8 might be further expanded by considering sub-
categories of stakeholders. For example, the state’s residents might be subdi-
vided into the taxpayers and corporate infrastructure.

In addition to the context-dependent categorization of objectives as described 
earlier, one could also categorize objectives according to short-term versus 
long-term and personal versus professional objectives (Bond et al., 2010).

Clemen and Reilly (2001) stress that fundamental objectives arise from 
one’s values and appear toward the top of the hierarchy and that means 
objectives, as their name indicates, are the means by which the fundamental 
objectives are achieved. The attributes that are used to evaluate decisions 
should be directly related to the means objectives if possible. They also sug-
gest asking the following questions for the development of the hierarchy:

To move downward in the hierarchy:

Ask: “What do you mean by that?” or “How could you achieve this?”

To move upward in the hierarchy:

Ask: “Of what more general objective is this an aspect?” “Why is that 
important?”

Note that asking these questions corresponds to the procedures discussed 
earlier.

Consider the problem of a college student who wants to select an apart-
ment to rent in the city where he or she is attending college. Given that the 
city is of moderate size, he or she might have several alternatives from which 
to choose and therefore wants to develop a hierarchy of objectives and asso-
ciated attributes to aid his or her choice.

Optimize
considerations of the

state’s residents

Optimize
considerations of the
university students

Optimize Well-Being
of the University

Optimize
considerations of the

university faculty

FIGURE 2.8
Partial hierarchy for considering strategic decisions at a public university.
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Note that in Figure 2.9, the attributes for the means objectives are shown in 
parentheses. Also, note that a means objective can be associated with more 
than one fundamental objective. For example, the means objective “minimize 
distance traveled from apartment to other locations” can be associated with 
each of the fundamental objectives: (1) optimize financial considerations and 
or she (2) optimize safety considerations. The further the student travels, the 
more he or she has to spend on gasoline and maintenance for a private auto-
mobile or on fares for public transportation. In addition, the further he or 
she has to travel, the higher the chances of having an accident in that travel. 
In developing the hierarchy, note how the student would have given much 
thought as to how this means objective affected more than one fundamental 
objective, thereby affecting his or her thought process in the consideration of 
the value of this means objective.

Also, in Figure 2.9, note that the three, second-level, fundamental objec-
tives indicate why the student is concerned about this decision situation. In 
addition, careful consideration of the “means objectives” in the figure can be 
helpful in the generation of new alternatives for consideration. For example, 
consideration of the means objective of “optimize neighborhood …” might 
cause the student to think about other neighborhoods that might have good 
apartments for rent.

Optimize overall well-being from an apartment rental

Optimize safety considerations

Optimize lifestyle considerations

Optimize apartment age (apartment age in years)

Optimize apartment age (apartment age in years)

Optimize apartment layout (layout desirability)

Optimize apartment layout (layout desirability)

Optimize neighbors (quality of neighbors)

Optimize neighbors (quality of neighbors)

Optimize apartment neighborhood (quality of neighborhood)

Optimize apartment neighborhood (quality of neighborhood)

Optimize apartment amenities (quality of apartment amenities)

Optimize apartment amenities (quality of apartment amenities)
Optimize apartment size (apartment size in square feet)

Minimize distance traveled from apartment to other locations (average weekly miles traveled)

Optimize financial considerations

Minimize monthly rent (monthly rent in dollars)
Minimize monthly utility bills (average monthly utility bill in dollars)
Minimize distance traveled form apartment to other locations (average weekly miles traveled)

FIGURE 2.9
Hierarchy of fundamental objectives, means objectives, and attributes for an apartment rental 
decision.
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Note that the hierarchy in Figure 2.9 contains both natural and constructed 
attributes. One of the constructed attributes is “quality” of neighbors. 
Depending on the desires of the student, an example of a subjective scale and 
associated interpretation of this scale for two of the attribute values is shown 
in Table 2.10. Note that just the process of constructing the scale and its inter-
pretation will be useful to the student when thinking about his preferences.

Another example of a hierarchy, this one for selecting a best layout design for 
a printing plant, is given by Cambron and Evans (1991), as shown in Figure 2.10. 

TABLE 2.10

Scale for Constructed Attributes of Quality of Neighbors

Rating Description 

4—Excellent Neighbors are my age and mostly single; none or very few children; most 
neighbors have good jobs and/or study within my discipline; not too 
much partying going on.

3—Good Many of the neighbors are my age and single, but a few are married with 
small children; a few of the single neighbors are not college students and 
appear to be noisy late at night.

2—Satisfactory A mixed neighborhood, in between what would be considered as poor 
(below) and good (above).

1—Poor Most neighbors are unemployed and/or not attending school; many small 
and noisy children in the neighborhood; much loud partying going on.

Select the best layout

Optimize operational cost and flexibility concerns

Optimize efficiency with respect to the movement of materials

Optimize effectiveness with respect to the movement of personnel

Optimize ease of any future expansion

Optimize adaptability with respect to process and equipment changes

Optimize space utilization and configuration

Optimize control and work environment considerations

Optimize safety considerations

Optimize effective supervision

Optimize security considerations

Optimize aesthetic considerations

Optimize noise control considerations

FIGURE 2.10
A hierarchy of objectives for layout design. (From Cambron, K. and Evans, G.W., Comput. Ind. 
Eng., 20, 211, 1991.)
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Note that this hierarchy could easily be expanded further, since many of the 
lowest-level objectives for this hierarchy are still at a fairly high level.

A good set of objectives for a specific decision situation must (1) cover all 
aspects of concern of the DMs and stakeholders, (2) be understandable to the 
DMs and stakeholders and therefore allow for careful consideration of trade-
offs between these objectives, (3) have associated values (attributes) that are 
reasonably computable for any alternative under investigation, and (4) allow 
for differing outcomes for the various alternatives.

For example, selection of a staffing schedule for a fast-food restaurant 
that considered the cost of staffing, but not the waiting time of restaurant 
patrons, would not satisfy the first concern. As another example, design 
of an inventory policy in which one of the objectives involved minimiza-
tion of average shortage cost per day may not satisfy the second concern if 
the DMs did not understand the concept associated with computation of 
an integral within a simulation model (see Kelton et al., 2015, pp. 257–270, 
for an example of a simulation model with this output). The third concern 
would not be satisfied if the construction of a model that would compute 
a value for the objective for any alternative under investigation required 
3  months of effort and the decision needed to be made in 2  months. 
Finally, with respect to the fourth concern, if all alternatives resulted in 
the same value of an objective, then there would be no need to consider 
that objective.

Empirical research has indicated that without direction, DMs are not able 
to generate a substantial number of relevant objectives for any particular 
decision situation. The research also suggests two impediments to genera-
tion of most of the relevant objectives: (1) not thinking broadly enough about 
the possible objectives and (2) not thinking deeply enough about the situa-
tion (Bond et al., 2010). Since typically the objectives can be formed as a hier-
archy (i.e., in categories), the first impediment corresponds to not thinking of 
entire categories of objectives, while the second impediment corresponds to 
not expanding the depth of the hierarchy.

As a result of their research, Bond et al. (2010) suggest a two-stage approach 
to the generation of objectives. The first stage involves just having the DM 
(or DMs) just generate a list of objectives for the decision situation. Following 
this stage, the analyst/facilitator would organize the objectives generated 
into categories (possibly a hierarchy) and then show this grouping to the 
DM(s) as a prelude to the second stage. The analyst/facilitator would then 
ask the DM(s) to add additional objectives to the list, by considering addi-
tional categories that may not have been considered in the first stage and 
by thinking more “deeply” about categories that had been considered. The 
analyst/facilitator would also set a goal of, say, about 100% more objectives 
for generation and also indicate the existence of research that shows that 
with additional effort, about this many more objectives can be added to the 
original list. See Keller et al. (2009) and Keeney (2012) for an additional dis-
cussion in this area.
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Desirable characteristics associated with a good set of fundamental objec-
tives are also given by Keeney (1992, pp. 82–86):

• Essential: Indicates outcomes in terms of the fundamental concerns 
of the DMs and stakeholders.

• Controllable: Outcomes associated with these objectives are affected 
only by the choice of alternatives.

• Complete: Covers all aspects of concern.
• Measurable: Define objectives precisely and specify degrees to which 

objectives are achieved.
• Operational: Values associated with the objectives can be computed 

within a reasonable time.
• Decomposable: Respective values associated with the objectives can 

be considered separately from one another by the DM(s).
• Nonredundant: Aspects associated with any objective are not included 

in another objective.
• Concise: Use as few objectives as possible.
• Understandable: The DM(s) implicitly understand the meanings of the 

objectives.

The reader should note that there are both trade-offs and complementary 
aspects associated with the characteristics described above. The most obvi-
ous example of a trade-off is with respect to the two characteristics of concise 
and complete—an analyst wants to use as few objectives as possible (i.e., be 
concise) while still covering all aspects of concern with respect to the deci-
sion situation (i.e., be complete). Hence, trade-offs need to be considered with 
respect to the set of characteristics listed earlier.

In addition to the examples presented in this section, the reader is referred 
to any of the following hierarchies found in the literature related to (1) cost 
and environmental concerns for the decisions associated with the sched-
uling of refueling for a nuclear power plant (Dunning et  al., 2001); (2) for 
evaluating alternatives for the disposition of excess waste plutonium from 
dismantled nuclear weapons (Butler et al., 2005); (3) for the evaluation of vari-
ous vision and mission statements of a software company (Keeney, 1999); (4) 
for investigating alternatives associated with the regional organization of 
the U.S. Army’s Installation Management Agency (Trainor et al., 2007); (5) for 
selecting a geographic information system (GIS) (Ozernoy et al., 1981); (6) for 
ranking 542 hydroelectric projects in Norway (Wenstöp and Carlsen, 1988); 
(7) for relating objectives in the areas of cost, theft, environment, health, and 
safety with respect to the selection of a technology for the disposition of 
surplus weapons-grade plutonium (Dyer et al., 1998); and (8) for evaluating 
various types of plants for generating electricity (Keeney et al., 1986). In addi-
tion, Keller et al. (2009) discuss situations involving multiple stakeholders/
DMs and objective hierarchies.
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As noted earlier, attributes are used to measure the quality of an outcome 
that’s associated with an objective. Typically, one will have one attribute 
associated with each of the lowest-level objectives in an objectives’ hierarchy 
or network. In some cases, one might employ multiple attributes to measure 
a lowest-level objective.

Of course, all other things being equal, the best way to judge the quality of 
a set of objectives and attributes would be after the fact—that is by looking 
at the quality of the decision made. Since this is not possible prior to mak-
ing the decision, one should assure that the attributes and objectives have 
certain characteristics.

In many cases, the attribute to be associated with an objective is an obvi-
ous choice. For example, in the design of a call center, if the objective is to 
“minimize the number of callers who must wait longer than 12 seconds to 
have their calls answered,” then the obvious associated attribute would be 
the “number of callers who must wait longer than 12 seconds to have their 
calls answered.” The difficulty arises when the objective is not so clear-cut 
such as an objective like “maximize service to callers.”

Keeney and Gregory (2005) suggest that the formation of a hierarchy or 
network of objectives and the determination of the associated attributes be 
accomplished in a concurrent fashion. In particular, they suggest that a natu-
ral attribute should be used for an objective if there is an obvious choice; and 
in fact, if reasonable to do, one should consider several natural attributes and 
select the best of the alternative choices (i.e., another decision in itself).

If there is no good natural attribute for an objective, then the analyst 
should either (1) decompose the objective into “component objectives” and 
then proceed to the development of natural attributes for those component 
objectives or (2) consider the use of constructed attribute(s) for the objective.

In the case of the call center design, suppose that the initial objective con-
sidered is “optimize service to callers.” Since there is no obvious natural 
attribute for this objective, one might consider dividing this into component 
objectives: “minimize number of callers who hang up prior to their call being 
answered” and “minimize waiting time for callers who reach the system.” 
Assuming that a simulation model is being constructed to analyze different 
staffing schedules for the call center, then two natural attributes for these 
objectives might be “number of callers who hang up prior to their call being 
answered” and “sample mean waiting time for callers who reach the sys-
tem” (see Figure 2.11). Note that even in the case for the second objective—
“minimize waiting time for callers who reach the system”—the attribute to 
use is not necessarily obvious. For example, one might consider as an attri-
bute “the maximum waiting time over all callers for some period of time” 
instead of the mean waiting time. In addition, it may be desirable to attach 
different values to the waiting times for different categories of callers (see ver-
sion 3 of the call center model in Kelton et al. [2015, Chapter 5] for an example).

Guidance associated with the selection of attributes is given in 
Keeney and Raiffa (1993, Chapter 2), in Clemen and Reilly (2001), and in 
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Keeney (1992, Chapter 4). In particular, Keeney notes that if the funda-
mental objectives are carefully chosen, then the corresponding attributes 
should be measurable, operational, and understandable.

Additional references for the characteristics of a good set of attributes 
are Keeney and Raiffa (1993) and Keeney and Gregory (2005). For example, 
Keeney and Raiffa suggest that a set of attributes should have the following 
characteristics: completeness, operability, decomposability, lack of redun-
dancy, and small size with respect to their number.

Completeness means that the set of attributes for a problem should cover all 
important aspects of the problem. For example, a set of attributes involving 
only economic factors for a decision problem involving the setting of the 
speed limits for interstate highways would be incomplete, since such a set 
would not address the safety factors involved (e.g., number of automobile 
accidents, number of highway fatalities).

Operability basically means that it is possible (or at least not too difficult) to 
compute values for the various attributes as a function of each feasible alterna-
tive. For example, consider the problem of where to locate fire stations in a met-
ropolitan area. An attribute such as annual property damage associated with 
the placement of fire stations might not meet this criterion of operability because 
of the difficulty associated with constructing an accurate model of the rela-
tionship between annual property damage and the placement of fire stations. 
In addition, operability means that the attributes used are understandable (or at 
least easily explainable) to everyone involved in the decision-making process.

Decomposability refers to the idea that when one has a large set of attributes 
for a problem, the assessment of the preference structure of the DM can be 
decomposed over subsets of the larger set of attributes.

Nonredundancy refers to the idea that there is no overlap among the attri-
butes so that there is no double counting of effects.

Small size refers to the fact that the number of attributes should be “as small 
as possible.” There is usually a trade-off involved here, that is, the larger the 
number of attributes, the more accurate the decision-making process will be. 
However, the larger the number of attributes, the more effort will be required 

Optimize Service to
Callers

Minimize number of
callers who hang up

Minimize waiting time
for callers who reach

the system

FIGURE 2.11
Sample portion of objective–attribute hierarchy for the determination of a staffing schedule 
for a call center.
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in determining attribute values for each of the alternative, as well as ranking 
the alternative in terms of the attribute values. The bottom line is that one 
should consider whether or not a different alternative will be chosen in con-
sidering whether or not to add a particular attribute to the mix. Of course, 
it’s difficult to know the answer to this question until the analysis is finished.

Keeney and Gregory (2005) note that the attributes for a decision situation 
should have the following characteristics:

• Unambiguous: The relationship between the outcomes and their 
respective descriptions using the various possible values of the attri-
butes is clear.

• Comprehensive: The ranges of the attributes cover the full range of 
outcomes, and any implied value judgments obtained from the attri-
bute values are well understood.

• Direct: The various levels of the relevant attributes are sufficient to 
represent the outcomes for the fundamental objectives of interest.

• Operational: The levels of the attributes associated with the alterna-
tives can be reasonably obtained, and value trade-offs can be made 
by the DM(s).

• Understandable: Outcomes and value trade-offs made using the attri-
butes can be readily understood and clearly conveyed.

Obviously, there is dependence and trade-offs between and among these 
characteristics. Keeney and Gregory (2005) provide several examples and 
counterexamples for each of these characteristics. In addition, one can see 
a close relationship between the desirable characteristics associated with 
the aforementioned attributes and those desirable characteristics associated 
with fundamental objectives noted earlier.

2.7  Important Attributes for Specific 
Categories of Decision Situations

There are several areas of industrial engineering that employ the use of attri-
butes, and these attributes are specific to those respective areas. In this sec-
tion, we list and discuss some of these attributes. In some cases, we just refer 
the reader to other sources, while in other cases, we discuss these measures 
in some detail. Of course, almost all areas of decision analysis in industrial 
engineering involve some categories of cost, be they operating, capital, main-
tenance, or other categories.

A summary listing of the attributes presented in the following sections is 
provided in Table 2.11.
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2.7.1 Engineering Economics

Engineering economics is employed in many decision situations of industrial 
engineering. For example, in the area of project management, engineering 
economics can be used to choose a project to undertake from among several 
projects. Important performance measures (or attributes) used in engineer-
ing economics include net present value, rate of return, internal rate of return, 
and payback period. These performance measures are used to consolidate 
cash flows (both incoming and outgoing) over time into a single measure of 
performance. Each of these respective measures has their own advantages 
and disadvantages vis-a-vis each of the other measures. For example, the net 
present value calculation requires as input an interest rate that corresponds 
to the interest that the organization can receive from a general investment; 
the interest rate used will affect the net present value.

In many industrial engineering decision situations, one can map alterna-
tives into outcomes that are defined by cash flows over time, along with attri-
butes that may not be easily quantifiable, such as an organization’s position 
in the marketplace, an organization’s reputation, improvement in skill level of 
an organization’s workforce, improvement in the level of safety, improvement 
in traffic flow, and so on. In such cases, the outcomes are multidimensional, 

TABLE 2.11

Attributes for Specific Areas of Applications

Area of Application Selected Attributes 

Engineering Economics Net present value
Rate of return
Internal rate of return
Payback period

Location and Layout Design Cultural aspects of country
Construction costs

Quality Management Acceptable quality level (AQL)
Lot tolerance percent defective (LTPD)
Producer’s risk (α)
Consumer’s risk (β)
Average outgoing quality (AOQ)

Project Management Direct cost
Indirect cost
Project duration
Weighted sum of the sums of squares of the resource usages

Health Care Quality-adjusted life years (QALYs)
Sensitivity (of a medical test)
Specificity (of a medical test)
Fraction of patients who leave (or left) without being seen 
(LWOBS)
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involving a measure of economic performance, such as net present value, and 
constructed attributes such as one or more of those just listed.

2.7.2 Location and Layout Design

Organizations remain competitive or even enhance their competitive posi-
tion through the development of new facilities. These facilities could be 
oriented toward production, service, or storage/warehousing among other 
purposes. In all cases however, decisions must be made regarding location, 
capacity, and layout.

With respect to location, decisions can be categorized by country, region, 
and site (Heizer and Render, 2006, p. 313). In each type of decision—country, 
region, and site—a variety of criteria can be considered, some of which would 
be described by natural attributes, while others by constructed attributes. For 
example, with respect to the decision of the country for location, one would 
want to consider cultural aspects of the respective countries under consid-
eration. Such cultural aspects might best be considered through the use of a 
constructed attribute. On the other hand, decisions related to region and site 
location would depend upon land and construction costs, which would most 
likely be represented through the use of a natural attribute.

Once a location decision has been made, a decision must be made with 
respect to a facility’s layout. Layout design is concerned with the placement/
location of machines, equipment, and departments as well as the amount of 
space allocated to various departments. The objectives and criteria associ-
ated with these decisions and how these objectives are traded off between 
each other depend upon the type of facility (e.g., warehouse, manufacturing 
system, retail, office) being designed. Manufacturing systems could be laid 
out according to a process orientation, a product orientation, a work cell ori-
entation, or some combination of these.

As with many complex decision problems, a combination of both natu-
ral attributes and constructed attributes would typically be employed in the 
decision process.

2.7.3 Quality Management

As noted by the American Society of Quality (see: http://asq.org/glossary/q.
html), quality can have one of either two meanings: (1) “the characteristics 
of a product or service that bear on its ability to satisfy stated or implied 
needs” or (2) “a product or service free of deficiencies.” Having products and 
services of high quality is of obvious importance to the bottom line of any 
organization. Hence, much effort is spent by most organizations in achieving 
such high quality.

Total quality management (TQM) addresses an entire organization’s man-
agement of quality, from the suppliers and vendors to the customer, includ-
ing any third-party logistics operators that aid the organization. There are 

http://asq.org/glossary/q.html
http://asq.org/glossary/q.html
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many tools and methodologies employed in TQM, and each of these requires 
inherent decisions in their implementation. Examples of such tools include 
cause-and-effect diagrams, Pareto charts, process control charts, and accep-
tance sampling plans.

Most acceptance sampling plans involve attributes inspection, as opposed 
to variables inspection, in which some quantity (e.g., weight) of an item is 
measured. The most common type of attribute inspection is one in which an 
item is classified as either “good” or “defective.” In single sample acceptance, 
sampling a randomly selected sample of items of size n (a decision variable) 
is inspected from a lot of items; if the number of the defective items in the 
sample is less than or equal to c (a second decision variable), then the defec-
tive items are repaired and the lot proceeds; if the number of defective items 
in the sample is greater than c, then the remainder of the lot is inspected and 
every defective item found in the lot is repaired. The number n is called the 
sample size, and the number c is called the acceptance level.

The operating characteristic (OC) curve associated with a particular accep-
tance sampling plan (i.e., specific values for n and c) is an X–Y graph with 
percent defective of the lot on the X-axis and probability of lot acceptance 
(i.e., probability of the number of defective items in the sample being less 
than or equal to c) on the Y-axis (see Figure 2.12).

The acceptable quality level (AQL) for a lot is the maximum percent defective 
allowed for a lot considered to be a good lot. On the other hand, the lot toler-
ance percent defective (LTPD) is the minimum percent defective for which a lot 
is considered to be a bad lot.
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Operating characteristic curve for a particular sampling plan.
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In acceptance sampling, there are two parties involved: the producer of 
the lot and the consumer of the lot. The producer’s risk (typically denoted 
as α) associated with a particular plan is the probability that a good lot will be 
rejected, while the consumer’s risk (typically denoted as β) associated with a 
plan is the probability that a bad lot will be accepted.

The average outgoing quality (AOQ) for a lot is the average percent defective 
of the lot after it has passed through the acceptance sampling plan. Keep in 
mind that if a lot is rejected by the plan, then its outgoing quality will be 0% 
(percent defective), since the entire lot will be inspected and all defective 
items will be repaired.

2.7.4 Project Management

A project can be defined as a set of activities related to the achievement of 
some planned objective, and “project management involves the coordination 
of group activity wherein the manager plans, organizers, staffs, directs, and 
controls to achieve an objective with constraints of time, cost, and perfor-
mance of the end project” (Moder et al., 1995, p. 3). Related to the area of 
project management is project selection in which one or more projects are to 
be selected to undertake from among a group of projects.

Both project management and project selection involve many different 
types of decision situations. Project selection involves many aspects associ-
ated with engineering economics and therefore can employ attributes such as 
net present value, payback period, and internal rate of return, among others.

Two important and interrelated aspects of project management are sched-
uling and resource allocation. Both of these decision situations in a project 
involve the use of a project network, in which the individual activities of a 
project are represented as either arcs (for an activity-on-arc project network) 
or nodes (for an activity-on-node project network) in a network.

The decisions to be made in scheduling and resource allocation include 
(1) the amounts of various types of resources to allocate to each activity 
(which implicitly affects the activities’ respective durations) and (2) when to 
start and finish each activity (which implicitly affects the resources’ usages 
over time as well as the project’s duration). The first problem is often called 
the time–cost trade-off problem in project management and is addressed by the 
classical critical path method. The second problem is often termed resource-
constrained project scheduling. These decisions employ performance measures 
(or attributes) of direct cost, indirect cost, project duration, and a measure of how 
level the usages of the resources are over time.

Direct costs are those costs that can be directly associated with a respective 
individual activity of a project; examples of these costs would be direct labor, 
equipment, and material used to perform the activity in question. As such, 
the direct costs for an activity will be inversely proportional to the dura-
tion of that activity; that is, as an activity is shortened in duration, its direct 
cost will increase. For example, an activity in a project that would normally 
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require 6 weeks of duration might be shortened to 5 weeks by increasing the 
overtime effort and thereby increasing its direct cost by $5000. Note that the 
relationship between an activity’s duration and its direct cost need not, and 
will probably not, be linear.

Indirect costs are those costs that cannot be allocated to individual activi-
ties of a project but to the project as a whole. As such, they are proportional 
to the duration of the entire project—that is, the longer the duration of the 
project, the larger the indirect costs associated with that project. Examples of 
indirect costs are interest costs on the project investment, administrative and 
other overhead costs, penalties associated with completing the project late, 
and bonuses (which function as a negative cost) associated with complet-
ing the project early. In some cases, a DM may very well choose to employ 
project duration as a substitute attribute for indirect cost. In doing this, the 
DM will implicitly consider all aspects of indirect cost as well as nebulous 
considerations such as an organization’s reputation as impacted by early/
late completion of a project. See Figure 2.13 for an example of the relation-
ships between project duration and indirect cost and project duration and 
direct cost.

Two types of resource-constrained scheduling problems are addressed in 
projects: (1) resource leveling and (2) fixed resource limit scheduling. In the 
first problem, the project manager attempts to schedule the activities of the 
project in such a way that the resource usages over time are leveled out as 
much as possible, subject to a constraint on the maximum project duration. 
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Relationships between project duration and direct/indirect costs of a project.
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In the second problem, the project manager attempts to schedule the activi-
ties so as to minimize the project duration subject to constraints on the 
amounts of resources available over time.

In both problems, a level usage of the various resources employed in a 
project is a desirable situation, since this helps the organization in the avoid-
ance of intermittent hiring and laying off of employees. In determining how 
level the resource usages are over time for a particular project schedule, a 
project manager might just view resource-loading diagrams that are graphs 
that depict the resource usages over time; however, if some type of algorithm 
is used to solve the resource leveling problem, a measure is needed for the 
“levelness” of the resource usage over time. One measure typically used is 
a weighted sum of the sum of squares of the resource usage over each time 
period of the project.

As a simple example to illustrate this performance measure, consider a 
project with duration of 3 weeks under each of two different schedules: 
Schedule 1 and Schedule 2. Two resources are employed in the project: 
Resource A and Resource B. The resource usages over each of the 3 weeks of 
the project for each of the two schedules are shown in Tables 2.12 and 2.13, 
respectively.

Note that both schedules give the same amounts of overall resource usages: 
30 person-weeks for Resource A and 18 person-weeks for Resource B. This 
will always be the case for this type of problem.

Suppose that the “weights” attached to Resource A and Resource B are 
0.8 and 0.2, respectively, indicating that Resource A is much more important 
to level than Resource B (note that these weights might very well be scaled 
by levels of usage).

TABLE 2.12

Resource Usage for Schedule 1

Week Resource A Usage Resource B Usage 

1 10 6
2 10 6
3 10 6

TABLE 2.13

Resource Usage for Schedule 2

Week Resource A Usage Resource B Usage 

1 8 2
2 10 10
3 12 6
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Obviously, Schedule 1 provides a much more level usage of both of the 
resources. However, in many cases, it will be difficult to determine which 
schedule would provide the more level usage of resources. In addition, an 
algorithm for resource leveling would need to employ a single measure 
(attribute) of performance.

The weighted sum of the sum of squares for the resource usages is given by

 Schedule 1: .8 (102 + 102 + 102) + .2 (62 + 62 + 62) = 240 + 21.6 = 261.6

 Schedule 2: .8 (82 + 122 + 102) + .2 (22 + 102 + 62) = 246.4 + 28 = 274.4

Since Schedule 1 gives the smaller weighted sum of squares, it would be the 
preferred schedule in terms of leveling of the resource usage.

In many cases, the resources for a project might be categorized by the 
type of labor used. In order to simplify the analysis, these categories can be 
summed and the resource usage can be defined in terms of person-hours of 
labor for each week or month of the project.

2.7.5 Medical Decision Making and Health Care Management

There are many diverse areas in health care that have greatly benefited 
from the contributions of industrial engineers. These areas include medi-
cal decision making, scheduling and resource allocation in medical clinics 
and hospitals, design and operation of hospital supply chains, planning for 
pandemics, and so on. These areas employ many performance measures or 
attributes that are similar to those found in the classical application areas 
of industrial engineering. These include such measures as patient waiting 
times and flow times, physician utilization, nurse utilization, and so on.

Important attributes that are fairly unique to health care though are quality-
adjusted life years (QALYs), sensitivity of a medical test, specificity of a medical 
test, and fraction of patients who leave (or left) without being seen (LWOBS). The 
first three attributes (QALY, sensitivity, and specificity) are used in medical 
decision making, while the last attribute is mainly used as a performance 
measure for hospital emergency departments.

The attribute of QALY is used to evaluate different outcomes for medi-
cal treatments in which these outcomes correspond to differing qualities of 
life. The “quality of life” is measured on a scale from 0 to 1 in which 0 cor-
responds to death and 1 corresponds to perfect health. A higher value on 
the scale corresponds to a better quality of life. Then QALY is defined as the 
integral over time of the quality of life. That is, if f(t) is the quality of life at 
time t, then the QALY from time t0 to time t1 where t1 > t0 is given by

 

QALY(over the period from t to t ) f t dt
t

t

0 1
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As an example of the use of QALY, consider a patient in a wheelchair who 
has a choice between two alternatives:

 1. Surgery that has a .9 probability of curing the patient and allowing 
her to live in perfect health for 30 more years and a .1 probability of 
resulting in death

 2. No surgery that will allow the patient to stay in the wheelchair for 30 
more years with a quality of life of .7

(Note that we are ignoring obvious complications in the modeling such as 
the possibility of a better type of surgery occurring over the next 30 years, or 
other things in the future that might cause death.)

The expected value of QALYs for the alternative of surgery is given by

 .9 (1(30)) + .1 (0(0)) = 27

while the expected value of QALYs for the alternative of no surgery is 
given by

 1(.7(30)) = 21

Hence, under the criterion of maximization of the expected value of QALY, 
the patient would choose the alternative of “surgery.”

The quality of life associated with a particular medical condition is obvi-
ously dependent on the specific person evaluating the condition. For exam-
ple, the quality of life for a person with carpal tunnel syndrome would be 
less for a concert pianist than it would be for someone who is not a con-
cert pianist. Because of this subjective viewpoint associated with QALY and 
other reasons, QALY is rarely used for medical decision making with respect 
to individuals; instead, its more common use is in decision making with 
respect to interventions that affect entire groups of people.

Both sensitivity and specificity of a medical test refer to conditional prob-
abilities associated with that test. In particular, sensitivity is the probability 
that the test will be positive given that the disease is present (remember that 
a positive medical test indicates that a disease is present in an individual). 
Specificity is the probability that the test will be negative given that the dis-
ease is not present. The closer that each of these conditional probabilities is 
to 1, the better the medical test is.

As an example, let’s suppose that 1000 people are given a medical test that 
has a sensitivity of .96 and a specificity of .9. Suppose also that we know that 
950 people of these 1000 do not have the disease for which the test is being 
given and that 50 people of these 1000 do have this disease. (Of course, in 
an actual situation we will not know the exact numbers of people who do 
and do not have the disease, but we may very well know the approximate 
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values.) Then the expected numbers of people tested in various categories will 
be as follows:

• Number of people who test negative who do not have the 
disease = .9 * 950 = 855

• Number of people who test positive who do not have the 
disease = .1 * 950 = 95

• Number of people who test positive who do have the dis-
ease = .96 * 50 = 48

• Number of people who test negative who do have the dis-
ease = .04 * 50 = 2

Note that the actual numbers may very well be different from the expected 
values. However, the expected values may very well be enough information 
for decision-making purposes.

An important output to notice is that the number of people testing positive 
that do not have the disease is almost twice as many as the number testing 
positive that do have the disease. This can be explained by the large number 
of people in the population of 1000 tested that do not have the disease (950) 
versus those that do (50). See Hunink et al. (2001) for a more detailed discus-
sion of medical decision making.

As mentioned, the number of patients (or fraction of arriving patients) who 
leave without being seen is an important performance measure for hospi-
tal emergency departments. Many of these cases are walk-in patients who 
arrive at the emergency department for nonemergency medical treatment. 
The LWOBS attribute may be considered with other attributes such as patient 
waiting time (which might be subdivided by time in the waiting room and 
waiting time in the actual emergency room [ER] once past the waiting room), 
patient flow time, physician utilization, nurse utilization, and so on.

Since LWOBS is likely to be highly correlated with patient waiting time, 
one might ask the reason for considering both of these attributes in the oper-
ation of emergency departments. One reason for considering these two attri-
butes separately is that LWOBS would more likely apply to those walk-in 
patients arriving for nonemergency medical care; in other words, the use of 
both measures might be an alternative to the categorization of patients.

Patients in an ER who leave without being seen are analogous to reneg-
ing customers in a service system. Including this aspect of a system in a 
simulation model of the system may not be straightforward. For example, 
whether or not a waiting patient or customer leaves a system may depend 
upon both the number of patients/customers in front of him or her and 
the amount of time that he or she has already spent waiting. Both of these 
variables (place in waiting line and time already spent waiting) may be 
random in nature. Kelton et al. (2015, pp. 386–395) provide material on the 
simulation modeling of this aspect of a system using the Arena™ simula-
tion software package.
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Material Review Questions

2.1 Give two alternative definitions for “problem.”
2.2 The “gap” referred to in one of the definitions for problem refers to a 

gap in what?
2.3 What are the three types of problems identified by Simon?
2.4 As noted by Ackoff, most problems encountered in “real life,” as 

opposed to those encountered in textbooks, are of which type?
2.5 What are the terms used by Ackoff (1979), Rittel and Webber (1973), and 

Schon (1987) for ill-structured problems?
2.6 According to Larson, what percentage of the value of operations 

research lies in its contribution to the correct framing and formulation 
of the problem?

2.7 According to Keeney, which approach is used more often: alternative-
focused thinking or value-focused thinking?

2.8 Problem structuring should occur prior to the other steps of the prob-
lem solving process (true or false).

2.9 Give a definition of “problem structuring.”
2.10 What is a “problematique?”
2.11 What is “divergent thinking?”
2.12 What are characterizing features of ill-structured problems?
2.13 Explain why problem structuring methods should be “participative 

and interactive” in nature?
2.14 What are the four “patterns of thinking” associated with the Kepner 

and Tregoe method?
2.15 What are the seven core principles of “Breakthrough Thinking?”
2.16 What are the four elements associated with a “purpose” in Break-

through Thinking?
2.17 A purpose hierarchy can allow for the generation of alternatives that 

are not readily apparent (true or false).
2.18 What is a “systems matrix” as described by Nadler and Hibino?
2.19 What is a difficulty that often occurs when “too much” data are avail-

able for analysis?
2.20 List two of the advantages of allowing for various perspectives in the prob-

lem structuring process (as associated with the people design principle).
2.21 What is the phrase used to start all problem statement questions within 

the “Why–What’s Stopping” technique?
2.22 What is the main reason for using the phrase alluded to in Question 2.21?
2.23 Answers to the “why” question in the Why–What’s Stopping technique 

will lead to a higher-level or a lower-level perspective on a problem 
(choose one).

2.24 Answers to the “what’s stopping” question in the Why–What’s Stopping 
technique will lead to a higher-level or a lower-level perspective on a 
problem (choose one).
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2.25 What statements would correspond to the highest and lowest levels of 
a problem network in the Why–What’s Stopping technique?

2.26 Briefly define the following terms: 

• Criteria
• Values
• Mission statements
• Vision statements
• Objectives
• Goals
• Constraints
• Attributes

2.27 What are the three important elements that should be contained in an 
organization’s mission statement?

2.28 Most decision situations involve conflicting objectives (true or false).
2.29 What are the two dimensions along which attributes can be categorized?
2.30 Constructed attributes are “subjective” in nature (true or false).
2.31 What would typically be the main advantage associated with the use 

of a proxy attribute?
2.32 At what level of an objective–attribute hierarchy is a constructed attri-

bute more likely to occur?
2.33 What are the three complementary approaches suggested by 

MacCrimmon for generating a hierarchy of objectives?
2.34 What types of problems or decisions are best suited for a top-down 

approach with respect to the generation of a hierarchy of objectives?
2.35 What types of problems or decisions are best suited for a bottom-up 

approach with respect to the generation of a hierarchy of objectives?
2.36 What are the differences between a fundamental objective and a means 

objective?

Exercises

2.1 Recall a situation where you encountered an ill-structured problem. 
Describe why this problem was ill structured, as well as the solution 
approach you used. Did you start thinking of solutions right away or 
did you employ problem structuring techniques (even if you did not 
know them as such)? Based on the information gained in this chapter, 
describe how you might have approached the problem differently.
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2.2 Describe at least one ill-structured problem faced by each of the fol-
lowing organizations. What are the characteristics of this problem that 
makes it ill structured?

 a. The neighborhood/apartment complex in which you live
 b. The metropolitan area in which you live
 c. The academic department to which you belong

2.3 Consider a problem faced by many students at a commuter university: 
“How might we decrease the parking problems for students attending 
classes or other activities on campus?” Using the “Why–What’s Stop-
ping” technique, develop a problem map originating from this initial 
problem statement.

2.4 Consider the problem map associated with Figure 2.2. Develop several 
problem statements associated with answers to the question:

“What’s stopping us from spending less money on reworking?”

Compare these newly generated problem statements to the ones 
already in Figure 2.2.

2.5 Analyze the mission statements of three different organizations. 
Discuss how these statements reflect the values of these organizations.

2.6 Suppose that a medical patient has a situation in which he or she 
can have an operation and thereby have a 90% chance of living for 
10 years with a “quality of life” = .7; there is a 10% probability that 
he or she will die during or immediately after the operation. If he or 
she does not have the operation, he or she can expect to live 5 years 
with a “quality of life” = .7. Assuming that the patient’s criterion is to 
maximize the expected value of QALY, compute the expected value 
of QALY for each decision. Which decision should be taken under 
this criterion?

2.7 Identify the following attributes as being either natural or constructed 
in nature:

 a. Prestige
 b. Cost
 c. Appearance
 d. Pain
 e. Reputation

2.8 Using a “top-down approach” for the development of a hierarchy of 
objectives and attributes is more appropriate for what type of problem 
(choose one):

 a. A strategic problem
 b. A tactical problem
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2.9 Select one of the hierarchies from the literature cited in this chapter, 
for example, Dunning et al. (2001), Butler et al. (2005), Keeney (1999), 
Trainor et al. (2007), Ozernoy et al. (1981), Wenstöp and Carlsen (1988), 
Dyer et al. (1998), or Keeney et al. (1986). Write a brief report relating 
one or more of the methodologies for generating hierarchies to the 
hierarchy selected from the literature. 
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3
Making Decisions under 
Conditions of Certainty with a 
Small Number of Alternatives

3.1 Introduction

In this chapter, we discuss various solution techniques for decision opportu-
nities involving no risk or uncertainty, multiple objectives, and only a few alterna-
tives. These problems fall into the category of multiple criteria discrete alternative 
problems (Wallenius et al., 2008) with the additional qualification that we are 
dealing with problems involving certainty. Of course in real life, one always 
has uncertainty associated with the outcome of a decision, because the deci-
sion is to be made in the future, and the results of the decision will be known 
in the future; in addition, and more to the point of the techniques discussed 
later in this book, many of the inputs and relationships associated with a 
model of the decision situation would be uncertain in nature.

The key here though is that we are modeling the situation as if there is no 
uncertainty. For example, it may be that the amount of uncertainty is so 
small that it is not worth considering, or it may be that the decision is to be 
made over and over again and that the variation associated with the outcome 
of a particular decision is not of much importance—the important aspect of 
the outcome is the expected values of the attributes, and these expected val-
ues can be determined with precision. The significance of having only a few 
alternatives to consider is that we can evaluate every single alternative under 
consideration—no sophisticated optimization technique is needed.

Another reason for considering the types of methods discussed in this 
chapter is that one might not have the time available to build a model, which 
considered uncertainty. Hence, a first-cut, deterministic model is employed 
as an aid in choosing an alternative.

The types of decision situations discussed in this chapter are important to 
industry (both manufacturing oriented and service oriented), government, 
and individuals. The discussion here applies to all situations involving mul-
tiple objectives.
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Examples of relevant industrial decision situations include the following:

 1. One location from among five alternatives must be chosen for a new 
production facility. Attributes that might be considered in making 
this decision might be related to distances from major suppliers, dis-
tances from customers, government incentives, quality of prospec-
tive employee base, and so on.

 2. One layout must be chosen from among 10 alternatives for a new 
production facility. Attributes that might be considered could be 
related to the amount of material flow, safety, and so on.

 3. A hospital administrator must choose a schedule for the personnel 
who work in its emergency department. Attributes could include 
expected waiting time for patients, personnel cost, and employee 
satisfaction.

 4. A manufacturing firm must determine the parameters for the accep-
tance sampling plan for an important part for a major subassembly 
of one of its main products. The important attributes in this situa-
tion might include the cost associated with implementation of the 
plan, and the quality of an outgoing lot, as measured by the number 
of good (as opposed to defective) parts in an average lot, after the 
inspection process.

 5. A fast-food restaurant must choose a work schedule for its person-
nel. Such a schedule can involve assignment of personnel to par-
ticular jobs in the restaurant as well as assignment of personnel to 
particular schedules (e.g., Monday through Friday, 11 a.m. to 2 p.m., 
or Saturday and Sunday, 9 a.m. to 5 p.m.). Important attributes to be 
considered in this situation might relate to factors such as waiting 
time of customers, personnel costs, and employee satisfaction with 
the work schedule.

 6. In addressing its generation planning problem, which involves the 
number and type of electric-generating facilities to construct over 
time, an electric utility must consider trade-offs between cost and 
reliability for its future system (Moskowitz et al., 1978).

Examples of relevant situations related to governmental decision making 
could include the following:

 1. The federal government must determine the CAFE (Corporate 
Average Fuel Economy) requirements for the nation’s auto com-
panies. Important attributes associated with this situation could 
involve the amount of petroleum used in a year and safety, as mea-
sured, for example, by the expected number of deaths on the nation’s 
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highways. (Note that the latter consideration comes into play with 
the fact that stricter mandates with respect to fuel economy could 
imply the production of more small cars, which might be less safe in 
the case of a traffic accident.)

 2. Related to the earlier example, decisions must be made on the maxi-
mum speeds allowed on the nation’s highways. Attributes of impor-
tance here could relate to the amount of petroleum used in a year, 
travel times, and safety.

 3. A large metropolitan area, spanning a major river, must make a 
decision on the location of a new bridge spanning the river. This 
decision would involve local, state, and federal government agen-
cies as decision makers (DMs). Important attributes in this situation 
would relate to economic development, travel times, safety, reloca-
tion of homeowners, and ecological considerations.

 4. The federal government must make a decision related to the location 
of a nuclear waste facility. Obvious considerations would include 
cost and safety.

 5. NASA must make many decisions related to the design of lunar hab-
itation with respect to an upcoming manned mission to the moon. 
Obvious considerations with respect to the development of lunar 
habitation would relate to safety, cost, and the development time 
required for the various components of the habitation.

Examples of decision making related to individuals would include the 
following:

 1. A high school senior must choose a college to attend next year. 
Important considerations might include cost for tuition and living 
expenses, quality of the education, number of miles from home, and 
quality of the social life.

 2. A graduate of an industrial engineering department must choose 
from among five different job offers. Important considerations here 
could involve annual salary, opportunity for advancement, fringe 
benefits, number of miles from home, and amount of travel required 
by the job.

 3. An individual must choose a new car to purchase. Important con-
siderations would be the purchase price of the car, expected annual 
maintenance costs, fuel economy, amount of prestige, safety, and 
resale value at some point in the future.

In Section 3.2, we present notations that will be used throughout the chap-
ter. Included in this section is a simple hypothetical example involving a 
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decision situation in which a student must choose between several job 
offers. In Section 3.3, we discuss concepts and techniques that do not require 
the elicitation of information concerning the decision maker’s trade-offs 
between the objectives. In particular, the concepts of the ideal, the negative 
ideal, the superior, and nondominated solutions and outcomes are defined.

In Section 3.4, we discuss various scales of measurement (referring to 
the measurement of attributes) and preference structures. Starting with 
Section  3.5, we present methodologies that require information from the 
decision maker(s) about how he or she (they) “trade off” between the attri-
butes. In particular, in Section 3.5, we present the relatively simple concept 
of lexicographic ordering.

Sections 3.6 and 3.7 are two of the most important sections of this chap-
ter, involving basic concepts associated with multiattribute value (MAV) func-
tions and their assessment, respectively. In Section 3.8, we present a simpler 
approach to the assessment of a multiattribute value function, entitled the 
“Simple Multiattribute Rating Technique.” Section 3.9 provides some final 
discussion on MAV function assessment.

Sections 3.10 and 3.11 provide discussions of alternative approaches: the 
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), 
and the analytic hierarchy process (AHP). Within Section 3.11, a detailed 
example of the use of the AHP for the design of a call center is given and 
Section 3.11.3 discusses criticisms of the AHP.

Finally, Section 3.12 discusses outranking techniques and Section 3.13 dis-
cusses extensions, hybrid approaches, and comparisons of the various meth-
ods of Chapter 3.

3.2 Notation

The basic problem is a special case of the problem that was defined in 
Chapter 1, in which there is only one state of nature. That is, we are assum-
ing that there is a set of mutually exclusive, feasible alternatives (or solutions) 
denoted as A1, A2,…, An where n is a relatively small number. The set of 
attributes is denoted as X1, X2,…, Xp where p is the number of attributes, and 
xk(Ai) is the attribute value associated with attribute Xk as a function of alter-
native Ai where k = 1,…, p and i = 1,…, n. x(Ai) is defined as the outcome (or 
consequence) associated with alternative Ai. This outcome is given by the 
following vector:

 x(A (x A  x (A x Ai 1 i 2 i p i) ( ), ), , ( )).= ¼  (3.1)
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Note that when we are referring to an attribute, Xk, we use a capital letter, 
but when we refer to a value for that attribute, we use a lower-case letter, xk.

The problem then is to select the best alternative, denoted as A*, or to rank 
the alternatives: A1, A2,…, An from best to worst, through the consideration 
of the outcomes associated with the alternatives. The assumption is that we 
are modeling the preferences of one decision maker (DM); if there is more 
than one DM, then we assume that they can arrive at a consensus, typically 
through a (question and answer) process involving an analyst (or analysts) 
and the DMs.

First, we denote the best value for attribute k over all alternatives as xk
b and 

the worst value for attribute k over all alternatives as xk
w. Next, we denote that 

one outcome, x(Ai), is preferred to another outcome, x(Aj), with the notation

 x(A x(Ai j) )P  (3.2)

and that the DM is indifferent to the two outcomes, x(Ai) and x(Aj), with the 
notation

 x(A   x(Ai j) ).I  (3.3)

Finally, we denote that the DM prefers outcome x(Ai) to x(Aj) or is indifferent 
to these two outcomes (i.e., either one or the other) with the notation:

 x(A   x(Ai j) ).PI  (3.4)

A summary for this notation is shown in Table 3.1.

TABLE 3.1

Notations Used for Chapter 3

Quantity Notation 

Number of alternatives n
Number of attributes p
Alternative i Ai

Attribute j value for alternative i xj(Ai)
Outcome for alternative i x(Ai) = (x1(Ai), x2(Ai) ,…, xP(Ai))
Best and worst values for attribute k xk

b, xk
w

Preferred P
Indifference I
Preferred or indifferent to PI
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Example 3.1: Choosing a Job

Suppose that you are the top student in your graduating class from the 
Department of Industrial Engineering at State University. As such, you 
have 10 job offers, from 10 different, highly respected, firms. You have 
selected several important attributes for consideration in the ranking 
of these job offers. The various job offers have the same values for each 
attribute under consideration, except for three of the attributes: annual 
salary in dollars (X1), annual number of days of vacation (X2), and 
number of miles from your hometown, to the nearest 50 miles (X3). All 
three of the attributes are natural attributes. Attributes X1 and X2 are 
obvious choices and are both attributes, which you want to maximize. 
Attribute X3 is chosen because, among other reasons, your parents are 
becoming older and you think that they may need your assistance in 
various tasks. The alternatives and associated outcomes are shown in 
Table 3.2.

This example will be discussed in some detail in the following sections.

3.3  Concepts Requiring No Preference 
Information from the Decision Maker

This section discusses techniques that allow for the elimination of alterna-
tives without the use of any preference information (i.e., information con-
cerning trade-offs that the DM is willing to make between the objectives). 
In almost all cases however, a DM will still be left with multiple alternatives 
following the application of these techniques. The reason for this is that typi-
cally, objectives are conflicting in nature—that is, one is able to improve one 
objective, but only at the expense of making another objective worse, in the 

TABLE 3.2

Attribute Values for Various Job Offers for Example 3.1

i Ai x1(Ai) x2(Ai) x3(Ai) 

1 Offer 1 70,000 5 150
2 Offer 2 60,000 15 250
3 Offer 3 75,000 7 1200
4 Offer 4 65,000 10 50
5 Offer 5 55,000 20 150
6 Offer 6 58,000 8 250
7 Offer 7 68,000 5 1200
8 Offer 8 70,000 10 250
9 Offer 9 58,000 8 50

10 Offer 10 64,000 10 300
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comparison of various alternatives. For example, one may be able to pur-
chase a higher-quality automobile, all other things being equal, but only by 
paying more.

In this section, we will assume, unless otherwise noted, that more of each 
attribute is preferred to less. This assumption is made in order to keep our 
discussion of the various concepts of a concise nature. If we did have an 
attribute for which less is preferred (e.g., cost in dollars, waiting time in a 
queue in minutes, number of miles from hometown in Example 3.1), then 
we would just convert that attribute to its negative value, since an optimal 
ranking of alternatives where the criterion is to minimize a function is the 
same ranking as one attains when the criterion is to maximize the negative 
of that function.

3.3.1 The Ideal, Superior, and Negative Ideal

The ideal is a point in the outcome space that has as its associated attribute 
values the best value over all the alternatives; that is, the ideal is given by

 ( , , , ),x  x xb b
p
b

1 2 ...  (3.5)

where xk
b is the best value for attribute k as denoted earlier, selected over all 

alternatives.
In Example 3.1, a best (largest in this case) value for annual salary in dol-

lars over all of the outcomes is $75,000; a best value for annual number of 
days of vacation is 20 days; and a best value for number of miles from home-
town is 50. Hence, the ideal is given by (75,000; 20; 50). Note that the ideal is 
obtained, in this case, by selecting the attribute value for annual salary from 
alternative 3, the attribute value for days of vacation from alternative 5, and 
the attribute value for miles from hometown from either alternative 4, or 
from alternative 9.

Normally, the ideal does not correspond to any actual outcome, and hence 
does not have an actual alternative associated with it. However, if this alter-
native does exist, it is called a superior alternative and it would simultaneously 
optimize each of the attributes.

The negative ideal is a point in the outcome space that has as its associ-
ated attribute values the worst value over all alternatives; that is, the negative 
ideal is given by

 
x x xw w

p
w

1 2, , , ,¼( )  (3.6)

where xk
w is the worst value for attribute k, selected over all alternatives.

For Example 3.1, the negative ideal is given by (55,000; 5; 1,200), that is, the 
value for salary from alternative 5, the value for days of vacation from alterna-
tive 1, and the value for number of miles from home from alternative 7.
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One might ask why be concerned about an ideal and a superior solution 
if it typically does not exist in terms of reality. One reason for being aware 
of these concepts is that they are associated with some of the algorithms for 
selecting a best alternative. In particular, the TOPSIS (Technique for Order 
of Preference by Similarity to Ideal Solution) algorithm (Hwang and Yoon, 
1981), to be presented in Section 3.10, involves finding that alternative that 
considers the weighted distances from the positive ideal and the negative 
ideal. Another area of usefulness associated with the concept of the ideal is 
in the generation of new alternatives and outcomes. In Example 3.1, the stu-
dent might negotiate with the firm that made offer 5 (the one with the larg-
est number of vacation days) by informing the firm that there was an offer 
of $75,000 on the table. In a more general sense, knowing the best value for 
each alternative over all outcomes (and thinking about the characteristics of 
those alternatives) can result in the DM thinking more creatively about the 
generation of alternatives.

3.3.2  Nondominated (Efficient) Solutions and Outcomes, 
Dominance Graphs, and the Efficient Frontier

In this section, we define deterministic dominance and related concepts. Note 
that in Chapter 7, when we address decisions made under conditions of 
uncertainty and risk, we address the area of stochastic dominance. In this 
chapter, when we use the term dominance or a related term, we are referring 
to deterministic dominance.

An alternative Ai is said to dominate another alternative Aj, if and only if 
xk(Ai) ≥ xk(Aj) for k = 1,…, p, and xk(Ai) > xk(Aj) for at least one value of k = 1,…, 
p. Note that this is equivalent to saying that alternative Ai does at least as 
well as alternative Aj on all attributes, and better than Aj on at least one attri-
bute. The significance of this concept is that if one alternative is dominated 
by another, the dominated alternative can be eliminated from further con-
sideration, since no rational DM would select a dominated alternative. In a 
similar sense, we can say that if alternative Ai dominates alternative Aj, then 
we say that the outcome associated with alternative Ai dominates the out-
come associated with alternative Aj.

It can be easily proven, using this definition, that if alternative Ai domi-
nates alternative Aj and that alternative Aj dominates alternative Ak, then 
alternative Ai dominates alternative Ak.

Given the feasible set of alternatives, the set of all alternatives that are not 
dominated by any other alternative is just called (as you might expect) the 
“set of nondominated alternatives.” (The respective outcomes associated with 
the set of nondominated alternatives form the set of nondominated outcomes.) 
An alternative in this set is called a “nondominated alternative” (or “efficient 
alternative”). Again, the significance of this set of nondominated alternatives 
is that one could immediately eliminate any alternative not contained in this 
set from further consideration. Note that this set is specific to a particular set 
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of feasible alternatives. That is, if an additional alternative is found to the 
problem, the set of nondominated alternatives could be completely changed. 
However, it would not be possible for a dominated alternative to become a 
member of the set of nondominated alternatives simply through the addition 
of one or more alternatives.

The image of the set of nondominated alternatives in the outcome space is 
called the efficient frontier or the pareto optimal set.

Consider Example 3.1 involving 10 job offers and 3 attributes. One can 
easily see that alternative 2 (job offer 2) dominates alternative 6 (job offer 6), 
since job offer 2 does better than job offer 6 on annual salary (60,000  > 
55,000), and days of vacation (15 > 8), and as well as job offer 6 on number 
of miles from home (250 = 250). By considering the dominance relationships 
between each pair of outcomes, one can construct a dominance graph. Such 
a graph consists of nodes and arcs, where the nodes correspond to the out-
comes of the situation, and an arc points from one outcome to another if the 
first outcome dominates the second. The set of nondominated outcomes is 
the collection of those outcomes, which do not have an arc pointed at them 
in the graph.

The dominance graph for Example 3.1 is shown in Figure 3.1. Note that 
the nodes in the dominance diagram correspond to the outcomes associated 
with their respective alternatives. An arc leading from one node to another 
indicates that the alternative associated with the first node dominates the 
alternative associated with the second node. Hence, a node, which has no 
arc leading into it, is associated with an alternative that is nondominated. 
(Hence, for this set of outcomes, there are six nondominated outcomes: 
[70,000; 5; 150], [60,000; 15; 250], [75,000; 7; 1,200], [65,000; 10; 50], [55,000; 20; 
150], and [70,000; 10; 250].) This set of six nondominated outcomes is shown 
in Table 3.3.

(70,000; 5; 150) (60,000; 15; 250) (75,000; 7; 1,200) (65,000; 10; 50)

(68,000; 5; 1,200)

(64,000; 10; 300)(58,000; 8; 50)(70,000; 10; 250)

(55,000; 20; 150) (58,000; 8; 250)

FIGURE 3.1
Dominance graph for outcomes of Example 3.1.
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Note also that outcome (65,000; 10; 50) dominates (58,000; 8; 50) and that 
outcome (58,000; 8; 50) dominates outcome (58,000; 8; 250); hence, as shown in 
Figure 3.1, outcome (65,000; 10; 50) dominates outcome (58,000; 8; 250).

The dominance diagram of Figure 3.1 was formed through a series of pair-
wise comparisons. That is, outcome 1 was compared to, first, outcome 2, then 
outcome 3, and so on through outcome 10; then, outcome 2 was compared 
to outcome 3, then outcome 4, and so on through to outcome 10. This was 
continued until every outcome was compared to every other outcome—a 
total of 9 + 8 + 7 + … + 1 = 45 pairwise comparisons. Each time a compari-
son indicates that one outcome dominates another, an arc is drawn from the 
dominating outcome node to the dominated outcome node. Hence, if one has 
n outcomes, in order to draw a dominance graph, (n − 1) + (n − 2) + … + 1 
pairwise comparisons need to be made.

Also, if one added an alternative corresponding to an outcome of (72,000; 
10; 50), then the set of nondominated outcomes would be reduced to the new 
outcome of (72,000; 10; 50) and a subset from the original set of nondominated 
outcomes: (60,000; 15; 250), (75,000; 7; 1200), and (55,000; 20; 150).  In particular, 
the outcomes of (70,000; 5; 150),  (65,000; 10; 50), and (70,000; 10; 250) would be 
eliminated, and the new set of nondominated  outcomes would be given by: 
(72,000; 10; 50), (60,000; 15; 250), (75,000; 7; 1200), and (55,000; 20; 150). Note that 
in determining a new efficient frontier when a new alternative is added to the 
set of feasible alternatives, one only has to compare this new alternative to 
the previous set of all nondominated alternatives, not all feasible alternatives.

3.4 Scales of Measurement and Preference Structures

In the previous section, we described various concepts for which no informa-
tion about the DM’s preference structure was needed. For example, no infor-
mation about how the DM would trade off a worse value for one objective 
for a better value in another objective was required. In most decision-making 

TABLE 3.3

Nondominated Alternatives and Outcomes 
for Example 3.1

Ai x1(Ai) x2(Ai) x3(Ai) 

A1 70,000 5 150
A2 60,000 15 250
A3 75,000 7 1200
A4 65,000 10 50
A5 55,000 20 150
A8 70,000 10 250
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situations however, the objectives are conflicting in nature. That is, in order to 
obtain a better value in one objective, one must give up something in another 
objective. For example, a more reliable automobile typically costs more than 
a less reliable one, all other things being equal.

In this section, we present concepts associated with preference structures 
and various types of preference information. A preference structure for a 
DM basically defines how he or she will trade off between the objectives, as 
measured by the attribute values in the outcome space. A multiattribute value 
function, to be discussed in Sections 3.6 and 3.7, can be thought of as a math-
ematical representation of a DM’s preference structure. Since attributes are 
measured on measurement scales, we first present a discussion of this concept.

3.4.1 Scales of Measurement

Attributes are measured on scales. Stevens (1946) defined four types of scales: 
nominal, ordinal, interval, and ratio.

Nominal scales are qualitative in nature and are basically only used to clas-
sify objects, such as biological species, languages, and so on. Objects clas-
sified according to this type of scale can be related to each other only by 
being “equal to” or “not equal to” each other. For this reason, this type of 
scale is not used to measure attribute values. As an example, consider the 
classification of countries by continent, with the coded numbers 1, 2, 3,… 
representing Africa, North America, Europe, and so on. Then Libya, Mexico, 
and Germany would have values of 1, 2, and 3, respectively.

Ordinal scales are qualitative in nature and are useful for rank ordering; 
however, a degree of difference between different values on the scale cannot 
be established with an ordinal scale. For example, with the ordinal scale asso-
ciated with the constructed attribute for “quality of neighbors” in Table 2.10, 
one cannot determine that the difference between “poor” and “satisfactory” 
is the same as the difference between “good” and “excellent” even though 
the differences between the coded numbers for each of these ratings are the 
same.

Interval scales are quantitative in nature and allow for a degree of difference 
between items. Examples of the use of this type of scale include temperature 
on the Celsius or Fahrenheit scale. These scales are quantitative in nature, 
since mode, median, and mean can be computed from values measured on 
these scales. However, computation of ratios is not allowed; for example, 
one cannot say that 50°C is twice as hot as 25°C. One can say, however, that 
the difference between 30°C and 20°C is the same as the difference between 
20°C and 10°C.

Ratio scales are also quantitative in nature, but in addition to allowing a 
degree of difference between items as with items measured on an interval 
scale, they allow for meaningful ratios to be formed. For example, one can 
say that a temperature of 200 K is twice as hot as a temperature of 100 K. As 
can be inferred from this discussion, ratio scales possess a meaningful value 
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for zero, which is not arbitrary. Most scientific quantities, such as Kelvin tem-
perature, mass, and length, are measured on this type of scale.

Constructed attributes are typically measured on ordinal scales, while 
natural attributes are measured on interval or ratio scales. The reason why 
we differentiate between the scales here is that questions used to assess util-
ity functions and value functions may be possible to answer with attributes 
defined on interval/ratio scales, but not with those defined on ordinal scales 
(e.g., for constructed attributes). Often however, an approximation is made 
by constructing a utility/value function on an ordinal scale.

3.4.2 Preference Structures

According to Keeney and Raiffa (1993, p. 80), a preference structure is defined 
on an outcome space if, for any two outcomes, the DM can say that he or she 
prefers the first outcome to the second, the second to the first, or is indifferent 
to these outcomes. That is, a preference structure for a particular DM implies 
an “ordering” over the outcome space. More specifically, given any two out-
comes, x(Ai) = (x1(Ai),  x2(Ai),…,xp(Ai)) and x(Aj) = (x1(Aj),x2(Aj),…,xp(Aj)), the 
preference structure allows their “ranking” in one of three ways:

 1. x(Ai) P x(Aj) (the DM prefers outcome x(Ai) to outcome x(Aj))
 2. x(Aj) P x(Ai) (the DM prefers outcome x(Aj) to outcome x(Ai))
 3. x(Aj) I x(Ai) (the DM is indifferent to outcomes x(Ai) and x(Aj))

The existence of a preference structure also implies that there are no intran-
sitivities in the rankings; that is, there are no cases in which the DM would 
rank three outcomes, x(Ai), x(Aj), and x(Ak) (for any three outcomes in the 
consequence space), as

 x(A   x(A  x(A   x(A and x(A   x(Ai j j k k i) ), ) ), ) )P P P

A preference structure is a subjective concept. That is, two different, but ratio-
nal, DMs, could (and probably would) have different preference structures, 
depending on the trade-offs that they would be willing to make among the 
various attributes.

3.4.3 Types of Preference Information

In order to make inferences about a DM’s preference structure, informa-
tion about the DM’s preference structure must be provided. This informa-
tion can be provided in any of several different ways. Different approaches/
algorithms for solving the multiobjective problem require different types of 
preference information from the DM. In some cases, such as with the “score-
card approach” (where the DM or DMs are just given a list of alternatives 
along with the outcomes for each alternative in terms of attribute values, 
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and then are asked to rank the outcomes, or just select the best outcome), the 
information is not explicit. Examples of the types of explicit information that 
one obtain from a DM include the following.

 1. A rank ordering of the objectives/attributes, such as “annual sal-
ary is more important than the number of days of vacation, and the 
number of days of vacation is more important than the number of 
miles from home.”

 2. A specification of how much more important one objective/attribute 
is than another, such as “annual salary is moderately more impor-
tant than the number of days of vacation.”

 3. A specification of how much better one outcome is than another on 
a particular attribute; an example would be, “an annual salary of 
$75,000 is only a little better than an annual salary of $74,000.”

 4. A required threshold for a particular attribute, such as “a job with 
less than 5  days of annual vacation to start will definitely not be 
acceptable.”

 5. Weights (typically normalized so that they sum to 1) given for the 
different attributes; an example would be weight assignments of .6, 
.3, and .1 to annual salary, number of vacation days, and miles from 
home, respectively.

 6. A rank ordering of specific outcomes.
 7. The marginal rates of substitution of one attribute for another; an 

example would be the amount of annual salary that the DM would 
give up for an extra day of vacation. (Note that this amount would 
likely depend on the reference point; for example, a DM would likely 
give up more salary for an extra day of vacation from the reference 
point of [$100,000 of annual salary and 20 days of vacation] than he 
or she would from a reference point of [$50,000 of annual salary and 
20 days of vacation]).

Of these seven types of preference information, the most exacting to obtain 
from a DM is the seventh one, marginal rates of substitution; however, this 
type of information provides the most exact representation of the DM’s pref-
erence structure.

3.5 Lexicographic Ordering

One approach for ranking multiobjective outcomes, which requires very lit-
tle information from the DM, is lexicographic ordering. This approach is analo-
gous to the ordering that one finds in the dictionary where all words that 
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start with the letter “a” come before all words that start with the letter “b” 
and all words that start with the letters “aa” come before all words that start 
with the letters “ab,” and so on.

With lexicographic ordering therefore, the DM will first rank the attributes 
in their order of importance. Then any outcome with a highest score on the 
first-ranked attribute will be in the set of the highest ranked outcomes, regard-
less of their scores on the other attributes. The second-ranked attribute’s score 
is only considered if there is a tie in the first-ranked attribute’s score, and so on.

In Example 3.1, suppose that the attributes are ordered in the following 
way, from most to least importance: annual salary (X1), annual number of 
days of vacation (X2), and number of miles from hometown (X3). Then, in 
terms of lexicographic ordering, the top three job offers in this order would 
be: Offer 3 (75,000; 7; 1,200), Offer 8 (70,000; 10; 250), and Offer 1 (70,000; 5; 150). 
Note that since there is a tie in annual salary between Offer 8 and Offer 
1 at $70,000, we move to the second-ranked attribute (annual number of days 
of vacation) to break the tie. See Table 3.4 for a complete ranking of the out-
comes associated with Example 3.1 using lexicographic ordering with the 
ranking of the attributes, in decreasing order of importance, as X1, X2, and X3.

Note that with lexicographic ordering, a dominated outcome could be 
ranked higher than a nondominated outcome. For example, Job Offer 5, which 
represents a nondominated outcome, is ranked lower than Job Offer 10.

Lexicographic ordering is a relatively simple approach to the ranking of 
multiobjective outcomes, but it rarely represents the way that a DM would 
trade off among the various objectives of a problem. For example, for the job 
offer situation, an offer with an annual salary of $70,001 and 2 days of vacation 
would be ranked above an offer with an annual salary of $70,000 with 3 weeks 
of vacation—an unlikely situation. Bouyssou et al. (2010, p. 191) note that lexi-
cographic ordering should be used only in two cases: (1) when one attribute 
is “infinitely” more important than the other attributes and (2) as a screening 
process when the cost of more intricate analysis is prohibitive.

TABLE 3.4

Ranking of Job Offers via Lexicographic Ordering

Alternative Ranking Outcome 

Offer 3 1 (75,000; 7; 1,200)
Offer 8 2 (70,000; 10; 250)
Offer 1 3 (70,000; 5; 150)
Offer 7 4 (68,000; 5; 1,200)
Offer 4 5 (65,000; 10; 50)
Offer 10 6 (64,000; 10; 300)
Offer 2 7 (60,000; 15; 250)
Offer 9 8 (58,000; 8; 50)
Offer 6 9 (58,000; 8; 250)
Offer 5 10 (55,000; 20; 150)
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3.6 MAV Functions

3.6.1 Definition and Basic Concepts

Definition 3.1: A function, denoted as v, which maps from the outcome 
space (X1, X2,…, Xp) into a closed, continuous, interval of the real number line 
(usually [0,1]) is a multiattribute value (MAV) function (sometimes just called 
a value function) representing a particular DM’s preference structure pro-
vided that

 1. x(Ai) I x(Aj) if and only if v(x(Ai)) = v(x(Aj))
  and
 2. x(Ai) P x(Aj) if and only if v(x(Ai)) > v(x(Aj))

In words, this means that the DM will be indifferent to two outcomes, x(Ai) 
and x(Aj), if and only if their value function values are equal, and the DM 
will prefer outcome x(Ai) to outcome x(Aj) if and only if the value function 
value for x(Ai) is greater than the value function value for x(Aj).

Note that the definition given in the previous paragraph might be con-
sidered as an “operational definition” for a multiattribute value function. In 
many actual situations involving evaluation with multiple objectives, a DM 
(or DMs) will just assign a set of (normalized) weights to the various objec-
tives, one weight to each objective, in order to form what is thought to be 
an MAV function. For Example 3.1, a DM might say that salary (X1) is twice 
as important as both number of days of vacation (X2) and number of miles 
from hometown (X3). Then linear “individual attribute” functions might be 
formed by specifying the following two points on a graph for each function 
of the respective attribute:
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and the multiattribute value function would be given as

 v (x x x 5 f (x 25 f (x 25 f x1 2 3 1 1 2 2 3 3, , ) . ) . ) . ( ).= + +

Note that the slope for the third individual attribute value function is nega-
tive, owing to the fact that the DM would like to minimize this attribute value. 
Typically an individual attribute value function for an attribute that is to be minimized 
will have a negative slope; this is as opposed to having a negative coefficient.
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Seldom will a function formed in the way described in the previous para-
graph be an accurate representation of a DM’s preference structure. The main 
difficulty is the meaning of statements like “attribute 1 is twice as impor-
tant as attribute 2,” from which one might infer that its weight in a function 
like the one earlier should be twice the weight associated with the second 
attribute. Many analysts contend that unless questions corresponding to the 
amount that the DM would give up in terms of one attribute in order to 
improve another attribute value are asked, one will typically not arrive at the 
most accurate value function for the DM.

Some of the applications from the literature involving the assessment 
and/or use of an MAV function include the following:

 1. An MAV function over attributes involving cost and reliability for 
generation planning for electric utilities (Moskowitz et al., 1978)

 2. An MAV function over attributes related to command and control, 
operational capability, and efficient use of resources for investigat-
ing alternatives for the regional organization of the U.S. Army’s 
Installation Management Agency (Trainor et al., 2007)

 3. An MAV function to evaluate alternatives for improving electric sys-
tem reliability in British Columbia (Keeney et al., 1995)

 4. An MAV function to investigate alternatives relative to the develop-
ment of Europe’s air traffic management system (Grushka-Cockayne 
and De Reyck, 2009)

3.6.2 Strategic Equivalence of MAV Functions

In using an MAV function, we are basically interested in how various out-
comes (and their corresponding alternatives) are ranked. As it turns out, 
many different MAV functions can be used to represent a specific preference 
structure of a DM—that is, many alternative MAV functions will give the 
same ordering of outcomes in the outcome space. This gives rise to the con-
cept of strategic equivalence.

Definition 3.2: A set of two or more MAV functions giving the same prefer-
ence ordering of outcomes are said to be strategically equivalent.

As an example, consider a problem with two attributes, denoted as

X1, with a minimum possible value of 0, and a maximum possible value 
of 100

X2, with a minimum possible value of 0, and a maximum possible value 
of 100



85Making Decisions under Conditions of Certainty

Two MAV functions, v1 and v2, which would be strategically equivalent for 
this decision situation, would be

 v (x x 2x 3x and v (x x 4x 6x1 1 2 1 2 2 1 2 1 2, ) , ) ,= + = +

since for any (x1, x2) and (x x1 2¢ ¢, ) (where x1, x2, ¢x1, and ¢x2 are all within the 
range of 0–100),
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The concept of strategic equivalence implies that a specific preference struc-
ture can be represented by many different valid MAV functions.

3.6.3 Indifference Curves

Given a particular outcome, x(Ai), an indifference curve is the set of all points 
in the outcome space such that the DM is indifferent to that outcome x(Ai) 
and all other outcomes on the curve. Note that if the number of attributes 
(i.e., the dimension of the outcome space) is greater than or equal to three, 
then the indifference “curve” is actually a surface or a hyperplane.

An indifference curve for a DM is given by the equation obtained by set-
ting a value function for that DM equal to a constant, since every outcome 
point, which satisfies that equation, gives the same value function value, and 
therefore is equally preferable to the DM.

3.6.4 Marginal Rates of Substitution

The marginal rate of substitution of one attribute, say Xi, for another attribute, 
Xj, at a particular point in the outcome space (xi, xj) is roughly the amount of 
Xi that the DM is willing to give up for an extra unit of Xj at the point (xi, xj). 
The reason why the word roughly is used is that the marginal rate of substitu-
tion of one attribute for another typically changes depending upon the point 
in the outcome space at which it is measured. Therefore, a more exact defini-
tion is given in the following:

Definition 3.3: The marginal rate of substitution of Xi for Xj at a particular point in 
the outcome space (x x )i j

0 0,  is given by dx /dx x ,xi j i j|( )0 0 , the derivative of xi with 
respect to xj evaluated at the point ( , )x xi j

0 0 , where the derivative is derived 
from the indifference curve at ( , )x  xi j

0 0 .



86 Multiple Criteria Decision Analysis for Industrial Engineering

In fact, any time the marginal rate of substitution of any attribute for any 
other attribute does not depend on the reference point of the outcome space; 
then a linear (scaled) value function will be appropriate for this DM, as 
shown in (3.7):
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Let’s consider only the first two attributes from Example 3.1, X1 = annual 
salary and X2 = days of vacation; suppose that we want to determine the 
marginal rate of substitution of X1 for X2 at the point x1 = $80,000 and 
x2 = 10 days of vacation. Roughly, this would be the amount that the student 
would pay out of his or her $80,000 salary for one more day of vacation. 
(At this point, let’s not get into all of the intricacies of income taxes, etc.) 
Let’s suppose that the student would give up $600 for this extra day of vaca-
tion; hence, “roughly,” the marginal rate of substitution of annual salary 
for days of vacation at the point (80,000; 10) is $600. More specifically, the 
student is indifferent to the following outcomes: (80,000; 10) and (79,400; 11); 
that is, for this DM:

 ( , ; ) ( , ; ).8  1   79 4  110 000 0 00I  (3.11)

As noted earlier, the marginal rate of substitution typically depends upon 
the point in the outcome space at which the substitution rate is determined. 
Let’s consider the determination of the marginal rate of substitution at the 
point (80,000; 20). At this point, one might expect that the student would 
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give up less in terms of salary for an extra day of vacation than he or she 
would at the point (80,000; 10), since he or she already has so many days 
of vacation. In particular, suppose that he or she would give up only $400 
for an extra day of vacation; hence, the marginal rate of substitution of X1 
for X2 at the point (80,000; 20) is roughly 400, and the DM is indifferent 
to (80,000; 20) and (79,600; 21). The summary results associated with these 
trade-offs are shown in Table 3.5.

3.6.5 Independence Conditions and the Form of the MAV Function

Given certain reasonable conditions with respect to the preference structure 
of the DM, the analyst can assume that an appropriate MAV function for that 
DM will take a specific functional form.

3.6.5.1 The Case of Two Attributes

Let’s first consider the case of two attributes: X1 and X2. As shown by Keeney 
and Raiffa (1993, p. 85), if the marginal rate of substitution of X2 for X1 does 
not depend on the reference point, then a valid MAV function is linear and 
in fact can be given by

 v(x x x cx1 2 1 2, ) ,= +  (3.12)

where c is a constant given by the negative of the marginal rate of substitu-
tion of X1 for X2 (at any point in the outcome space). Note that any multiple 
of this function would also be a valid MAV function, since such a function 
would be strategically equivalent to the function given in (3.12).

Example 3.2: Illustration of a Two-Attribute Value Function, 
Marginal Rates of Substitution, and Indifference Curves

Suppose that a DM had a value function for the first two attributes of 
Example 3.1: annual salary (X1) and days of vacation (X2) given by

 v(x x 7v (x 3v x1 2 1 1 2 2, ) . ) . ( ),= +  (3.13)

TABLE 3.5

(Rough) Marginal Rates of Substitution of Annual Salary for Days of 
Vacation at Two Different Outcomes

Outcome Rough MRS of X1 for X2 at Outcome Implies 

(80,000; 10) $600 (80,000; 10) I (79,400; 11)
(80,000; 20) $400 (80,000; 20) I (79,600; 21)
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where v1(x1) and v2(x2) are the individual attribute value functions for 
X1 and X2, respectively, and are given by

 v (x 5x 2 75 v (x 666x 3333.1 1 1 2 2 2) . . , ) . .= - = -0000 0

(Note that these two individual attribute functions are linear with 
v x( )i i

b = 1 and v x( )i i
w = 0 for i = 1 and 2.)

Suppose that we find the value function value associated with the 
fourth offer for X1 and X2:

 

v(65 1 7( 5(65 2 75 3( 666(1 3333, ; ) . . , ) . ) . . ) . )

.

000 0 0000 000 0 0= - + -

= 335 1 45+ =. . .

Now, setting the value function equal to .45 will give us an equation, 
which relates X1 and X2 in terms of the DM’s preferences; solving this 
equation for x2 as a function of x1 will allow us to draw a graph that 
would represent the indifference curve associated with the outcome for 
the fourth job offer:
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Consider (3.14), which represents the indifference curve (given by x1 as a 
function of x2) associated with the value function of (3.13). The derivative 
of x1 with respect to x2 is given by

 

dx
dx

57 8571

2
= - 0.

so that the marginal rate of substitution of x1 for x2 for a DM with this 
particular value function is given by

 
MRS of x  for x

dx
dx

( 57 857 57 857.1 2
1

2
= = - - =

–
. ) .0 0

Note that this marginal rate of substitution of x1 for x2 for this DM 
is not a function of x1 or of x2; in other words, the amount of salary 
that this DM would give up for an extra unit (day) of vacation is not 
a function of the current point in the outcome space. One could eas-
ily derive that the marginal rate of substitution of x2 for x1 is also a 
constant.
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Substituting for the individual attribute functions, one can rewrite 
(3.13) as

 

v(x x 7( 5x  2 75 3( 666x 3333

35x 1

1 2 1 2, ) . . ) . . . )

. .

= - + -

= +

0000 0

0000 01 9999x 2 24992 - . .0

Dropping the constant term and multiplying the result by 28571.4 
(in order to give x1 a coefficient of 1), one obtains a strategically equiva-
lent MAV function, vse, as shown in (3.15):

 v x  x x 57 857xse 1 2 1 2( , ) . .= + 0  (3.15)

This illustrates the fact that an appropriate value function for this situa-
tion is one with a coefficient of 1 for X1 and a coefficient of negative of the 
marginal rate of substitution of X1 for X2.

Also as shown by Keeney and Raiffa (1993), if the marginal rate of sub-
stitution of X1 for X2 at ( , )x  x1

0
2
0  depends on x2

0 but not on x1
0, then a valid 

MAV function would be given by

 v(x x x c v x1 2 1 2 2 2, ) ( ),= +  (3.16)

where v2(x2) is an individual attribute value function, not necessarily lin-
ear, for X2.

Now, it is usually the case that the marginal rates of substitution are 
dependent on both the value of X1 and the value of X2 at (x x1

0
2
0, ); however, 

transformation of scales for (x1, x2), to say (y1, y2) would allow the mar-
ginal rates of substitution to be independent of the values for y1 and y2. 
In this case, a valid MAV function would have an additive (and scaled) 
form, as shown in (3.17).

 v(x x w v (x w v x1 2 1 1 1 2 2 2, ) ) ( ),= +  (3.17)

where

w1 and w2 are constants such that 0 < w1 < 1, 0 < w2 < 1 
and w w 1.1 2+ =  (3.18)

Note that the additive form of (3.17) is not the same as a linear form of (3.12) 
since the individual attribute functions, vi(xi) for i = 1, 2, can be nonlinear. 
The condition that allows an additive form of (3.17) and (3.18) is termed the 
corresponding trade-offs condition (Keeney and Raiffa, 1993, pp. 90–91) and 
is shown to hold through a series of questions posed to the DM. Consider 
again Example 3.1, with only the first two attributes being employed in 
the formation of the MAV function.

This shows that the corresponding trade-offs condition involves ask-
ing the DM questions about the trade-offs that he or she is willing to 
make. More specifically, the DM would be asked to specify four indif-
ferences, as illustrated by Example 3.3. This example corresponds to 
Example 3.1, where we are attempting to assess an MAV function over 
the first two attributes: X1 and X2.
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Example 3.3: Illustration of Questions Asked to Show 
That the Corresponding Trade-Offs Condition Holds

The analyst selects a “reasonable point” in the outcome space, say 
(60,000; 10) (i.e., an annual salary of $60,000 with 10 days of vacation); 
then the analyst would ask the DM the amount of salary he or she would 
be willing to give up for an extra 2 days of vacation. In other words, the 
DM would be asked to give the value x1 for the attribute X1 such that he 
or she would be indifferent to the outcomes of (60,000; 10) and (x1, 12).

Suppose that the DM gives a value of x1 = $59,200. This means that the 
DM is indifferent to the outcomes of (60,000; 10) and (59,200; 12), or

 ( , ; ) ( , ; ).6  1   59 2  120 000 0 00I  (3.19)

Then the analyst would choose a different value in the X2 outcome space, 
say x2 = 16, and ask the DM how much more in terms of vacation that 
he or she would have to receive in order to give up $800 in salary. (Note 
that this is the same amount given up for the first indifference.) Suppose 
that the DM indicates that he or she would need 1.5 more days of vaca-
tion at this outcome; this would mean that the DM is indifferent to the 
outcomes of (60,000; 16) and (59,200; 17.5), or

 ( , ; , ; . ).6  16)  (59 2  17 50 000 00I  (3.20)

(Note that this type of response would make intuitive sense as the DM 
would be expected to desire less additional vacation at an outcome 
where he or she already has 16 days than from the outcome associated 
with 10 days of vacation for the same amount of salary given up.)

Now, the analyst would choose a different value for salary: say $70,000, 
but the same value for days of vacation as in the first outcome shown in 
(3.19): 10 days. Then the DM would be asked the amount that he or she 
would be willing to give up in terms of annual salary in order to increase 
the number of days of vacation by 2; that is, the DM would be asked the 
value of x1 such that he or she would be indifferent to the outcomes of 
(70,000; 10) and (x1, 12). Suppose that the DM answers that the value of x1 
should be $69,000; that is, one can say that for this DM,

 ( , ; ) , ; ).7  1   (69  120 000 0 000I  (3.21)

Note again that this type of response, as was the case for the indifference 
shown for (3.20), makes intuitive sense when compared to the indiffer-
ence of (3.19); that is, the DM is willing to give up more of his or her sal-
ary to go from 10 days of vacation to 12 days of vacation when he or she 
already has $70,000 than when he or she only has $60,000.

Finally, the analyst asks the DM to consider an outcome of (70,000; 16) 
the outcome associated with the X1 value of the first outcome of (3.21) 
and the X2 value associated with the first outcome of (3.20); then the 
DM is asked how much salary he or she would be willing to give up 
in order to increase his or her number of days of vacation by 1.5 days 
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(i.e., the same amount of increase shown in the indifference of (3.20)). 
If the DM answers that he or she is willing to give up $1000, that is,

 ( , ; ) ; . ),7  16   (69,  17 50 000 000I  (3.22)

then this is evidence that the corresponding trade-offs condition holds.
Note that for this example, four sets of indifferences are established 

in the questioning: (60,000; 10) I (59,200; 12), (60,000; 16) I (59,200; 17.5), 
(70,000; 10) I (69,000; 12), and (70,000; 16) I (69,000; 17.5) for this DM. 
Consider the first indifference, (60,000; 10) I (59,200; 12). The analyst 
selected the outcome (60,000; 10) and the attribute value of 12 days of 
vacation, and the DM determined the value of $59,200 such that he or she 
would be indifferent to these two outcomes. For the next pair of indiffer-
ent outcomes, the $60,000 and $59,200 were set from the previous indif-
ference, the value of 16 days of vacation was set by the analyst, and the 
17.5  days of vacation was determined by the DM. Continuing, and in 
summary, for each of the four sets of indifferences, the attribute values 
are determined as follows:

 1. (60,000; 10) I (59,200; 12):
 a. $60,000 → set arbitrarily by the analyst
 b. 10 days → set arbitrarily by the analyst
 c. 12 days → set arbitrarily by the analyst
 d. $59,200 → determined by the DM so that indifference is 

satisfied
 2. (60,000; 16) I (59,200; 17.5):
 a. $60,000 → set from the previous indifference point
 b. 16 days → set arbitrarily by the analyst
 c. 17.5 days → determined by the DM so that indifference is 

satisfied
 d. $59,200 → set from the previous indifference point
 3. (70,000; 10) I (69,000; 12):
 a. $70,000 → set arbitrarily by the analyst
 b. 10 days → set from the previous indifference point
 c. $69,000 → determined by the DM so that indifference is 

satisfied
 d. 12 days → set from the previous indifference point
 4. (70,000; 16) I (69,000; 17.5):
 a. $70,000 → set from the previous indifference point
 b. 16 days → set from the previous indifference point
 c. $69,000 → determined by the DM so that indifference is 

satisfied
 d. 17.5 days → set from the previous indifference point

Note that in determining an attribute value so that he or she is indiffer-
ent to two outcomes, the DM should hone in on the value. The analyst 
can aid the DM in this regard by asking the DM to rank order a series of 
pairs of outcomes. For example, in order to determine the indifference of 
(3.19), the analyst might ask the DM:
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Which outcome do you prefer, (60,000; 10) or (58,000; 12) (i.e., do you prefer 
$60,000 in salary and 10 days of vacation, or $58,000 and 12 days of vacation?)?

In this case, the DM could be expected to answer $60,000 in salary and 
10 days of vacation (i.e., the first outcome is preferred over the second). 
Now the analyst knows that an annual salary greater than $58,000 is 
needed in order to attain indifference on the part of the DM. Hence, the 
next question asked by the analyst might be:

Which outcome do you prefer, (60,000; 10) or (59,500; 12) (i.e., do you prefer 
$60,000 in salary and 10 days of vacation, or $59,500 and 12 days of vacation?)?

In this case, the DM could be expected to answer $59,500 in salary 
and 12 days of vacation (i.e., the second outcome is preferred over the 
first). Now the analyst knows that an annual salary of less than $59,500 
is needed in order to attain indifference. Hence, the next question asked 
by the analyst might be:

Which outcome do you prefer, (60,000; 10) or (59,200; 12) (i.e, do you prefer 
$60,000 in salary and 10 days of vacation, or $59,200 and 12 days of vacation?)?

In this case, the DM could be expected to answer that he or she is indif-
ferent to the two outcomes, as seen in the example.

One reason for asking a series of questions in which the DM provides 
rank orderings on two outcomes, as opposed to just asking the DM to pro-
vide an attribute value so that indifference exists, is that the rank ordering 
type of question is easier for the DM to answer. Providing preference infor-
mation of the rank ordering type is almost always simpler for the DM than pro-
viding an amount for an attribute so that he or she is indifferent to two outcomes.

3.6.5.2 The Case of Three or More Attributes

Suppose that we have a situation with p attributes where p ≥ 3: X = (X1, X2,…, 
Xp), as in the general case. A subset of attributes Y (with at least two attributes) 
contained in X is preferentially independent (PI) of its complement, denoted as 
Ycomp, if the preference structure over Y does not depend on the values of the 
attributes in Ycomp. If every subset of X with at least two attributes is PI of its 
complement in X, then X has the property of mutual preferential independence 
(MPI). Finally, if X = (X1, X2,…, Xp) has MPI, then an appropriate MAV func-
tion for the DM will be additive, as shown in the following equations:

 
v(x ,x , x ) =1 2 p…, ( ),w v xi i i

i

p

=
å

1
 (3.23)

where

 v (x 1 for i 1 pi i
b) , ,= = ¼  (3.24)

 v (x for i 1 pi i
w ) , ,= = ¼0  (3.25)

 0 < < = ¼w 1 for i 1 pi , ,  (3.26)
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and

 
wi

i

=
=

å 1
1

p

 (3.27)

As an example, in order to show MPI for a case with three attributes: X1, X2, 
and X3, one must show that the following conditions hold:

 1. (X1, X2) is PI of X3

 2. (X1, X3) is PI of X2

 3. (X2, X3) is PI of X1

Obviously, as the number of attributes in the set X increases, the number of 
preferential independence conditions required to show mutual preferential 
independence increases tremendously.

Consider the situation involving Example 3.1 and suppose that we want 
to show that (X1, X2) is preferentially independent of X3. In other words, we 
want to show that the preference structure over (X1, X2) does not depend 
upon the value for X3. There is no way to do this absolutely. Instead, we obtain 
evidence (from the DM’s answers to questions concerning his or her prefer-
ence structure) that preferential independence holds. We would ask the DM 
questions about how he or she would rank two outcomes in the (X1, X2) space, 
in which we think the preferences would be “close” for the DM, given a par-
ticular (extreme) value for X3. Then, we would ask the DM to consider a quite 
different value for X3, and ask him or her if his or her preference ordering of 
the outcomes previously ranked in the (X1, X2) space would change.

For example, an analyst might ask the DM if given a particular job posi-
tion for which X3 = 50 (i.e., the job is 50 miles from his or her hometown), 
how would he or she rank the following outcomes given in terms of attri-
bute values for X1 (salary) and X2 (days of vacation). The idea is that these 
two outcomes would be very close in terms of preference, thereby allowing 
for a possible switch in the rank orderings if the value of X3, miles from 
hometown, changes:

 ( 7  1  days  and ( 72  7 days$ , ; ) $ , ; ).0 000 0 000

Suppose that the DM answered that he or she would prefer the first out-
come to the second, given that the job was 50 miles from his or her home-
town; that is, for this DM,

 ($ , ; ; ($ , ; ; ).7  1  days  5  miles)  72  7 days  5  miles0 000 0 0 000 0P
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Now the analyst would ask the DM if his or her rankings would change 
if the distance from hometown were increased to a different number, say 
800 miles; that is, for this DM, would the following ranking hold?

 $ , ; ; $ , ; ;7  1  days  8  miles 72  7 days  8  miles0 000 0 00 000 00( ) ( )P ??

If the DM’s preference ordering does not shift with the change in value for 
X3, then this is evidence that (X1, X2) is preferentially independent of X3. The 
analyst may want to ask additional questions of this type in order to gain 
additional evidence that (X1, X2) is preferentially independent of X3.

3.7 Assessment of an MAV Function

Assessment of an MAV function means defining the function for a specific DM. 
Remember that each DM will have his or her own function, depending upon the 
trade-offs he or she is willing to make between the various pairs of attributes.

Typically, the assessment process involves question and answer sessions 
between the analyst (or analysts) and a DM. Although technically the func-
tion is supposed to represent the preference structure of a single DM, one 
could conduct the process with several DMs who would arrive at a consen-
sus with respect to their answers; in this way, one could develop an MAV 
function for an organization.

We will assume in this section that the DM’s MAV function has an addi-
tive, scaled, form, as shown in the following equations:

 
v(x x x w v (x )1 2 p i

i 1

p

i i, , , ) ,¼ =
=

å  (3.28)
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w w and 0 v x  for i 1, p.i i

i

i i> = £ £ =
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1
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p

…  (3.29)

In (3.28) and (3.29), the functions v1(x1), v2(x2),… are called individual attribute 
value functions. The constants: w1, w2,… are called scaling constants. Again, as 
in the two-attribute case, note that (3.28) and (3.29) do not represent a lin-
ear MAV function, since the individual attribute value functions can be, and 
probably will be, nonlinear in nature.

Of course, in order to assume that an additive function as shown in (3.28) 
and (3.29) is appropriate, one is also assuming that either the corresponding 
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trade-offs condition holds for p = 2, or that mutual preferential independence 
holds (for p ≥ 3).

The procedure involves several general steps. But prior to these steps, the 
analyst will explain the process and its purpose to the DM. In most cases, one 
would expect that the analyst and the DM would have had extensive interac-
tion during the problem structuring aspect of the analysis, using some of the 
techniques presented in Chapter 2. Following this initial, relatively informal 
step, the following activities would occur:

 1. The best and worst possible values for each attribute would be 
determined.

 2. Questions would be asked to the DM to determine whether the DM’s 
MAV function has an additive form, as shown earlier.

 3. The individual attribute value functions, v1, v2,…, vp, would be 
determined.

 4. The scaling constants, w1, w2,…, wp, would be determined.

With respect to the first step, as long as the best and worst values chosen 
bound the actual best and worst values over all of the alternatives, the result-
ing function will be useful for ranking the alternatives. In fact, one would 
probably choose values for best and worst that are at least slightly better and 
slightly worse, respectively, than the actual best and worst values in order 
to allow for the consideration of additional alternatives and corresponding 
outcomes.

Consider Example 3.1. The best and worst values over all offers for X1 
(annual salary in dollars), X2 (vacation days), and X3 (miles from hometown) 
are, respectively: $75,000 and $55,000, 20 and 5, and 50 and 1200. As men-
tioned earlier, one might choose best and worst values outside of these 
bounds; however, for this example, we will just use the best and worst values 
as derived from Table 3.2. These values are shown in Table 3.6. As mentioned 
earlier, we denote the best and worst values for attribute Xj as xj

b and xj
w, 

respectively.
Note that since we are using a scaled MAV function, we already know two 

of the points on each of the individual attribute functions:

 v (75 1  v (55  v (2 1  v (5  v (5 1,1 1 2 2 3, ) , , ) , ) , ) , )000 000 0 0 0 0= = = = =

TABLE 3.6

Best and Worst Values for X1, X2, and X3 of Example 3.1

Attribute Best Value for Xj, xj
b Worst Value for Xj, xj

w 

X1, annual salary in dollars 75,000 55,000
X2, number of vacation days 20 5
X3, miles from hometown 50 1,200
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and

 v (1 23 , ) .00 0=

Remember that, as noted earlier, the individual attribute value function for 
X3 (an attribute to be minimized) will have a negative slope as opposed to 
a negative scaling constant. The idea here is that we want to keep all of the 
scaling constants positive.

As noted earlier, we are skipping the second step of the process, and just 
assuming that the DM’s preference structure satisfies the condition required 
for an additive MAV function.

The next step is to determine the individual attribute value functions: 
v1(x1), v2(x2), and v3(x3). The basic idea associated with the assessment of an 
individual attribute value function is to determine points on the function and 
then interpolate between those points. As noted earlier, since the individual 
attribute value functions are scaled, we already have the two extreme points 
on the graphs.

There are several techniques available for determining various points on 
the individual vi. One of the most popular is the midvalue splitting technique, 
as described in Keeney and Raiffa (1993, pp. 94–96).

3.7.1  Midvalue Splitting Technique for Determining 
the Individual Attribute Value Functions

Suppose that we want to determine v1(x1). In order to apply the midvalue 
splitting technique, we need two definitions, as given in Keeney and Raiffa 
(1993, p. 94).

Definition 3.4: Differentially value equivalent—The pair (x x1
a

1
b, ) is said to 

be differentially value equivalent to the pair (x x1
c

1
d, ), where x x x x1

a
1
b

1
c

1
d< < < , if 

whenever the DM is willing to go from x1
b to x1

a for a given increase in X2, the 
DM would be willing to go from x1

d to x1
c for the same increase in X2.

The definition for differentially value equivalent can be used to define what 
is called a midvalue point for a particular interval of the attribute.

Definition 3.5: Midvalue point—For any interval [x x1
a

1
b, ] of X1, its midvalue 

point x1
c is such that the pairs [x x1

a
1
c, ] and [x x1

c
1
b, ] are differentially value 

equivalent.

Let’s assess the individual attribute value function for X1 using the midvalue 
splitting technique. This is accomplished by first finding the midvalue point, 
x1

.5, for the interval [ ],x  x1
0

1
1  of X1. By definition, this midvalue point is the one 

that gives a functional value of .5 for the individual attribute value function 
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v1. The next steps would be to find the midvalue points for the intervals of 
[ , ].x  x1

5
1
1  and [ , ].x x1

0
1
5 . At this point, we would have five points on the individ-

ual attribute value function curve: ( , ), , . ), , . ), , . ). . .x  (x 25  (x  5  (x 751
0

1
25

1
5

1
750 , and 

(x , )1
1 1 . We could continue finding midvalue points, say x.

1
125 and x.

1
375, or we 

could stop with just the five initial points.
Finding midvalue points for a particular individual attribute value func-

tion involves setting up a hypothetical scenario in which all of the attributes 
except two are set at reasonable values, and then the DM is questioned about 
trade-offs over the two attributes that are not set at specific values.

In the situation involving Example 3.1, X3 would be set at a reasonable 
value, say 200 miles. Now, the analyst would make an “educated guess” at 
the value for x.

1
5, say $65,000. (Note that this would be the midvalue point if 

v1 were linear, since $65,000 is halfway in between the minimum [$55,000] 
and maximum [$75,000] values for annual salary.) Then the analyst chooses a 
good value for vacation days, say 18 days, and asks the DM to give the value 
¢x2 such that the DM is indifferent to (55,000; 18) and (65,000; ¢x2). Suppose that 

the DM determines that ¢ =x2 12, that is, the DM is indifferent to (55,000; 18) 
and (65,000; 12).

Now, the analyst asks the DM to rank the following two outcomes: 
(65,000;  18) and (75,000; 12). Suppose the DM says that he or she prefers 
(75,000; 12) to (65,000; 18); that is, in order for the DM to be indifferent to 
(65,000; 18) and (75,000, x2”), x2” must be less than 12. That is, the DM is willing 
to give up more in terms of vacation days to go from 65,000 to 75,000 in salary, than 
he or she is to go from 55,000 to 65,000, and therefore, 65,000 is not the midvalue 
point. The midvalue point must be larger than 65,000.

In summary, we have determined that for this DM, (55,000; 18) I (65,000; 
12), and (75,000;12) P (65,000; 18); therefore, x1

5 65 000. ,> .
Suppose that the analyst now guesses that 68,000 is the midvalue point 

for (55,000; 75,000) for the X1 attribute. Then the analyst chooses a good 
value for vacation days, say 18, and asks the DM to give the value ¢X2 such 
that the DM is indifferent to (55,000; 18) and (68,000; ¢x2). Suppose that the 
DM determines that ¢ =x2 10, that is, the DM is indifferent to (55,000; 18) and 
(68,000; 10).

Now, the analyst asks the DM to rank the following two outcomes: (68,000; 
18) and (75,000; 10). Suppose the DM says that he or she is indifferent to 
(68,000; 18) and (75,000; 10). Therefore, the DM is willing to give up the same 
amount in vacation days to go from 50,000 to 68,000 in annual salary as he or 
she is to go from 68,000 to 75,000 in annual salary, and 68,000 is the midvalue 
point for [55,000; 75,000]; that is, v1(68,000) =.5. The DM is indifferent to the 
following pairs of outcomes:

 1. (55,000; 18) and (68,000; 10)
 2. (68,000; 18) and (75,000; 10)
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From an algebraic perspective, let’s see why v1(68,000) = .5. We know that 
since the DM is indifferent to (55,000; 18) and (68,000; 10), and also between 
(68,000; 18) and (75,000; 10), both when X3 = 200. Therefore, the value func-
tion values for these two pairs of outcomes must be equal, as shown in the 
following equations:

 v(55 18  2   v(68 1  2, ; ; ) , ; ; )000 00 000 0 00=  (3.30)

and

 v(68 18  2   v(75 1  2, ; ; ) , ; ; ),000 00 000 0 00=  (3.31)

or, since we have an additive, scaled MAV function, we therefore have

 

w v (55 w v (18 w v (2  

w v (68 w v (1 w v

1 1 2 2 3 3

1 1 2 2 3

, ) ) )

, ) )

000 00

000 0

+ +

= + + 33 2( ),00  (3.32)

 

w v (68 w v (18 w v (2  

w v (75 w v (1 w v

1 1 2 2 3 3

1 1 2 2 3

, ) ) )

, ) )

000 00

000 0

+ +

= + + 33 2( ).00  (3.33)

Since the MAV function is scaled, we can replace v1(55,000) and v1(75,000) 
with 0 and 1, respectively, and therefore have the equivalent system of equa-
tions given by

 w v (18 w v (2 w v (68 w v (1 w v 22 2 3 3 1 1 2 2 3 3) ) , ) ) ( )+ = + +00 000 0 00  (3.34)

and

 w v (68 w v (18 w v (2 w w v (1 w v 21 1 2 2 3 3 1 2 2 3 3, ) ) ) ) ( ).000 00 0 00+ + = + +  (3.35)

Now, subtracting (3.34) from (3.35), we obtain

 w v (68 w 1 v 681 1 1 1, ) ( ( , )),000 000= -  (3.36)

or dividing both sides by w1, we obtain

 v (68 1 v 681 1, ) ( , )000 000= -  (3.37)

or

 v (68 51 , ) . .000 =  (3.38)
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As mentioned earlier, we can obtain other midvalue points for the X1 attri-
bute in order to find several points on the v1 graph; for example, the midvalue 
point for x1

0 and x1
5. , denoted as x1

25. , and the midvalue point for x1
5.  and x1

1, 
denoted as x1

75. . Note that we might want to form consistency checks in order to 
assure, for example, that x1

5.  is the midvalue point for (x x1
25

1
75. ., ).

Following the assessment of v1, the analyst would want to assess the indi-
vidual attribute value functions for v2 and v3, again using the midvalue 
splitting technique. Let’s suppose that the points on the graphs have been 
assessed and are shown in Table 3.7 and that their corresponding graphs are 
shown in Figure 3.2.

Interpolation (either linear or something more complex) can be done to 
find other points on the graph.

3.7.2  Determining the Scaling Constants (Weights) for 
the Individual Attribute Value Functions

The next step in the assessment process involves the determination of the 
scaling constants: w1, w2,… Keep in mind that since we are using a scaled 
value function, each of these scaling constants must have respective val-
ues of between 0 and 1, and they must sum to a value of 1. There are vari-
ous approaches for determining these weights, and the initial procedure 
described here follows Keeney and Raiffa (1993, pp. 121–123).

Just as in the assessment of the individual attribute value functions, we 
will glean information about the DM’s preference structure from answers 
to questions concerning his or her trade-offs between the various pairs of 
attributes and then use that information to form equations about the DM’s 
value function in order to determine the w1, w2, and so on. First, we need to 
introduce some additional notation. Let

Bj(xj) be the outcome associated with all attributes having their best 
values, except for attribute Xj, which has value xj.

Wj(xj) be the outcome associated with all attributes having their worst 
values, except for attribute Xj, which has value xj.

TABLE 3.7

Points on the Graphs for the Individual Attribute 
Value Functions

x1 v1(x1) x2 v2(x2) x3 v3(x3) 

55,000 0 5 0 1200 0
62,000 0.25 11 0.25 1000 0.25
68,000 0.5 15 0.5 800 0.5
72,000 0.75 18 0.75 500 0.75
75,000 1 20 1 50 1
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The steps of the process are as follows:

 1. Have the DM rank the outcomes: W xj j
b( ), for j = 1,…, p. Suppose that 

these outcomes are ranked according to j1, j2,…, jp, where j1 refers 
to the attribute number associated with the first-ranked outcome, 
Wj1 j1

b(x ); j2 refers to the attribute number with the second-ranked out-
come, Wj2 j2

b(x ); and so on.
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FIGURE 3.2
Graphs for the individual attribute value functions.
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 2. Have the DM identify a sequence of (p – 1) values for attribute j1 
(i.e., values for x ,x xj1 j1 j1

p2 3 , ,¼  where these numbers identify a sequence 
of p – 1 values for Xj1) such that the DM is indifferent to the following 
(p – 1) pairs of outcomes:

W (x  and W x W (x  and W x  and Wj1 j1 j2 j2
b

j1 j1 j3 j3
b

j1
2 3) ( ), ) ( ), ,¼ ((x  

and W x

j1
p

jp jp
b

)

( )

 3. Solve the system of simultaneous linear equations associated with 
the indifferences expressed in step 2, augmented with the normal-

ization equation: wi
i

p
=

=å 1
1

.

The first step in the process allows an ordering of the weights from largest to 
smallest; for example, if outcome W x1

b( )1  is preferred to outcome W x2
b( )2 , then 

the value function value of outcome W x1
b( )1  must be greater than the value 

function value of W x2
b( )2 , or

 v(W x v W x w w1
b

2
b

1 2( )) ( ( )) .1 2> ® >

Note that, for example, just because w1 is greater than w2, this does not imply 
that attribute 1 is more important than attribute 2. It does imply, however, that 
outcome W1

b(x )1  is preferred to outcome W2
b(x )2 .

The second step of the process of determining the weights allows the ana-
lyst to set up a system of simultaneous equations. For example, if w1 > w2, 
and the DM is indifferent to the following two outcomes: W x1 1( )¢  and W x2

b( )2 , 
for a particular value for X1, denoted as ¢x1, then the value function values for 
these two outcomes must be equal; that is,

 

v(W x v(W x

or

w v (x w v x  or since v (x

1 1 2
b

1 1 1 2 2
b

2

( )) ( )),

) ( ),

¢ =

¢ =

2

2 22 0b
2

1 1 1 2

1 because v is scaled from  to 1

w v (x w

) ,

) .

=

¢ =

Now, since we have already assessed the individual attribute value func-
tions, we can determine the value for v (x1 1¢ ), and therefore, we have an equa-
tion in terms of w1 and w2.

Let’s work out this process for Example 3.1, given the individual attribute 
value functions shown in Figure 3.2 and Table 3.7. Step 1 involves the rank-
ing of three outcomes, since p = 3, for this example. Let’s suppose that the 
DM ranks the relevant outcomes as follows:

 W x   W x  and W x   W x1
b

3
b

3
b

2
b

1 3 3 2( ) ( ) ( ) ( )P P ,
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or using the numbers shown in Table 3.2:

 ( , ; ; ) , ; ; ) , ; ; )75  5  1,2   (55  5  5  and (55  5  5  000 00 000 0 000 0P P(( , ; ; ).55  2  1,2000 0 00

Therefore, we know that w1 > w3 and w3 > w2.
Now, for the second step, the analyst helps the DM determine two specific 

values for annual salary (the attribute with the largest of the three weights), 
denoted as x1

2 and x1
3 such that the DM is indifferent to two pairs of outcomes 

as follows:

 
W x   W x  and W x   W x1 3

b
1 2

b
1
2

3 1
3

2( ) ( ) ( ) ( )I I ,

or

 ( , , ) , , ) , , )x  5  1,2   (55,  5  5  and (x  5  1,2   (51
2

1
300 000 0 00I I 55,  2  1,2000 0 00, , ).

As stated earlier with this type of questioning process, the DM would want 
to hone in on the values for x1

2 and x1
3. Suppose that these values turn out to 

be x1
2 67 000= ,  and x1

3 70 000= , . Note that the value associated with the first 
indifference indicates that the DM is willing to give up $12,000 in annual 
salary in order to be 1,150 miles closer to his or her hometown with a job 
that allows for 5 days of vacation and that the second indifference indicates 
that the DM is willing to give up $15,000 in annual salary in order to receive 
15 additional days of vacation, when he or she is at a job that is 1,200 miles 
from his or her hometown.

Using linear interpolation with Table 3.7, one finds that
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and

 .625w w1 3=  (3.40)

Combining (3.39) and (3.40) along with the normalizing equation, 
w1 + w2 + w3 = 1, gives us

 w 458w 625w 11 1 1+ + =. . ,

or

 w 48 w 458w 458( 48 22 and w 625w 625 ( 48 31 2 1 3 1= ® = = = = = =. . . . ) . . . . ) . ..

So, in summary, we have

 w 48  w 22  and w 31 2 3= = =. , . , . .

These weights, combined with the additive specification and the results 
for the individual attribute functions shown in Table 3.7 and Figure 3.2 com-
plete the assessment of the MAV function for Example 3.1.

Using the assessed value function, and linear interpolation between 
the assessed points for the individual attribute value functions, we obtain 
the value function levels and ranking for the nondominated job offers of 
Example 3.1, as shown in Table 3.8.

3.8  An Easier Approach to Assessment: The Simple 
Multiattribute Rating Technique

The approach described in Section 3.7 has been found to be onerous, espe-
cially when the MAV function contains more than two or three attributes. 
As a result, a method called the “simple multiattribute rating technique” 

TABLE 3.8

Value Function Values and Rankings for Nondominated 
Alternatives of Example 3.1

Ai x1 x2 x3 v1(x1) v2(x2) v3(x3) v(x) Ranking 

1 70,000 5 150 .625 0. .945 .586 2
2 60,000 15 250 .178 .5 .889 .462 6
3 75,000 7 1200 1. .083 0. .498 5
4 65,000 10 50 .375 .208 1. .526 3
5 55,000 20 150 0. 1. .945 .504 4
8 70,000 10 250 .625 .208 .889 .612 1
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(SMART) has been developed by Edwards (see Edwards, 1977; Edwards and 
Barron, 1994; von Winterfeldt and Edwards, 1986, pp. 278–286).

SMART has been developed through the years as an entire collection of 
techniques since its original development. The original procedure consisted 
of 10 steps as described in von Winterfeldt and Edwards, 1986, but several of 
these steps involve the aspect of problem structuring, which we discussed in 
Chapter 2. Hence, in our description, we will assume that we have already 
defined the attributes, alternatives, and the outcomes for those alternatives 
in terms of the attribute values.

SMART assumes an additive, scaled MAV function. The first step involves 
an assessment of the individual attribute value functions: v1, v2,…, vp using 
a direct rating technique, which is much simpler than the midvalue splitting 
technique described in the previous section. This direct rating technique 
assigns a value of 0 to the worst attribute value over all outcomes, and a value 
of 100 to the best attribute value over all outcomes. (The idea is that it will 
be easier for the DM to think in terms of whole numbers instead of fractions 
when assigning intermediate values.) The DM is then asked to just assign 
intermediate values between 0 and 100 to the outcomes associated with the 
other levels for the attribute, keeping in mind the difference in value for a 
particular attribute level from the extremes. As an example, consider attri-
bute 3 (number of miles from hometown) for Example 3.1; a particular DM 
might think in terms of days of driving for the distance in that anything 
between 450 and 800 miles would require an extra day of driving—hence, 
the difference in value between 500 and 700 miles is not nearly as great as the 
difference in value between 300 and 500 miles.

The second step of the process involves deriving the weights for the individ-
ual attribute value functions: w1, w2,…, wp, given in increasing order. As in 
the determination of the individual attribute value functions, the DM gives 
“direct numerical ratio judgments” (von Winterfeldt and Edwards, 1986, 
p. 281) for the weights. First, the DM rank orders the weights. Following this, 
the DM assigns an importance of 10 (denoted as w1’) to the least important 
weight, and then proceeds to assign numbers (denoted as ¢ ¢ ¢w w wp2 3, , ,… ) 
to the other weights in order of increasing importance; there is no particu-
lar guidance in this step, and the “importance weights” have no particular 
bounds. These “importance weights” are then normalized by
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Note that for this calculation, the scores will range from 0 to 100 instead of 
from 0 to 1 as is the case for a scaled additive MAV function discussed in the 
previous section, since the individual attribute value functions are scaled 
from 0 to 100.

In order to illustrate the process, let’s consider Example 3.1. Even with the 
same DM, one would not necessarily expect the same value function (even 
if one accounts for the rescaling) to result, since a different set of questions 
is being asked to form the function. Let’s suppose that the answers from the 
DM give the results as shown in Tables 3.9 through 3.11 for the individual 
attribute value functions, importance weights, and normalized weights, 
respectively.

Using the results given in Tables 3.9 through 3.11, the scores for the non-
dominated outcomes for Example 3.1 are shown in Table 3.12.

Note that the rankings for this particular application of SMART differ 
slightly from the rankings given in the previous section; namely, the rank-
ings for the fourth and fifth ranked job offers are switched.

TABLE 3.9

Assessments for the Individual Attribute Value Functions (Scaled from 
0 to 100) of Example 3.1 Using the Simple Multiattribute Rating Technique

x1 v1(x1) x2 v2(x2) x3 v3(x3) 

55,000 0 5 0 1200 0
60,000 20 7 20 250 75
65,000 40 10 35 150 85
70,000 75 15 45 50 100
75,000 100 20 100

TABLE 3.10

Unnormalized Weights for Example 3.1 Using 
the Simple Multiattribute Rating Technique

j ¢w j 

1 250
2 100
3 140

TABLE 3.11

Normalized Weights for Example 3.1 Using 
the Simple Multiattribute Rating Technique

j wj 

1 0.51
2 0.20
3 0.29



106 Multiple Criteria Decision Analysis for Industrial Engineering

3.8.1 Swing Weights

An argument could be made that a DM would have fairly similar individual 
attribute value functions with either the midvalue splitting technique or the 
SMART approach. For example, one might reasonably expect the DM to employ 
arguments similar to the one given earlier with respect to the values attached 
to various levels for attribute 3 (miles from hometown) for Example 3.1.

However, the weights associated with the individual attribute value func-
tions are a different matter. These weights cannot be inherently related quite 
so easily to a nebulous concept of “importance,” as must be done with the 
approach described earlier for the SMART procedure. The weights obtained 
for the individual attribute value functions using the SMART approach 
described earlier therefore could be very inaccurate as a representation for 
the DM’s preference structure.

The first step in determining the attribute weights using the swing weighting 
method is to rank the attributes by decreasing weight. This is accomplished 
by asking the DM which attribute he or she would like most to move from its 
worst value to its best value, with all other attributes at particular levels. (The 
reader will recognize that this is actually equivalent to the ranking approach 
used for the weighting method described in Section 3.7). This attribute is then 
assigned a relative weight of 100. The DM is then asked to assign a relative 
weight (less than 100) to the second-ranked attribute and so on. These rela-
tive weights, denoted as r1, r2,…, rp, are then normalized so that they sum to 1.

For the case of Example 3.1, the types of questions asked and example 
answers are shown in Figure 3.3.

With the answers given in Figure 3.3, the relative weights are given by r1 = 
100, r3 = 70, and r2 = 50. The normalized weights would be given by
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TABLE 3.12

Scores for the Nondominated Outcomes of Example 3.1 Using the 
Simple Multiattribute Rating Technique

Ai x1 x2 x3 v1(x1) v2(x2) v3(x3) v(x) Ranking 

1 70,000 5 150 75 0 85 62.9 2
2 60,000 15 250 20 45 75 40.95 6
3 75,000 7 1200 100 20 0 55 4
4 65,000 10 50 40 35 100 56.4 3
5 55,000 20 150 0 100 85 44.65 5
8 70,000 10 250 75 35 75 67 1
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Note that there is no particular reason to expect the weights to be the same 
as they were in our previous assessments. However, one could at least expect 
that the sets of weights would be close to each other.

Schuwirth et al. (2012) noted that an outcome in which all attribute values 
are at their worst levels may be difficult for the DM(s) to consider; hence, they 
developed a modification to the swing procedure, called the reverse swing 
procedure, which starts with all attribute values at their best levels.

Example 3.4: Resource Allocation in a 
Project Using an MAV Function

Consider a hypothetical project consisting of 9 activities or tasks. The 
activity durations, precedence relationships, early start times, early fin-
ish times, late start times, late finish times, and slack times for the activ-
ity are shown in Table 3.13.

Analyst: Given that the other attributes are at reasonable levels, which change in attribute 
level would you most like to make?

 a. X1 from 55,000 to 75,000
 b. X2 from 5 to 20

 c. X3 from 1,200 to 50

DM: I would rank these options in order of a, c, and then b, in order of decreasing 
preference.
Analyst: OK. Let’s give a value of 100 to option a. In terms of degree of relative 
preference, assign numbers to options c and b, respectively, which indicate the amount of 
preference that you would have for each of these options.

DM: I would give a preference value of 70 to option c and 50 to option b.

FIGURE 3.3
Questions and answers to determine the swing weights for the case of Example 3.1.

TABLE 3.13

Early Start, Early Finish, Late Start, Late Finish, and Slack Times for Project

Activity 
Immediate 

Predecessors 

Normal 
Duration 
(weeks) 

Early 
Start 
(ES) 

Early 
Finish 

(EF) 

Late 
Start 
(LS)

Late 
Finish 

(LF) 

Slack 
Time 
(ST) 

A — 10 0 10 0 10 0
B — 8 0 8 1 9 1
C A 14 10 24 10 24 0
D B 15 8 23 9 24 1
E B 14 8 22 15 29 7
F C,D 5 24 29 24 29 0
G C,D 9 24 33 30 39 6
H E,F 10 29 39 29 39 0
I G,H 6 39 45 39 45 0
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Immediate predecessor activities are those activities that must be fin-
ished before another activity can start. For example, both activities C and 
D must be finished before activity F can start. Calculations for the early 
start (ES), early finish (EF), late start (LS), late finish (LF), and slack times 
(ST) were accomplished through the standard program evaluation and 
review technique-critical path method (PERT-CPM) scheduling tech-
niques. As is the convention, these times are relative to “time 0” that is 
the start time of the project.

The ES times are the earliest times that respective activities can start, 
while the LS times are the latest times that respective activities can start 
without delaying the project past its earliest finish time (45 weeks). The ST 
times are the amounts of times that respective activities can be delayed 
without delaying the project past its earliest finish time. These times are 
not independent of each other; that is, if some of an earlier activity’s slack 
is used, then that impacts the slack of a later activity. The activities with 0 
slack time (called critical activities) form the critical path(s). Any delays in 
these activities will result in a delay of the project past its earliest possible 
finish time of 45 weeks.

In this example, we are concerned with what is often called the “time-
cost trade-off” problem in project management. In particular, let’s sup-
pose that the organization wants to allocate more resources to certain 
activities in order to complete these activities in less time than their nor-
mal durations, in order to complete the entire project sooner. The problem 
might be stated as “which activities should we choose to reduce in dura-
tion, and how much should we reduce their durations in order to achieve 
a particular project duration at a minimum cost.” The cost increases for 
the respective activities are increases in direct cost (see Chapter 2). If the 
relationships between increases in direct cost and reductions in activity 
durations are linear in nature, then a linear program can be formulated 
to solve the problem (see Moder et al., 1995, pp. 261–264). However, such 
linear relationships are rarely found in practice.

An obvious approach is to allocate more resources to activities on the 
critical path, since the critical path is the sequence of activities which 
determines the project duration. What makes this approach difficult is 
the nonlinear relationship between the increase in the direct cost for an 
activity and the resulting decrease in activity duration; in addition, the 
critical path (and therefore the critical activities) can change as selected 
activity durations are reduced. Various heuristic algorithms, which iter-
atively select activities to reduce in duration, have been developed to 
address this problem; for example, see Siemens and Gooding (1975).

In this example, we are mainly concerned with an MAV function 
involving two attributes: project duration and the increase in direct cost 
as a result of reducing the durations of selected activities. In particular, 
we are not concerned with a large number of alternative solutions.

Let’s suppose that if the project can be finished in 42 weeks, a bonus 
of $50,000 will be received by the organization; on the other hand, 
if the project is finished in 45 weeks or longer, the organization will be 
charged a penalty of $50,000. Given that a bonus is received or that a 
penalty is avoided, there is an inherent advantage, in terms of the orga-
nization’s reputation, for example, of finishing the project in less time 



109Making Decisions under Conditions of Certainty

rather than more time; for example, finishing the project in 43 weeks 
is better than finishing the project in 44 weeks, all other things being 
equal, even though in both cases the penalty is avoided and the bonus 
is not attained.

The project team has developed three options for reducing individ-
ual activity durations. These options correspond to allocating more 
resources and/or working overtime on the relevant specific activities. 
These options will result in respective increases in direct cost for the 
relevant activities, as shown in Table 3.14.

The options in Table 3.14 can be combined to form independent alter-
natives. The various alternatives (including the “do nothing” alternative) 
are shown in Table 3.15, along with the resulting increase in direct cost 
and the resulting project duration.

Now, it is apparent from viewing Table 3.15 that some of the alterna-
tives are dominated and can therefore be eliminated from further con-
sideration. In particular, alternatives 3, 5, 7, and 8 can be eliminated since 
they correspond to respective alternatives with a lower increase in direct 
cost, but with the same project duration; for example, alternatives 3 and 5 
have the same project duration as alternative 2, but with a larger increase 
in direct cost. Hence, we are left with alternatives 1, 2, 4, and 6, as indi-
cated by the *’s in Table 3.15.

TABLE 3.14

Options for Reducing Activity Durations for the Project

Option Description of Option Increase in Direct Cost 

1 Reduce activity A duration by 2 weeks 
(from 10 to 8 weeks).

$60,000

2 Reduce activity C duration by 3 weeks 
(from 14 to 11 weeks).

$80,000

3 Reduce activity I duration by 2 weeks 
(from 6 to 4 weeks).

$70,000

TABLE 3.15

Alternatives for Resource Allocation and Resulting Attribute Values

Alternative Description 
Increase in 
Direct Cost 

Resulting Project 
Duration (weeks) 

1* Do nothing $0 45
2* Option 1 $60,000 44
3 Option 2 $80,000 44
4* Option 3 $70,000 43
5 Options 1 and 2 $140,000 44
6* Options 1 and 3 $130,000 42
7 Options 2 and 3 $150,000 42
8 Options 1, 2, and 3 $210,000 42

*Nondominated alternatives/outcomes.
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Now, suppose that an analyst has assessed the MAV function for the 
project manager. What should this function look like? Let project dura-
tion in weeks be denoted by X1 and increase in direct cost in thousands 
of dollars be denoted by X2. Suppose that the analyst has determined 
that the MAV function is additive. Therefore, it can be written as

 v(x  x w v (x w v x1 2 1 1 1 2 2 2, ) ) ( ).= +

The best and worst values for X1 (project duration) are 42 and 45, 
respectively, and the best and worst values for increase in direct cost 
are 0 and 130, respectively. We also know that both v1(x1) and v2(x2) are 
decreasing in x1 and x2, respectively, with v1(42) = 1, v1(45) = 0, v2(0) = 1, 
and v2(130) = 0.

Suppose that the assessment process yields an MAV function as indi-
cated by Tables 3.16 and 3.17, with w1 = .6 and w2 = .4.

Using this value function, we can compute the values associated with 
each outcome, as shown in Table 3.18.

As can be seen from Table 3.18, alternative 6, with an outcome that 
provides for a project duration of 42 weeks and an increase in direct cost 
of $130,000, is the preferred alternative.

TABLE 3.16

Single Attribute Value Function for X1, Project 
Duration in Weeks

x1 v1(x1) 

45 0
44.5 0.4
44 0.45
43.5 0.5
43 0.55
42.5 0.6
42 1.

TABLE 3.17

Single Attribute Value Function for X2, Increase 
in Direct Cost, in Thousands of Dollars

x2 v2(x2) 

130 0
110 0.25
80 0.5
45 0.75
0 1.
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Let’s consider the MAV function for this example in more detail. 
Suppose that we are trying to find the value of ¢x2 for which the project 
manager will be indifferent to the following two outcomes:

 (45, 0) and (44, ¢x2).

This value must be equal to the penalty avoided by the organization from 
finishing the project in less than 45 weeks plus any additional value (in 
thousands of dollars) from having the organization finish the project in 
44 weeks rather than 45 weeks. Checking the validity of this value could 
also be considered as a check on the validity of the DM’s value function. 
Solving for the equation given by

 v v x2( , ) ( , )45 0 44= ¢

for ¢x2 gives us

 ¢ =x2 111.

Hence, the DM (project manager) should be indifferent to the outcomes 
of (45, 0) and (44, 111), or, in other words, the reduction in project duration 
from 45 to 44 weeks is worth $111,000, which is $61,000 plus the $50,000 
associated with the averted penalty.

3.9 Final Comments on the Assessment of MAV Functions

Obviously, the assessment of an MAV function is quite an involved process, even 
if one is employing the SMART procedure developed by Edwards. However, 
if one uses the suggested approach of “honing in” on outcomes for which the 
DM is indifferent, then this procedure can involve only pairwise comparisons. 
Keeney (2002) discusses 12 common mistakes that DMs make in providing 
value trade-offs, along with approaches for addressing these mistakes.

Even if the DM does not use the resulting MAV function, just going 
through the assessment process can be helpful to the DM in thinking about 
his or her trade-offs.

The assessment process involves ranking pairs of outcomes that are hypo-
thetical in nature—that is, these outcomes do not necessarily correspond to 

TABLE 3.18

Value Function Values for Nondominated Outcomes

Alternative x1 x2 v1(x1) v2(x2) v(x1, x2) 

1 45 0 0 1 0.4
2 44 60 0.45 0.642 0.5268
4 43 70 0.55 0.5714 0.5585
6 42 130 1 0 0.6
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the alternatives. By not directly addressing the outcomes associated with the 
actual alternatives, one removes any subjective “attachments” to these alter-
natives from the assessment process. In addition, the reader should keep in 
mind that the basic idea is to obtain a function that will allow for the ranking 
of outcomes over the “entire” outcome space. Alternatives, and correspond-
ing outcomes, may arise in the future, which differs from the original set of 
alternatives.

A different approach to assessment would involve just having the DM pro-
vide scores, of say between 0 and 100, for a large number (e.g., 100) of hypo-
thetical outcomes; an outcome with a higher score would be preferred over 
an outcome with a lower score. Interpolation could be used to provide scores 
to any outcomes that were not scored in the original set. A disadvantage of 
this approach is that the DM may very well exhibit inconsistencies in provid-
ing such a large number of scores.

Finally, even if no formal approach is used to rank multidimensional 
outcomes, the DM will be making trade-offs between multiple objectives 
in an implicit way. The use of an MAV function makes these trade-offs 
explicit so that the decision-making process can be more easily explained 
to others.

The MAV function discussed in this chapter does not address the strength 
of preference of one outcome over another. For example, if outcomes A, B, and 
C have value function levels of .9, .8, and .7, respectively, one cannot say that 
the difference in preference between A and B is the same as the difference in 
preference between B and C (even though the differences in their value func-
tion levels are the same at .1). One can only rank order the outcomes. In order 
to consider the strength of preferences, one must employ a measurable value 
function, as presented by Dyer and Sarin (1979). Such measurable value func-
tions “provide an interval scale of measurement for preferences under cer-
tainty” (Dyer and Sarin, 1979, p. 810) and also allow for more complex forms 
for the MAV function such as a multiplicative form.

3.10  TOPSIS: An Approach That Considers the Weighted 
Distances from the Positive and Negative Ideals

A method that involves relatively little input from the DM regarding his 
or her preference structure involves choosing a solution that considers 
weighted distances from the positive and negative ideals. Obviously, one 
wants to obtain an outcome as close as possible to the positive ideal and as 
far as possible from the negative ideal, while considering the importance 
of each attribute. This method, entitled the Technique for Order Preference 
by Similarity to Ideal Solution (TOPSIS), was originally proposed by 
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Hwang and Yoon (1981), and has since been extended by Yoon (1987) and 
Hwang et al. (1993), among others.

In order to simplify the following description, we will employ some addi-
tional notation:

 x x A  the value for alternative i on attribute jij j i= ( ), ,  (3.41)

where

 J is the set of attributes that are to be maximized*  (3.42)

 ¢J  is the set of attributes to be minimized  (3.43)

Once the alternatives and outcomes have been determined, as described in 
Section 3.2, the steps of the algorithm are as follows:

 1. The normalized outcomes are computed by

 
r x xij ij i j

i’=1

= ¢å 2
n

 (3.44)

 where rij denotes the normalized outcome associated with attribute j 
of alternative i for i = 1,…, n and j = 1,…, p. Note that this normaliza-
tion process places each of the attribute levels on basically an equal 
footing with respect to scale.

 2. Compute the weighted values, vij, for alternative i as scored on 
attribute j:

 v  w rij j ij ,=  (3.45)

 where

 

wj

j=1

p

å = 1  (3.46)

 0 < < = ¼w 1 for j 1 pj , ,  (3.47)

 The weights could be computed using the method of Section 3.7 
or either of the methods discussed in Section 3.8, including swing 
weights. (Note that if the method of Section 3.7 is used, then the 
individual attribute value functions would have already been 
computed.) Alternatively, the DM could just provide weights for 
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each of the attributes without the assistance of any particular 
technique.

 3. Compute a weighted positive ideal, PI, and a weighted negative 
ideal, NI, as given by

 
PI v  v vp= ¼( )1 2

* * *, , , ,  (3.48)

 NI v  v v1 2 p= ¢ ¢ ¼ ¢( , , , ),  (3.49)

 where
vj

* is the maximum value over {vij for i = 1,…, n} for j ε J* and mini-
mum value over {vij for i = 1,…, n} for j ε J’

¢vj is the minimum value over {vij for i = 1,…, n} for j ε J* and maxi-
mum value over {vij for i = 1,…, n} for j ε J’

 4. Compute the separation measures for each alternative, where

 

S Separation measure for the positive ideal 
for alternat

i
* =

iive i

= (v v )j
*

ij
2

j=1

p

,

-å  
(3.50)

 

¢ =S Separation measure for the negative ideal 
for alternat

i

iive i

v vj ij

j

p

,

( )= ¢ -
=
å 2

1

 
(3.51)

 5. Compute the relative closeness to the ideal for each alternative, 
where

 Ci is the closeness for alternative i,

 =S S S/i’ i
*

i
’( )+  (3.52)

Note that the smaller the value of Si
*, the closer that the outcome associated 

with alternative i is (in a weighted sense) to the positive ideal, and hence, the 
better alternative i is. Alternatively, the smaller the value of ¢Si, the closer that 
the outcome associated with alternative i is (in a weighted sense) to the nega-
tive ideal, and hence, the worse alternative i is. This means that the larger 
is the value of the relative closeness measure, Ci, the better is the outcome 
associated with alternative i, and hence, the alternatives should be ranked in 
terms of decreasing values for the Ci.
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Example 3.5: Applying TOPSIS to Example 3.1, 
the Job Selection Problem

Let’s apply TOPSIS to Example 3.1 and its nondominated outcomes, as 
shown in Table 3.19. For this example, we would want to maximize the 
first two attributes (annual salary, x1(Ai), and days of vacation, x2(Ai)) and 
minimize the third attribute (miles from hometown, x3(Ai)); hence, we 
would have

 J {1  2  and J 3* , } { }.= ¢ =

Upon normalizing the outcomes, we would have the rij values as shown 
in Table 3.20.

For example, r23 is the normalized outcome associated with the attri-
bute 3 value of alternative 2. Its value is computed as
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TABLE 3.19

Nondominated Outcomes (Attribute 
Values) for Example 3.1

i Ai x1(Ai) x2(Ai) x3(Ai) 

1 1 70,000 5 150
2 2 60,000 15 250
3 3 75,000 7 1200
4 4 65,000 10 50
5 5 55,000 20 150
6 8 70,000 10 250

TABLE 3.20

rij Values (Normalized Outcomes) 
Associated with the Outcomes of Table 3.19

i|j 1 2 3 

1 0.431844 0.166759 0.118125
2 0.370152 0.500278 0.196875
3 0.46269 0.233463 0.944999
4 0.400998 0.333519 0.039375
5 0.339306 0.667037 0.118125
6 0.431844 0.333519 0.196875
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The next step is to compute the weighted values for the normalized out-
puts. Let’s use the swing weights computed in Section 3.8:

 w  45  w  23  and w  32.1 2 3= = =. , . , .

These weighted normalized values are shown in Table 3.21.
The positive and negative weighted ideals are given as

 

PI  ( 2 821  153419  126  and

NI  ( 152687625  

=

=

0 0 0 0 0

0 0

. , . , . ),

. , .00 0 0 038354647  3 23997 5, . ).

Finally, the separation measures for the positive and negative ideals, the 
relative closeness values, and the rankings for each of the alternatives 
are shown in Table 3.22.

From a cursory look at the numbers in Tables 3.21 and 3.22, it is clear 
that alternative 3 suffers greatly from its value for attribute 3: 1200 miles 
from hometown, which is much larger than the value for any other alter-
native. To illustrate the effect of this particular attribute value for alter-
native 3, the TOPSIS algorithm was rerun with changes in the weights 
for the attributes. In particular, the weight for attribute X3 was reset to .2, 
.1, and .05 in respective runs of TOPSIS, with corresponding changes to 
the weights for the other two attributes. The results are shown in Table 
3.23. (Note that the relative closeness values have been rounded off to the 
nearest two decimal places.)

TABLE 3.22

Separation Measures, Relative Closeness Values, and Rankings for the 
Nondominated Outcomes of Example 3.1

Alternative, i 1 2 3 4 5 6 

Si
* 0.118606 0.075798 0.306477 0.081578 0.060974 0.092829

Si
¢ 0.267856 0.251772 0.057603 0.293642 0.288535 0.246003

Ci 0.693098 0.768606 0.158216 0.782586 0.825544 0.726033
Ranking 5 3 6 2 1 4

TABLE 3.21

vij Values (Weighted Normalized Outcomes) Associated with the Outcomes 
of Table 3.19

i|j 1 2 3 

1 0.19433 0.038355 0.0378
2 0.166568 0.115064 0.063
3 0.20821 0.053697 0.3024
4 0.180449 0.076709 0.0126
5 0.152688 0.153419 0.0378
6 0.19433 0.076709 0.063
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The TOPSIS approach and its variations (including extensions to consid-
erations of fuzzy inputs) have been applied in a wide variety of application 
areas, including supplier selection (Chen et al., 2006), evaluation of preven-
tive measure for oil spill accidents (Krohling and Campanharo, 2011), and 
personnel selection (Boran et al., 2011), among others. See Behzadian et al. 
(2012) for a survey of TOPSIS applications.

3.11 AHP

3.11.1 Introduction to the AHP

The analytic hierarchy process (AHP) was developed by Thomas L. Saaty 
during the 1970s (Saaty, 1980) and can be executed through the software 
package: Expert Choice™ (http://expertchoice.com/comparion/). AHP can 
be described as a “methodology for modeling unstructured problems in 
the economic, social, and management sciences” (Saaty, 1980). AHP can be 
considered as an alternative to the assessment and use of a multiattribute 
value function for ranking alternatives, which can be represented as respec-
tive outcomes over multiple attributes. Saaty (1986) presented a set of axioms 
associated with the valid use of AHP, and Harker and Vargas (1987) reviewed 
the theory of AHP and addressed criticisms associated with its validity.

Although there is much controversy concerning the use of AHP which is 
mentioned later in this section, it is generally thought to be easier for a DM to 
use than an approach involving the assessment and use of an MAV function. 
For example, one advantage associated with AHP is that it allows the DM to 
be inconsistent in answering questions concerning preferences over multiple 
objectives; in addition, the method only requires the DM to answer ques-
tions with respect to pairwise comparisons of two objectives, subobjectives 
or outcomes at a time. (Saaty notes that the original idea involving pairwise 
comparisons came from interaction with his grandmother as he was grow-
ing up [Palmer, 1999].)

TABLE 3.23

Relative Closeness Values and Rankings for Alternatives for Technique for the Order 
of Preference by Similarity to Ideal Solution Runs with an Alternative Sets of Weights

Run 
Number w1 w2 w3 

Alt 1 
Score 

(Rank) 

Alt 2 
Score 

(Rank) 

Alt 3 
Score 

(Rank) 

Alt 4 
Score 

(Rank) 

Alt 5 
Score 

(Rank) 

Alt 6 
Score 

(Rank) 

Original run .45 .23 .32 .69 (5) .77 (3) .16 (6) .78 (2) .83 (1) .73 (4)
Run #2 .53 .27 .20 .56 (5) .70 (2) .24 (6) .66 (3) .76 (1) .63 (4)
Run #3 .6 .3 .1 .40 (5) .62 (2) .33 (6) .51 (3) .70 (1) .51 (3)
Run #4 .63 .32 .05 .31 (6) .59 (2) .36 (5) .41 (4) .68 (1) .45 (3)

http://expertchoice.com/comparion/
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AHP has been applied in a wide variety of areas including decision mak-
ing for facility layout (Cambron and Evans, 1991), health care (Liberatore 
and Nydick, 2008), and diagnosis (Saaty and Vargas, 1998). Forman and Gass 
(2001) discussed 26 successful applications of AHP, and Zahedi (1986) and 
Vaida and Kumar (2006) presented surveys of applications of AHP.

3.11.2 Steps of the AHP

The process of applying AHP for ranking alternatives, which can be rep-
resented as multiattributed outcomes, is described by the steps shown in 
Figure 3.4.

Further discussion on each of the steps shown in Figure 3.4 is given in the 
text following this figure.

Step 1: Develop a hierarchy consisting of an overall goal, criteria, subcriteria, and alternatives.

Step 2: For each level and section of the hierarchy, usually start from the highest level and work
downward through the hierarchy:

a. Have the DM(s) perform pairwise comparisons for each pair of factors in the 
section.

b. Form a square influence matrix, denoted as A, from the pairwise comparisons, where 
the number of rows (and columns) of the matrix is equal to the number of factors in the 
section of the hierarchy being evaluated.

c. Find a value for a quantity, λmax, the value for λ, from solving a system of 
equations, λmax is called the principal eigenvalue of the system given by (3.53).

 
A I = 0- l

 
(3.53)

d. Determine the local weights (sometimes called priorities), denoted as wi for i = 1,…,n,
for each factor in this section of the hierarchy by solving a system of equations, as 
given in the following equations:

 
Aw = w,maxl

 
(3.54)

 
w 1,i

i=1

n

å =
 

(3.55)

where n is the number of factors in this section of the hierarchy and w = (w1, w2 ,…, wn)T 
in (3.54). These weights indicate the relative importance of a factor with respect to the 
next higher-level factor in the hierarchy if that factor is a criterion or subcriterion; 
alternatively, the weight indicates how well that factor (alternative) does with respect to 
the factor (subobjective) at the next higher level of the hierarchy if the factor represents 
an alternative. The process of finding these local weights is often termed the Eigenvalue 
Method.
Step 3: Determine the global weight for each alternative on each lowest-level criterion in the 
hierarchy, by multiplying the weights “up” the branch in the hierarchy corresponding to that 
alternative.
Step 4: Determine the overall priority of each alternative by summing the alternative’s global weights

over all lowest-level subcriteria.
Step 5: Rank the alternatives in terms of their decreasing values for overall priority.

FIGURE 3.4
Steps of the analytic hierarchy process.
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Step 1 of the AHP: Develop a hierarchy of factors representing the decision 
situation.

At the highest level of the hierarchy there is one factor, which might be 
considered the overall (or super) objective for the system; at the lowest level 
of the hierarchy, there are multiple factors, or more specifically, alternatives 
to be evaluated.

In particular, these factors might be termed as the foci (plural of focus), cri-
teria, subcriteria, actors, objectives, subobjectives, attributes, and alternatives. 
The higher levels of the hierarchy contain the fundamental objectives, while 
the lower levels contain the subobjectives (or means objectives as termed in 
Chapter 2). The procedures discussed in Chapter 2 can be useful in generat-
ing the hierarchy. The lowest level of the hierarchy contains the alternatives 
to be evaluated and ranked. The nodes of the hierarchy represent these fac-
tors, while arcs are used to represent connections between these nodes. In 
addition, each factor can be connected to only one higher-level factor (differ-
ing from means objectives network of Chapter 2), while at the lowest level of 
the subobjectives hierarchy, all of the alternatives are connected with each of 
the lowest-level. An example (generic) hierarchy is shown in Figure 3.5.

Saaty provides suggestions for the construction of hierarchies in Chapter 3, 
along with several examples of hierarchies in Chapter 4 of his book (Saaty, 1990a).

Step 2a: Perform “pairwise comparisons” at each level and section of the 
hierarchy, starting from the top section and working downward.

The comparisons are typically made for two different categories of factors:

 1. Attributes/subobjectives/objectives: Here, the questions asked concern 
how much more important one of these factors is than another factor 
in the same grouping with respect to the attribute/subobjective/
objective with which they are associated at the level just above.

Alternative
1

Alternative
2

Alternative
3

Sub-
objective

2C

Sub-
objective

2B

Sub-
objective

2A

Sub-
objective

1B

Sub-
objective

1A

Sub-
objective 1

Sub-
objective 2

Objective

FIGURE 3.5
An example generic hierarchy for an AHP application.
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 2. Alternatives: Here, the questions asked concern how much better one 
alternative performs than another, with respect to each attribute at 
the next higher level in the hierarchy.

For the example hierarchy of Figure 3.5, the pairwise comparisons would be 
accomplished for the sections of the hierarchy as follows:

 1. Subobjective 1 and Subobjective 2 with respect to the Objective
 2. Subobjective 1A and Subobjective 1B with respect to Subobjective 1
 3. Subobjective 2A, Subobjective 2B, and Subobjective 2C with respect 

to Subobjective 2
 4. Alternative 1, Alternative 2, and Alternative 3 with respect to each of 

the Subobjectives 1A, 1B, 2A, 2B, and 2C

For example, with respect to the section of the example hierarchy contain-
ing Subobjectives 2A, 2B, and 2C, the questions that would be asked would 
include the following:

 1. With respect to Objective 2, how much more important is Sub-
objective 2A than Subobjective 2B?

 2. With respect to Objective 2, how much more important is 
Subobjective 2A than Subobjective 2C?

 3. With respect to Objective 2, how much more important is 
Subobjective 2B than Subobjective 2C?

Note that the pairwise comparisons are only made for that category of sub-
objectives within a specific section of the hierarchy—for example, compari-
sons would not be made between Subobjective 2A and Subobjective 1A. In 
addition, the questions are set up in a way that the more important objective 
in the pairwise comparison is listed prior to the less important objective. In 
rare cases, the objectives may be of equal importance.

The answers given to the questions for the pairwise comparisons are con-
verted to numerical code, for either importance (for attributes/subobjectives/
objectives) as shown in Table 3.24, or performance (for alternative outcomes) 
as shown in Table 3.25.

The numbers 2, 4, 6, and 8 are used to represent intermediate ratings for 
each table.

Step 2b: Form a square influence matrix, denoted as A, from the pairwise 
comparisons, where the number of rows (and columns) of the matrix is equal 
to the number of factors in the section of the hierarchy being evaluated.
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The influence matrix, A = (aij), is composed of the following elements:

 1. For i < j, aij is given by the numbers corresponding to the answers 
provided by the DM from step 2a.

 2. For i = j (i.e., the diagonal of the A matrix), the value of 1.
 3. For i > j, 1/aji.

As an example, consider the Figure 3.5 hierarchy, and the portion of that 
hierarchy corresponding to Subobjective 1 and Subobjective 2. Suppose that 
the DM has already provided the information that Subobjective 1 is at least 
as important as Subobjective 2. Now, suppose that the interaction with the 
DM for this portion of the hierarchy is as follows:

Analyst/Software Package: How much more important is Subobjective 1 
than Subobjective 2 with respect to the objective?

DM: I would say “strongly more important.”
According to the numeric scale used by AHP as shown in Table 3.24, 

strongly more important (i.e., Subobjective 1 being of strong importance as 
compared to Subobjective 2) translates to the number 5. Hence, the A matrix 
would appear as

TABLE 3.24

Numeric Codes for Pairwise Ratings 
of Importance

Importance Rating Numerical Code 

Equal importance 1
Weak importance 3
Strong importance 5
Very strong importance 7
Absolute importance 9

TABLE 3.25

Numeric Codes for Pairwise Ratings 
of Performance

Performance Rating Numerical Code 

Equal performance 1
Weakly better 3
Strongly better 5
Very strongly better 7
Absolutely better 9
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Step 2c: Find a value for a quantity, λmax, the value for λ, from solving a 
system of equations: |A – λI| = 0.

The determinant of the matrix formed by (A – λI) is computed. I is the iden-
tity matrix of appropriate dimension, and A is the matrix formed from the 
answers given by the DM with respect to the importance of one factor versus 
another, or the performance of one alternative versus another with respect to 
a particular subobjective/attribute.

The system of equations to be solved for the λ would appear as
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The maximum value found for λ, denoted as λmax, is therefore given as 
λmax = 2; this value is used in the next step of the process, as shown in Step 2d.

Step 2d: Determine the local weights, denoted as wi for i = 1,…, n, for each 
factor in this section of the hierarchy.

Determining the local weights is accomplished by solving a system of 
equations given by (3.54) and (3.55) in Figure 3.4. As an example, consider 
the A matrix and λmax value found for the numeric example of Step 2c. The 
system of equations to be solved would appear as
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or
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Using the first and the third equations from this, one obtains w1 = 5/6 and 
w2 = 1/6.

Note that the numerical example shown earlier for computation of the 
local weights is about as simple as one can have, since there were only two 
factors for this section of the hierarchy. Also, when there are only two factors 
in the computation, one cannot have “inconsistency” on the part of the DM, 
since only one answer was provided by the DM in Step 2b of the process. 
Inconsistency can, and probably will, exist when the DM needs to provide 
two or more answers with respect to his or her pairwise comparisons (i.e., 
when the number of factors in the section of the hierarchy under consider-
ation is greater than 2, or n > 2). The DM will be perfectly consistent in his 
or her answers if and only if λmax has a value of n. In addition, the W matrix 
formed from the ratios of the weights will be equal to the A matrix if and 
only if the DM is perfectly consistent:
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Let’s consider a portion of a hierarchy involving three factors, as shown in 
Figure 3.6. In order to obtain the A matrix for this portion of the hierarchy, 
the DM might provide the following answers (assuming A1 is more impor-
tant than A2 and A3, and A2 is equally as important as A3):

A1 is weakly more important than A2, with respect to A.
A1 is strongly more important than A3, with respect to A.
A2 is equal in importance to A3, with respect to A.
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Now, looking at the first two statements, one might infer that A2 is more 
important than A3, with respect to A; hence, the third statement is inconsis-
tent with the first two. The A matrix corresponding to this preference infor-
mation is given by Figure 3.7.

Saaty (1990a, pp. 82–85) notes that almost all DMs will be inconsistent to 
a certain degree and a certain amount of inconsistency can be tolerated. He 
suggests a measure for consistency, termed the consistency ratio (CR), which 
should be allowed to have a maximum value of .1, or 10%. A value greater 
than 10% indicates that the DM should rethink his or her answers.

The consistency ratio, denoted as CR, is computed from the consistency 
index, CI, given by

 
CI

n
n

max= -
-

( )
( )

,
l

1
 (3.56)

where
λmax is the maximum eigenvalue associated with the solution to (3.53)
n is the number of factors (or the number of rows/columns) associated 

with the A matrix

(Note that if λmax = n, which only occurs if the DM is perfectly consistent, 
then CI = 0.)

The consistency ratio, CR, is then given by

 
CR

CI
RI

= ,  (3.57)

where RI denotes a “random index (RI),” which is the “average value” 
of CI for random matrices using the Saaty scale obtained by Forman 

A1 A2 A3

A

FIGURE 3.6
Portion of a hierarchy for the AHP.

A =
1 3 5

11
1 11/5

1/3

FIGURE 3.7
An A matrix resulting from inconsistent responses from the DM.
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(Alonso and Lamata, 2006). The random index (RI) is a function of the num-
ber of rows/columns of the A matrix. The values for RI are shown in Table 
3.26 (see Saaty, 1990a, p. 84).

As an example, consider the inconsistent A matrix shown in Figure 3.7. 
The process for finding the value for λmax is shown in the following:
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or
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Now, the maximum value of λ, which solves this equation, is given by λmax = 
3.03. (Note that λmax > n.) Hence, we achieve the following:
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Since the value of CR is less than .1, good consistency is indicated.

TABLE 3.26

Value of the Random Index as a 
Function of the Number of Rows of A

Number of Rows in A RI 

2 0
3 0.58
4 0.90
5 1.12
6 1.24
7 1.32
8 1.41
9 1.45

10 1.49
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Saaty (1990a, p. 85) notes that one way to improve the consistency of the 
DM is to go ahead and compute the weights for the factors based on the orig-
inal inconsistent matrix and then rank the factors based on these weights. 
With this ranking in mind, allow the DM to answer the pairwise comparison 
questions again; this should result in improved consistency.

Step 3. Determine the global weight for each alternative on each lowest-level 
criterion in the hierarchy, by multiplying the weights “up” the branch in the 
hierarchy corresponding to that alternative.

Consider the hierarchy of Figure 3.5, not including the alternatives at the 
lowest level. This hierarchy, with local weights shown for each respective 
factor, is shown in Figure 3.8.

Note that the local weights for any portion of the hierarchy sum to 1, as 
they always should.

Now, the global weight for any factor in the hierarchy is given by taking the 
product of weights of all of the factors associated with the relevant factor as 
one moves “up” the hierarchy. For example, the global weights associated 
with the lowest-level factors in Figure 3.8 are shown in Table 3.27.

Sub-
objective

1A
(.4)

Sub-
objective

1B
(.6)

Sub-
objective

2A
(.2)

Sub-
objective

2B
(.3)

Sub-
objective

2C
(.5)

Sub-
objective 2

(.2)

Sub-
objective 1

(.8)

Objective

FIGURE 3.8
Hierarchy of Figure 3.5, minus the alternative factors, with local weights attached.

TABLE 3.27

Global Weights for the Lowest-Level 
Factors of Figure 3.8

Factor Global Weight 

Subobjective 1A .4(.8) = 0.32
Subobjective 1B .6(.8) = 0.48
Subobjective 2A .2(.2) = 0.04
Subobjective 2B .3(.2) = 0.06
Subobjective 2C .5(.2) = 0.10
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Note that the global weights of all factors at any particular level of the hier-
archy sum to 1.

Now suppose that the local weights for the alternatives shown in Figure 3.5, 
relative to each of the lowest-level subobjectives, are given in Table 3.28. As 
seen earlier, these local weights are determined through pairwise compari-
sons concerning how well respective individual alternatives do with respect 
to other alternatives on a particular subobjective.

Note, as will always be the case, that the sum of the local weights over all 
alternatives for any particular subobjective is 1.

Finally, the global weights for all of the factors in the hierarchy are given 
in Table 3.29.

Note that the sum of the global weights over all alternatives in Table 3.29 
is 1 (.436 +.406 +.158 = 1). The alternatives are then ranked according to their 
global weight values: Alternative 1 is preferred to alternative 2, and alterna-
tive 2 is preferred to alternative 3.

Example 3.6: Using the AHP for Resource Allocation at a Call Center

As with other service systems, the design and operation of a call center 
involves the consideration of multiple, conflicting performance mea-
sures related to the call center operators and staff, as well as customers. 

TABLE 3.28

Local Weights for Alternatives of Figure 3.5

Alternative 
Subobjective 

1A 
Subobjective 

1B 
Subobjective 

2A 
Subobjective 

2B 
Subobjective 

2C 

Alternative 1 .6 .3 .9 .6 .3

Alternative 2 .3 .5 .08 .3 .5

Alternative 3 .1 .2 .02 .1 .2

TABLE 3.29

Global Weights for All Factors of Figure 3.5

Factor Global Weight 

Sub 1 0.8
Sub 2 0.2
Sub 1A 0.32
Sub 1B 0.48
Sub 2A 0.04
Sub 2B 0.06
Sub 2C 0.10
Alt1 0.436
Alt 2 0.406
Alt 3 0.158
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As defined by Mehrota (1997), a call center is “any group whose princi-
pal business is talking on the telephone to customers or prospects. This 
group may be centralized in a single site, distributed across multiple 
sites or ‘virtualized’ with agents in individual offices.”

In their excellent book, Kelton et al. (2015, Chapter 5) describe a simula-
tion model for a generic call center that has three types of callers, clas-
sified as technical support, sales information, and order status inquiry. 
The technical support callers are interested in support for one of three 
types of products, classified as products one, two, and three.

Resources for this call center include trunk lines and staff who answer 
the calls and provide relevant information to the callers. These staff per-
sonnel are classified as being either of type sales support or technical 
support; the technical support staff personnel are further classified as 
being able to provide support for products of type one, two, or three (as 
noted in the previous paragraph) or for all three types of products for 
the better trained personnel. The cost per hour for staff varies by type of 
staff; for example, technical support staff who are able to provide sup-
port for all three types of products are more expensive than staff who 
can provide support for only one type of product.

Additional details concerning the system such as call arrival rates, dis-
tribution of callers by type, work schedules for the different staff, and 
processes associated with providing service to the callers are given by 
Kelton et al. (2015). Here, we are concerned with examining various poli-
cies (as defined by the number of trunk lines and numbers of various 
types of staff) with respect to a variety of attributes, corresponding to 
either (1) the cost for operating the system or (2) the level of service pro-
vided to the customers. In fact, for virtually all service systems, the attri-
butes can be classified as being related to either cost or level of service.

A hierarchy of objectives for this call center is shown in Figure 3.9. As 
is noted earlier, the objectives are separated into two categories, relating 
to cost and service. The cost category has two subobjectives: minimiza-
tion of weekly trunk line costs and minimization of weekly labor costs, 
both in dollars; note that a manager of the call center might very well 
want to consider these two types of costs separately, since the first relates 
to equipment and the second relates to personnel.

The service level objective has four subobjectives, relating to the wait-
ing times for the three types of customers who access the system, and 
the number of callers who receive a busy signal, which occurs when all 
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support call
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time
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service level

considerations

Optimize Call
Center

Operation

Optimize cost
considerations

FIGURE 3.9
A hierarchy of objectives for a call center.
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of the trunk lines are in use at the time of their call. These callers who 
receive a busy signal (and therefore are not served by the system) are 
called “rejected callers”; the associated relevant attribute is percent of 
callers who are rejected.

In summary, the attributes associated with the service level subob-
jectives for waiting times have threshold levels associated with them. 
Specifically, as described in Kelton et  al. (2015), tech support callers, 
order status callers, and sales callers expect a certain amount of wait 
time, namely, 3 minutes, 1 minute, and 2 minutes, respectively; no “pen-
alty” will be incurred if a (relevant) caller waits less than one of these 
times. Note that if one were thinking of these wait times in terms of 
individual attribute value functions, the relevant functions would have 
a zero slope at any value less than the threshold level.

So in summary, the attributes associated with each of the lowest-level 
objectives in Figure 3.9 are

 1. Minimizing weekly trunk line costs: weekly trunk line cost in 
dollars

 2. Minimizing weekly labor costs: weekly labor costs in dollars
 3. Minimizing tech support call wait time: expected sum over all 

tech support callers of excess (over 3 minutes) wait times
 4. Minimizing order status call wait time: expected sum over all 

order status callers of excess (over 1 minute) wait times
 5. Minimizing sales call wait time: expected sum taken over all 

sales callers of excess (over 2 minutes) wait times
 6. Minimizing percent rejected callers: percent of calls coming 

to the system, which are “rejected” because a trunk line is not 
available

The control variables for the simulation model are identified as

 1. Number of trunk lines
 2. Number of Tech 1 call takers
 3. Number of Tech 2 call takers
 4. Number of Tech 3 call takers
 5. Number of Tech All call takers
 6. Number of sales call takers

The Tech 1, Tech 2, and Tech 3 call takers refer to staff who can handle 
the three types of tech support callers, respectively (for the three types of 
products); the Tech All call takers refer to a type of staff who can handle 
tech support callers for any of the three types of products; hence, this 
better-trained staff is more expensive. The sales call takers refer to those 
call takers who handle the sales callers, as well as a small percentage of 
the order status callers. In terms of explaining this particular application 
of AHP, the actual control variables and the various solutions (in terms 
of values assigned to these control variables) are not that important and 
are only given here for illustrative purposes. We are mainly concerned 
with how the various outcomes for good alternatives (solutions) are eval-
uated, and how a DM would trade off among the various factors of the 
hierarchy.
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A simulation model of the hypothetical system was developed, and 
this model was run for various optimization models in order to yield 
several solutions with “good outcomes.” The optimization models solved 
to generate these solutions were of the following form:

Minimize (Weekly Call Taker Cost) + (Weekly Trunk Line Cost)
Subject to: (1) Sum of Excess Wait Times ≤ 8,000, 12,000, or 16,000, and
(2) Percent of Calls Rejected ≤ 6, 8, 10, 12
An optimization model was formed by selecting a combination of two 

values to form the right-hand sides for the constraints. For example, one 
of the models solved had a right-hand side for the first constraint of 8000 
minutes and a right-hand side for the second constraint of 6%. These 
optimization models were solved with the use of the heuristic optimiza-
tion package: OptQuest™ (see Kleijnen and Wan, 2007), which is imple-
mented as an interface with several simulation software packages.

From the solutions generated using the simulation model and 
OptQuest, five solutions were selected for further analysis using AHP. 
(Note that we are using the term solution in place of the term alternative 
used in describing the AHP in this example.) These five solutions, given 
in terms of the number of trunk lines and additional call takers of vari-
ous types (over a baseline number of call takers), are given in Table 3.30. 
The outcomes associated with these five solutions, given in terms of the 
estimates of the expected attribute values as generated from the simula-
tion, are shown in Table 3.31. All times are in minutes and all costs are 
in dollars in Table 3.31. As mentioned earlier, note that the “wait times” 
refer to excess wait times over threshold values.

Now, the answers given by a hypothetical DM to the pairwise com-
parison questions for the various sections of the hierarchy are shown in 
Figure 3.10.

Note that there are three sections of the hierarchy, which correspond 
to the respective set of pairwise comparison questions asked of the DM. 
Each of two of those sections has only two factors—hence, only one 
pairwise comparison is needed for these sections. The third section of 
the hierarchy contains four factors; hence, six pairwise comparisons are 
needed in order to handle all possibilities.

TABLE 3.30

Five Solutions Generated for the Call Center Example Using the Simulation Model 
Interfaced with OptQuest

Solution # 

No. of 
Trunk 
Lines 

No. of 
Additional 

Tech 1’s 

No. of 
Additional 

Tech 2’s 

No. of 
Additional 

Tech 3’s 

No. of 
Additional 
Tech All’s 

No. of 
Sales Call 

Takers 

1 24 1 2 0 0 0
2 25 1 1 1 0 1
3 26 1 1 1 1 1
4 24 0 0 0 2 2
5 25 0 2 0 4 2
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These answers were used as input to the software package Expert 
Choice (http://expertchoice.com/comparion/) in order to perform the 
computations associated with the AHP. In particular, the local weights 
resulting from the pairwise comparisons shown in Figure 3.10 are shown 
in Tables 3.32 through 3.34. Note that each set of local weights sums to 1.

The local weights associated with each of the five outcomes shown in 
Table 3.31 with respect to each of the six lowest-level factors in the hier-
archy of Figure 3.9 are shown in Table 3.35. Note that these weights are 
derived from the pairwise comparisons provided by our hypothetical 
DM with respect to how well each of the outcomes performs on each of 
the lowest-level factors (objectives) of Figure 3.9. As an example, the DM 

TABLE 3.31

Outcomes Associated with the Five Solutions in Table 3.30

Solution 
Number 

Weekly 
Trunk 

Line Costs 

Weekly 
Labor 
Costs 

Tech 
Support Call 

Wait Time 

Order 
Status Call 
Wait Time 

Sales 
Call Wait 

Time 

Percent 
Rejected 
Callers 

1 2352 13,240 5203 1007 3739 9.53
2 2450 13,580 5445 689 2630 6.85
3 2548 13,940 4923 914 3024 5.26
4 2352 13,680 4957 554 2158 7.52
5 2450 15,040 4374 673 2362 4.58

Cost is equally as important as service level

Weekly labor costs are weakly more important than weekly trunk line costs

Sales call wait time is weakly more important than the number of rejected calls
Number of rejected calls is weakly more important than order status call wait time

Order status call wait time is of equal importance to tech support call wait time
Sales call wait time is strongly more important than order status call wait time

Sales call wait time is very strongly more important than tech support call wait time

Number of rejected calls is strongly more important than tech support call wait time

FIGURE 3.10
Answers to the pairwise comparison questions for the hierarchy of Figure 3.9.

TABLE 3.32

Local Weights Associated with Pairwise 
Comparisons of Top-Level Factors of Figure 3.9

Cost Service Level 

.5 .5

http://expertchoice.com/comparion/
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would be expected to provide an answer to the question of how much bet-
ter a technical wait time of 5203 minutes (associated with Outcome 1) is 
than the technical wait time of 5445 minutes (associated with Outcome 2).

Note that the weights in Tables 3.32 through 3.34 are rounded off to 
one, two, and two digits, respectively, but the weights in Table 3.35 are 
rounded to three digits.

The global weights associated with each of the factors in the hierar-
chy are shown in Table 3.36. As noted previously, these global weights 
are computed as the product of the local weights as one moves down 
the hierarchy. For example, the global weight of sales call wait time is 
computed as the product of the local weights for sales call wait time and 
service level, or as .54 * .5 ≈ .2669. (Note that the rounding of the first two 
weights results in these two quantities not being exactly equal.)

Note that the local weight for a factor could be thought of as a reflec-
tion of the importance of that factor with respect to the next higher-level 
factor to which the relevant factor is connected; for example, the local 
weight of .75 for weekly labor cost is a reflection of the importance of that 
factor with respect to cost considerations only.

TABLE 3.33

Local Weights Associated with Pairwise Comparisons of 
Second-Level Cost Factors of Figure 3.9

Weekly Trunk Line Costs Weekly Labor Costs 

.25 .75

TABLE 3.34

Local Weights Associated with the Pairwise Comparisons of the 
Second-Level Service Level Factors of Figure 3.9

Tech Support Call 
Wait Time 

Order Status Call 
Wait Time 

Sales Call 
Wait Time 

Percent 
Rejected Callers 

0.07 0.11 0.54 0.28

TABLE 3.35

Local Weights Associated with Each of the Five Outcomes for Each of 
the Lowest-Level Factors in the Hierarchy

Outcome 
Number 

Weekly 
Trunk 
Line 
Costs 

Weekly 
Labor 
Costs 

Tech 
Support 

Call Wait 
Time 

Order 
Status 

Call Wait 
Time 

Sales 
Call 
Wait 
Time 

Percent 
Rejected 
Callers 

Outcome 1 0.344 0.412 0.055 0.036 0.030 0.029
Outcome 2 0.129 0.243 0.038 0.200 0.147 0.154
Outcome 3 0.055 0.129 0.179 0.051 0.072 0.245
Outcome 4 0.343 0.179 0.137 0.432 0.445 0.072
Outcome 5 0.129 0.037 0.591 0.281 0.306 0.500
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On the other hand, the global weight for a factor could be thought of as 
a reflection of the importance of that factor with respect to the overall 
(top level) goal or factor of the system: optimize call center operation; for 
example, the global weight of .27 for sales call wait time is a reflection of 
the importance of that factor with respect to the overall goal of optimizing 
the call center operation.

The respective global weights for each of the outcomes are shown 
in Table 3.37. These global weights are computed as the sum (overall 
lowest-level objectives) of the products of an outcome’s local weight 
associated with a lowest-level objective and that lowest-level objective’s 
global weight. For example, the global weight for Outcome 4 (associated 
with Solution 4 of Table 3.37) is given by

 0.125 * .343 + 0.375 * .179 + 0.0389 * .137 + 0.053 * .432 + 0.2669 * .445 
 + 0.1412 * .072 = .27.

As can be seen from the global weights, the solutions/outcomes, listed 
in order of decreasing preference, are given as 4, 1, 5, 2, and 3. It is clear 
that, upon examining the outcomes closely, solution number 4 is helped 
greatly by its excellent value (i.e., low numerical value) for sales call wait 
time and also by the high value associated with the global weight for 
sales call wait time.

TABLE 3.36

Global Weights Associated with Each of the Factors in the 
Hierarchy of Figure 3.9

Factor Global Weight 

Cost 0.5
Service level 0.5
Weekly trunk line costs 0.125
Weekly labor costs 0.375
Tech support call wait time 0.0389
Order status call wait time 0.053
Sales call wait time 0.2669
Percent rejected callers 0.1412

TABLE 3.37

Global Weights for the Solutions/Outcomes

Solution/Outcome Global Weight 

1 0.23
2 0.18
3 0.11
4 0.27
5 0.21
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In considering this example in more detail, the reader should be aware 
of the large amount of effort made prior to even applying the AHP. 
Specifically, a simulation model was developed in order to model the 
relationships between the control variables and the performance mea-
sures; then an optimization model was developed and solved for various 
parameter values in order to obtain several good alternative solutions.

3.11.3  Criticisms of the AHP, Comparison of the 
AHP and MAVT, and Extensions

Following his original development of the AHP, Saaty (1986) provided an 
axiomatic foundation for his methodology. The theory relies on the use of 
ratio scale priorities (as opposed to a nominal, ordinal, or interval scale) for the 
factors in the hierarchy. To quote Forman and Gass (2001),

Any Hierarchical-based methodology must use ratio-scale priorities 
for elements above the lowest level of the hierarchy. This is necessary 
because the priorities (or weights) of the elements at any level of the hier-
archy are determined by multiplying the priorities of the elements in 
that level by the priorities of the parent element.

As noted by Bouyssou et al. (2000, p. 121), the “models” derived in AHP and 
multiattribute value theory (MAVT) are the same (additive, scaled value 
functions), but one should not necessarily expect these respective method-
ologies to yield the same results with respect to evaluation and ranking of 
the alternatives. However, in a simulation study involving AHP, MAVT, and 
other methodologies, Buede and Maxwell (1995) found that AHP and MAVT 
gave close to the same results. Schoner et al. (1997) showed that with their two 
modifications of AHP (called referenced AHP and linking pin AHP), total 
agreement with MAVT with respect to the first-ranked alternatives would 
have been achieved in the Buede and Maxwell study. (See Belton [1986] for an 
additional discussion involving the comparison of AHP and MAVT.)

Among other difficulties, the detractors of AHP say that one of its main 
problems is that the concept of “importance” is not defined well enough to 
accurately represent a DM’s preference structure (see Bouyssou et al., 2010, 
p. 151). In particular, consider Example 3.6 involving staffing levels for a call 
center. One might very well expect a DM, in comparing the importance of 
cost to service level, to say that they are both important and that without 
more specific information, it would be impossible to say that one is more 
important than the other.

Harker and Vargas (1987), Dyer (1990a), Harker and Vargas (1990), Saaty 
(1990b), and Dyer (1990b) engaged in a spirited discussion of the merits of 
AHP in general, and versus MAVT in particular, and the reader is directed 
to this series in order to gain a detailed understanding of the controversy.

In addition, Gass (2005) provides a summary of the discussion, albeit from 
the viewpoint of a proponent of AHP. He notes that the major criticisms of 
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AHP involve its measurement scale (the 0–9 scale presented earlier), rank 
reversal, and transitivity of preferences. As noted earlier, AHP does not 
require transitivity of preferences (e.g., if Subobjective A is more important 
than B and B is more important than C, then A must be [much] more impor-
tant than C if transitivity is to hold); but multiattribute value theory does 
assume this concept as an axiom.

Rank reversal can be described by a situation in which one has several 
alternatives that are ranked from best to worst through the use of AHP, 
say A1, A2, and A3, in this respective order. Then another alternative, A4, is 
introduced and the AHP process is performed again with the same DM act-
ing in a consistent fashion; the subsequent computation results in A2 being 
ranked ahead of A1 with AHP—that is, the ranking of A1 and A2 become 
reversed. (See Belton and Gear [1983] for a specific example of rank reversal.) 
Rank reversal can happen with AHP, but obviously not with a multiattribute 
value function. As noted by Gass (2005), however, rank reversal does happen 
in real life, but it can be considered a function of the problem structuring 
process.

A variation of AHP involves the use of a geometric scale to make pair-
wise comparisons and geometric means to perform the aggregation over 
the levels of the hierarchy (Lootsma, 1993, 1996). This variation, termed mul-
tiplicative AHP, allows the elimination of some of the rank reversal cases 
(Lootsma, 1993). Multiplicative AHP also allows for the separation of the 
pairwise comparisons into two separate categories of assessment: the pair-
wise comparisons involving all of the factors except for the alternatives and 
the comparisons involving only the alternatives with respect to the lowest-
level attributes. Lootsma (1996) describes the general situation in which such 
an approach, involving two separate sets of DMs, may be advisable.

In considering the use of the multiplicative AHP by a group, the influ-
ence/power of the members of the group may be important to consider, as 
shown by Barzilai and Lootsma (1997); however, this use of the multiplica-
tive AHP within a group has also raised controversy (see Korhonen, 1997; 
Larichev, 1997; Lootsma and Barzilai, 1997; Vargas, 1997).

Triantaphyllou (2001) describes additional cases of rank reversal, which 
occur with standard AHP that do not occur with multiplicative AHP. See 
Schoner and Wedley (1989), Schoner et al. (1993), and Barzilai and Golany 
(1994) for additional discussion of rank reversals.

As noted earlier, AHP was originally designed so as to apply to a hierar-
chy in which each factor is attached to exactly one higher-level factor in the 
hierarchy. This contrasts with some of the fundamental objectives–means 
objectives hierarchies in which a means objective can be connected to mul-
tiple fundamental objectives (e.g., see Figure 2.9). An extension of AHP, 
called the analytic network process (ANP), has been developed by Saaty 
and Vargas (2006) to address these more complex situations. Finally, Forman 
and Peniwati (1998) discuss how individual judgments and priorities can be 
aggregated within the AHP.
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3.12 Outranking Methods

The so-called outranking methods originated from the work of Bernard Roy 
(1968). This group of techniques/methods is often termed the European or 
French approach, as opposed to the “American approach” as represented by 
multiattribute value/utility theory and the analytic hierarchy process. Since 
Roy’s initial work in the area, many researchers have developed variations 
on this initial method, to the point where there currently exists a whole col-
lection of related methods.

As noted by Rogers and Bruen (1998), the word “outranking” refers to the 
degree of dominance of one alternative over another. As such, these methods 
do not necessarily provide a complete ranking of the alternatives and also 
avoid strong assumptions about the true preferences of the DM(s) (Kangas 
et  al., 2001b). As with the AHP, the outranking methods rely on pairwise 
comparisons, but without the use of a hierarchy; in addition, many of the 
outranking methods use the differences in the attribute values for pairs of 
alternatives as the basis for their inputs.

The original outranking method, developed by Roy (1968), was called 
ELECTRE for ELimination Et Choix Traduisant la REalité (ELimination and 
Choice Expressing REality). As noted earlier, since its initial development, a 
whole group of related methods have been developed, including ELECTRE 
I (ELECTRE One), ELECTRE II, ELECTRE III, ELECTRE IV, ELECTRE IS, and 
ELECTRE TRI (ELECTRE tree). (See Figuerira et al. [2005] for a review of the 
ELECTRE methods.)

Additional outranking methods that have been developed include the 
PROMETHEE (preference ranking organization method for the enrichment 
of evaluations), which include PROMETHEE I and PROMETHEE II. See 
Brans and Vincke (1985); Brans et al. (1986); and Mareschal and Brans (1988) 
for descriptions of these methods. Mareschal (1986) describes an extension of 
PROMETHEE (stochastic PROMETHEE) used to analyze a group of uncer-
tain outcomes. Dubois et al. (1989) describe an application of PROMETHEE 
as part of an expert system for diagnosis, and Mareschal and Brans (1991) 
describe an application of PROMETHEE to “industrial evaluation.” Finally, 
see Behzadian et al. (2010) for a literature review of the methodologies and 
applications of PROMETHEE.

The outranking methods have been applied to a variety of areas including 
risk assessment for natural gas pipelines (Brito et al., 2010), selection of land 
mine detection strategies (De Leeneer and Pastijn, 2002), selection of a solid 
waste management system in Finland (Hokkanen and Salminen, 1997), and 
ranking of extension projects for the Paris metro line (Roy and Huggonard, 
1982). Leyva-López and Fernández-González (2003) developed a method for 
group decision support based on ELECTRE III.

The following description corresponds to the ELECTRE III method, which 
has been described as the most commonly used of the ELECTRE methods 



137Making Decisions under Conditions of Certainty

(Diakoulaki et al., 2005, p. 889). The basic steps, following the identification 
of the p attributes, alternatives, and associated outcomes, as described in 
Section 3.2, are as follows (Kangas et al., 2001a):

 1. Three types of thresholds are identified by the DM for each attribute: 
indifference thresholds, denoted as qj for j = 1,…, p; strong preference 
thresholds, denoted as rj for j = 1,…, p, where rj > qj for j = 1,…, p; and 
veto thresholds, denoted as vj for j = 1,…, p, where vj > rj for j = 1,…, p.

  Indifference thresholds identify the maximum amount that two out-
comes can differ on a particular attribute for which the DM would 
be indifferent. For Example 3.1, if the DM would be indifferent to two 
annual salaries that differed by at most $100, then q1 for Example 3.1 
would be 100.

  Strong preference thresholds identify the minimum amount that two 
outcomes could differ on a particular attribute for which the deci-
sion maker would strongly prefer one outcome over another with 
respect to that attribute. Again, for Example 3.1, if the DM would 
strongly prefer one salary over another if they differed by at least 
$1000, then r1 would be 1000.

  If the difference between two outcomes for a particular attribute is 
greater than qj but less than rj then the DM is said to weakly prefer one 
outcome to another with respect to that attribute.

  Veto thresholds allow for the possibility for an alternative with a very 
poor value on a particular attribute (as compared to another alterna-
tive) to not be chosen as a preferred alternative no matter how well 
that alternative performs on the other attributes. Just as with indif-
ference thresholds, weak preference thresholds, and strong prefer-
ence thresholds, veto thresholds refer to a difference in the outcomes 
for two alternatives with respect to a particular attribute, j.

  The closer the veto threshold is to the strong preference threshold for 
a particular attribute, the more important that attribute is (Roy, 1991).

  Figure 3.11 illustrates the relationships between the various 
thresholds.

  As noted by Kangas et  al. (2001a), these indifference thresholds, 
weak preference thresholds, strong preference thresholds, and 
veto thresholds can be either constant, proportional to the attribute 
value, or a linear function of the attribute value. This owes to the 
fact that the marginal rates of substitution may depend on the attri-
bute value at which the rate is measured, as discussed earlier. In 
particular for Example 3.1, q1, the indifference threshold for annual 
salary, might be $100 if the threshold is applied within the range 
of $60,000–$65,000, but q1 might be $200 if applied in the range of 
$70,000–$75,000).
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 2. Weights, denoted as wj for j = 1,…, p (where wj
j

p

=å =
1

1, and 

0 < wj < 1), are defined for the respective attributes. These weights 
can be computed using any of the methods already presented.

 3. A concordance index, denoted as C(Ai, Aγ) for i = 1,…, n; γ = 1,…, n; and 
i ≠ γ, is computed for each distinct pair of alternatives as follows:
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 4. A discordance index, denoted as dj(Ai, Aγ), is computed for each 
attribute and for each pair of alternatives for j = 1,…, p; i = 1,…, n; 
γ = 1,…, n; and i ≠ γ, as follows:
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  Note that the discordance index is computed for each attribute with 
a veto threshold (for every pair of distinct alternatives) and is not 
weighted by attribute importance.

Indifference Weakly preferred Strongly preferred

Increase in the difference between attribute j values between two outcomes

Veto
qj rj vj

FIGURE 3.11
Relationships between the various thresholds used in ELECTRE III.
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 5. The degree of outranking, denoted as Ο(Ai, Aγ), is computed for each 
pair of alternatives for i = 1,…, n; γ = 1,…, n; and i ≠ γ, as follows:
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  where β(Ai,Aγ) is the set of attributes for the pair of alternatives 
(Ai,Aγ) for which dj(Ai,Aγ) > C(Ai,Aγ).

 6. There are at least two different ways that the alternatives can be 
ordered, based on the values associated with the Ο(Ai, Aγ) (Miettinen 
and Salminen, 1999). One approach is the “minimum procedure” 
(Pirlot, 1995) in which the alternatives are ranked according to the 
decreasing values of inf {Ο(Ai, Aγ) for γ = 1,…, p, i ≠ γ}; that is, select 
the smallest element of each row and then rank the rows (alterna-
tives) according to these values from largest to smallest. Note that 
this procedure could very easily lead to ties in the ranking.

  Note that while considering a pair of local concordance index values, 
cj (Ai, Aγ) and cj (Aγ, Ai) for i ≠ γ, and for a particular attribute j, one 
could have three possibilities:

 1. cj(Ai,Aγ) = 1 and cj(Aγ,Ai) = 1
 2. cj(Ai,Aγ) = 1 and cj(Aγ,Ai) = 0
  or
 3. cj(Ai,Aγ) = 0 and cj(Aγ,Ai) = 1
  but not cj(Ai,Aγ) = 0 and cj(Aγ,Ai) = 0.

Note also that the discordance values are useful in situations where 
a very poor attribute value for an alternative can eliminate that alterna-
tive from consideration, no matter what its other attribute values are.

Example 3.7: Applying ELECTRE III to Example 3.1, 
the Job Selection Problem

Let’s return to Example 3.1 of our graduating student with the job offers, as 
shown in Table 3.3, and apply ELECTRE III to this problem. Suppose that 
the student supplies indifference thresholds, strong preference thresh-
olds, and veto thresholds as shown in Table 3.38. In order to keep this 
example relatively simple, we will assume that these thresholds remain 
constant over the range of respective attribute values.

As noted earlier, any of the methods presented thus far could be used 
to determine the respective weights for the attributes/criteria. Let’s 
employ the swing weights computed in Section 3.8, that is, w1 = .45, 
w2 = .23, and w3 = .32.

The local concordance indices (the cj(Ai, Aγ) values) for the attributes 
of annual salary (X1), annual days of vacation (X2), and miles from 
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hometown (X3) are shown in Table 3.39 through Table 3.41, respectively. 
The first row and the first column of each of the matrices are headings for 
the six alternatives of the problem. So for example, the value for the local 
concordance index for attribute 2 (days of vacation) for the first and third 
alternatives (c2(A1, A3)) is given by locating the alternative 1 row and the 
alternative 3 column in Table 3.40—that is, c2(A1, A3) = 1. Note that this 
value of 1 is derived from the fact that x2(A1) + q2 ≥ x2(A3), or 5 + 5 > 7.

Note that these are given for each pair of distinct alternatives. Also, 
note that since none of the differences in given attribute values for any 
pair of alternatives lie between the indifference threshold and strong 
preference threshold values for that attribute, none of the local concor-
dance indices has a fractional value—each of the values is either 0 or 1.

As noted earlier, when cj(Ai, Aγ) = 1, then cj(Aγ, Ai) can equal either 
0 or 1 for i ≠ γ. For example, for the first attribute, salary, the first and 

TABLE 3.38

Indifference Thresholds, Strong Preference Thresholds, and Veto 
Thresholds for Example 3.1

Attribute 
Indifference 

Threshold 
Strong Preference 

Threshold Veto Threshold 

1: Annual salary $1000 $4000 $15,000
2: Days of vacation 3 5 15
3. Miles from hometown 100 200 600

TABLE 3.39

Local Concordance Indices for the Annual Salary (X1) Attribute

Alt 1 Alt 2 Alt 3 Alt 4 Alt 5 Alt 6 

Alt 1 — 1 0 1 1 1
Alt 2 0 — 0 0 1 0
Alt 3 1 1 — 1 1 1
Alt 4 0 1 0 — 1 0
Alt 5 0 0 0 0 — 0
Alt 6 1 1 0 1 1 —

TABLE 3.40

Local Concordance Indices for the Annual Days of Vacation (X2) Attribute

Alt 1 Alt 2 Alt 3 Alt 4 Alt 5 Alt 6 

Alt 1 — 0 1 0 0 0
Alt 2 1 — 1 1 0 1
Alt 3 1 0 — 1 0 1
Alt 4 1 0 1 — 0 1
Alt 5 1 1 1 1 — 1
Alt 6 1 0 1 1 0 —



141Making Decisions under Conditions of Certainty

sixth alternatives have the same value, $70,000. So, in this case, both 
c1(A1, A6) = 1 and c1(A6, A1) = 1. However, consider the values for salary 
for the third and fifth alternatives (x1(A3) = 75,000 and x1(A5) = 55,000). In 
this case, c1(A3, A5) = 1 and c1(A5, A3) = 0. Hence, in considering the local 
concordance indices for any pair of alternatives i and γ, the DM should 
realize that both pairs of indices are considered in the overall compari-
son and “scoring” of the alternatives.

The local discordance indices for the attributes of annual salary (X1), 
annual days of vacation (X2), and miles from hometown (X3) are shown in 
Table 3.42 through Table 3.44, respectively. As in the case of the concordance 
indices, these are given for each pair of distinct alternatives. The conven-
tions used for Table 3.39 through Table 3.41, in terms of defining the values 
for the rows and columns, are also used for Table 3.42 through Table 3.44.

TABLE 3.41

Local Concordance Indices for the Miles from Hometown (X3) Attribute

Alt 1 Alt 2 Alt 3 Alt 4 Alt 5 Alt 6 

Alt 1 — 1 1 1 1 1
Alt 2 1 — 1 0 1 1
Alt 3 0 0 — 0 0 0
Alt 4 1 1 1 — 1 1
Alt 5 1 1 1 1 — 1
Alt 6 1 1 1 0 1 —

TABLE 3.42

Local Discordance Indices for the Annual Salary (X1) Attribute

Alt 1 Alt 2 Alt 3 Alt 4 Alt 5 Alt 6 

Alt 1 — 0 1/11 0 0 0
Alt 2 6/11 — 1 1/11 0 6/11
Alt 3 0 0 — 0 0 0
Alt 4 1/11 0 6/11 — 0 1/11
Alt 5 1 1/11 1 6/11 — 1
Alt 6 0 0 1/11 0 0 —

TABLE 3.43

Local Discordance Indices for the Annual Days of Vacation (X2) Attribute

Alt 1 Alt 2 Alt 3 Alt 4 Alt 5 Alt 6 

Alt 1 — 5/10 0 0 1 0
Alt 2 0 — 0 0 0 0
Alt 3 0 3/10 — 0 8/10 0
Alt 4 0 0 0 — 5/10 0
Alt 5 0 0 0 0 — 0
Alt 6 0 0 0 0 5/10 —
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The reader should note that some of the values for the local discor-
dance indices are fractional, due to the fact that some of the differences 
between the attribute values for the alternatives lay between the relevant 
strong preference threshold and veto threshold values. For example, con-
sider the local discordance index for attribute 1 (annual salary) for alter-
natives 1 and 3 (d1(A1, A3)), which has a value of 1/11 ≈ .09. The difference 
in annual salary (an attribute to be maximized) between alternatives 3 
and 1 is given by $5,000; that is, x1(A3) – x1(A1) = 75,000 – 70,000 = 5,000, 
which is a value that lies between the strong preference threshold (4,000) 
and the veto threshold (15,000) for this attribute. Hence, the value for the 
relevant discordance index represents the “distance” that the difference 
(5,000) is from the strong preference threshold (4,000) to the veto thresh-
old (15,000). The relevant calculation is given by
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Given the local concordance indices, the overall (or “global”) concor-
dance indices can be computed. These values are shown in Table 3.45.

As an example, consider C(A1, A3) =.55. This value is computed as
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Using the local discordance indices as given in Tables 3.42 through 3.44 
and the global concordance indices, as given in Table 3.45, the β(Ai, Aγ) 
sets can be determined for each distinct pair of alternatives (Ai, Aγ), i ≠ γ. 
Recall that each β set is the set of attributes for which the relevant local 

TABLE 3.44

Local Discordance Indices for the Miles from Hometown (X3) Attribute

Alt 1 Alt 2 Alt 3 Alt 4 Alt 5 Alt 6 

Alt 1 — 0 0 0 0 0
Alt 2 0 — 0 0 0 0
Alt 3 1 1 — 1 1 1
Alt 4 0 0 0 — 0 0
Alt 5 0 0 0 0 — 0
Alt 6 0 0 0 0 0 —



143Making Decisions under Conditions of Certainty

discordance value is greater than the relevant concordance value (i.e., the 
set of values j for which dj(Ai, Aγ) > C(Ai, Aγ)). These values are shown in 
Table 3.46.

In Table 3.46, a “—” indicates that the set is not defined, whereas a 
“Φ” indicates the null (or empty) set. As an example of the computations 
in Table 3.46, let’s consider the set β(A3, A5), the set of attributes j for 
which dj(A3, A5) > C(A3, A5). Since C(A3, A5) = .45, dj(A3, A5) = 0, .8, and 1 
for j = 1, 2, and 3, respectively, β(A3, A5) = {2,3}.

The values for “degree of outranking,” Ο(Ai, Aγ), can now be computed. 
These values are shown in Table 3.47.

Now, finding the minimum value in each row of the matrix given in 
Table 3.47 yields Table 3.48.

TABLE 3.45

Concordance Indices for Each Pair of Distinct Alternatives

Alt 1 Alt 2 Alt 3 Alt 4 Alt 5 Alt 6 

Alt 1 — 0.77 0.55 0.77 0.77 0.77
Alt 2 0.55 — 0.55 0.23 0.77 0.55
Alt 3 0.68 0.45 — 0.68 0.45 0.68
Alt 4 0.55 0.77 0.55 — 0.77 0.55
Alt 5 0.55 0.55 0.55 0.55 — 0.55
Alt 6 1 0.77 0.55 0.68 0.77 —

TABLE 3.46

β(Ai, Aγ) Sets: The Set of Attributes j for Which dj(Ai, Aγ) > C(Ai, Aγ)

Alt 1 Alt 2 Alt 3 Alt 4 Alt 5 Alt 6 

Alt 1 — Φ Φ Φ {2} Φ
Alt 2 Φ — {1} Φ Φ Φ
Alt 3 {3} {3} — {3} {2,3} {3}
Alt 4 Φ Φ Φ — Φ Φ
Alt 5 {1} Φ {1} Φ — {1}
Alt 6 Φ Φ Φ Φ Φ —

TABLE 3.47

Ο(Ai, Aγ), Degree of Outranking Values

Alt 1 Alt 2 Alt 3 Alt 4 Alt 5 Alt 6 

Alt 1 — 0.77 0.55 0.77 0 0.77
Alt 2 0.55 — 0 0.23 0.77 0.55
Alt 3 0 0 — 0 0 0
Alt 4 0.55 0.77 0.55 — 0.77 0.55
Alt 5 0 0.55 0 0.55 — 0
Alt 6 1 0.77 0.55 0.68 0.77 —
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Note that either the fourth or sixth job offer would be selected with 
this approach, since they tie for the best value (.55) in this case. Also, 
alternatives 1, 2, 3, and 5 are ranked equally, tied for third in this case.

The ELECTRE III procedure was not very discriminating for this deci-
sion situation. This can be attributed to two main reasons. First, all of the 
values for the local concordance matrices are either 0 or 1, owing to the 
fact that none of the differences in the attribute values (for any particular 
attribute) between any two alternatives was between the indifference 
threshold and the strong preference threshold. Second, the veto thresh-
olds employed basically eliminated the first, second, third, and fifth 
alternatives from consideration. These reasons emphasize the fact that 
while the amount of preference information required of the DM in using 
the ELECTRE III method is not nearly as great as the amount required in 
the assessment of an MAV function, the DM still needs to be meticulous 
in supplying this information.

As with the other methods presented in this chapter, sensitivity analy-
sis is important as a part of the overall process. If the DM can quickly 
observe the effects on the ranking of alternatives as a result of changes 
to the indifference, preference, and veto thresholds as well as to changes 
in the attribute values for specific alternatives, a better decision (as well 
as a decision in which the DM will have more faith) may very well result.

Finally, the reader will note that there is much basic computation as 
part of the ELECTRE III process. But this computation is fairly simple 
and can be set up as part of a relatively simple spreadsheet application.

3.13 Extensions, Hybrid Approaches, and Comparisons

Each of the methodologies presented in this chapter has its own advantages 
and disadvantages vis-á-vis the other methodologies. No matter which tech-
nique is chosen however, it must be remembered that problem structuring 
is critical to the overall success of the decision-making process. If one does 
not have a good and complete set of alternatives, as well an appropriate set 

TABLE 3.48

Minimum Values for Each of the Six Rows (Alternatives) 
for Table 3.43 (inf{Ο(Ai, Aγ) for γ = 1,…, p, i ≠ γ})

Row/Alternative Minimum Value in Row 

1 0
2 0
3 0
4 0.55
5 0
6 0.55
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of attributes, even the best selection methodology may not lead to a good 
decision. Often, just presenting a good payoff matrix to the DM (or DMs) will 
lead to a good decision, satisfactory to all involved.

With respect to input, the methodologies differ with respect to the amount 
and type of preference information required of the DM(s). For example, 
the methodologies, which involve MAV function assessment, require very 
detailed information concerning the DM’s preference structure, while other 
methodologies such as AHP and the outranking approaches require prefer-
ence information, which is not quite so onerous to provide.

These differences can affect the “quality” of the ranking of the alterna-
tives, that is, in comparison to how the alternatives would be ranked accord-
ing to the actual preference structure of the DM(s). In some situations, one 
might even have a very inaccurate representation of the preference structure, 
which still gives a “correct ranking” for the alternatives (or at least gives the 
same first-ranked alternative).

Some of the methods such as those involving an assessment of the DM’s 
MAV function, TOPSIS, or AHP give a complete ranking of all of the alterna-
tives, while the outranking methods do not necessarily provide a complete 
ranking.

There are three important advantages associated with the approaches 
involving an assessment of the MAV function. First, such an approach 
requires the DM(s) to think very hard about the trade-offs they are willing 
to make concerning the important criteria for the relevant decision situation. 
Second, if a new alternative comes into play (with a corresponding new out-
come), this new alternative can be easily placed in the overall ranking with 
the other alternatives, just by computing its value function level. With the 
AHP and some other approaches, one must repeat the entire procedure with 
all of the other alternatives if a new alternative is introduced. Third, a process 
involving MAV function assessment does not involve direct consideration of 
the actual outcomes associated with the alternatives, only assessments over 
the outcome space; this helps to remove any “emotional attachment” of the 
DMs to the actual alternatives. Of course, some may consider this to be a dis-
advantage of these approaches, since the assessment process involves only 
hypothetical and not actual outcomes.

The selection of an approach for multicriteria decision analysis (or the rank-
ing of approaches) is itself a multicriteria problem, and various researchers 
such as Gershon (1981), Evans (1984), and Deason (1984) have suggested cri-
teria for the selection process. For example, Gershon suggested 27 different 
criteria including whether or not the method provides a complete ranking 
of the alternatives, computer time required, and interaction time required.

Of course, one should consider the decision situation in choosing a par-
ticular approach, including the number of attributes, the number of alter-
natives under consideration, the number of DMs, and the “sophistication” 
of the DM(s) with respect to their abilities to provide preference/trade-off 
information. Other important considerations would be whether or not public 
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input is needed in the process and the amount of justification/explanation 
required once the decision is made; for example, the use of public funds for 
large-scale projects obviously requires much public input and justification.

If one had many attributes to consider, then a methodology, which did not 
require much preference information from the DM, such as TOPSIS or one of 
the outranking methods, might be appropriate.

In some situations, a complementary approach might be suitable. For 
example, in a situation involving many attributes and alternatives, TOPSIS 
or one of the outranking procedures might be applied, and then the 10 or 15 
top-ranked alternatives might be subjected to an approach, which required a 
more sophisticated analysis.

Section 3.11.3 presents some of the research involving a comparison of 
AHP and MAVT. Other researchers have also conducted studies involving 
comparisons of the various methods. For example, Olson (2001) compared 
four methods: SMART, a centroid method, which is a variation on SMART, 
PROMETHEE II, and a variation on PROMTHEE II in the ranking of major 
league baseball teams based on their performance statistics. In this situa-
tion, the actual team standings could be compared to the results predicted 
by each of the four methods. Olson found that all of the methods provided 
value in the decision-making process and that they were similar in their pre-
dictive capabilities.

Lootsma and Schuijt (1997) compared three methods: the multiplicative 
AHP (referred to in Section 3.11.3), SMART, and ELECTRE in solving a prob-
lem involving the choice of a location of a nuclear power plant. (See Keeney 
and Nair [1977] for the original case study.) Lootsma and Schuijt concluded 
that there was an “encouraging degree of similarity” in the end results asso-
ciated with the three methods. They also concluded that a more complete 
study would have also involved the problem structuring portion of the deci-
sion analysis process, but including this aspect would be impractical for 
comparative studies.

Opricovic developed a method called VIKOR. (The name is an acronym 
derived from the Serbian language.) The method is similar to TOPSIS in that 
the distances from the ideal associated with the various outcomes are consid-
ered in determining a ranking. One unique aspect of VIKOR is that it allows 
for an explicit iterative and interactive approach with the DM(s). Opricovic 
and Tzeng (2007) compared an extension of VIKOR with three other meth-
ods: TOPSIS, PROMTHEE, and ELECTRE, using a case involving the evalu-
ation of six alternative hydropower systems on a river in Yugoslavia; these 
systems were evaluated over eight attributes. The methods provided simi-
lar rankings. In an earlier paper, Opricovic and Tzeng (2004) performed a 
detailed comparison of TOPSIS and VIKOR.

Al-Shemmeri et al. (1997) addressed the problem of choosing a multicrite-
ria decision aid for the ranking of water development projects with this mul-
ticriteria approach in mind. They employed the model selection paradigm 
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of Deason (1984) in order to eliminate some of the methodologies, and then 
they employed the 27 criteria of Gershon (1981) in order to evaluate the tech-
niques. In their study, PROMETHEE was found to be the preferred choice.

As a result of the deficiencies associated with some of the specific meth-
ods, various researchers have either extended the methods discussed in this 
chapter or developed “hybrid methods” involving a combination of two 
or more of the methods. For example, Macharis et al. (2004) provided rec-
ommendations for integrating PROMETHEE with a number of features of 
AHP; the suggested integration should yield a better hierarchy and weight 
determination.

Material Review Questions

3.1 Provide two specific examples of decision situations that one would 
want to model as deterministic situations. What are the characteristics 
of these situations, which lend themselves to a deterministic analysis?

3.2 Why would one want to eliminate all dominated outcomes prior to 
proceeding with a more detailed multicriteria decision analysis?

3.3 Elimination of all dominated solutions (or outcomes) from a set of 
solutions does not require any preference information from the DM 
(true or false).

3.4 What is the ideal?
3.5 What is a superior solution?
3.6 What is a nondominated solution?
3.7 Suppose that one has a collection of alternatives corresponding to mul-

tidimensional outcomes. If another alternative is added to the set, is it 
possible for a dominated outcome in the original set to become non-
dominated? Is it possible for a nondominated outcome in the original 
set to become dominated?

3.8 Suppose that one has 20 outcomes and wants to construct a dominance 
graph. How many pairwise comparisons would need to be made?

3.9 What type of scale are constructed attributes typically measured on?
3.10 Give one example each of a quantity measured on each of the four 

scales: nominal, ordinal, interval, and ratio.
3.11 Give an example of a situation in which a preference structure would 

not exist for a DM over an outcome space. How would you know that 
the DM would not have a valid preference structure?

3.12 Of the seven types of preference information mentioned in the chapter, 
which type is typically the most difficult for the DM to provide?

3.13 Give a specific example of a situation in which lexicographic ordering 
would clearly not be appropriate.
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3.14 In a typical additive multiattribute value function, what indicates that 
a particular attribute is to be minimized—a negative coefficient or a 
negative slope for the function?

3.15 Give an example of two multiattribute value functions that are strategi-
cally equivalent.

3.16 What is the significance of the concept of “strategic equivalence” of 
MAV functions?

3.17 Consider two attributes, denoted as X and Y, for which a DM wants 
more of each of these. Keeping the value of Y constant, would you 
expect the marginal rate of substitution of X for Y for any particular 
DM to increase in value or to decrease in value as X increases?

3.18 What is the form of a multiattribute value function if the marginal rate 
of substitution of any attribute for any other attribute does not depend 
on the point in the outcome space where the rate is measured?

3.19 Suppose that more of each attribute is desired in a decision problem 
involving two attributes: X1 and X2. Why is the statement “X1 is prefer-
entially independent of X2” meaningless?

3.20 If one has a set of attributes for a decision problem, X1, X2, X3, what is 
meant by the statement, “(X1, X2) is preferentially independent of X3”?

3.21 In referring to a set of attributes, X1, X2,…, Xp, what is meant by 
the statement, “the set (X1, X2,…, Xp) is mutually preferentially 
independent”?

3.22 If a set of attributes for a decision problem is mutually preferentially 
independent, what type of multiattribute value function is appropri-
ate? Will this function necessarily be linear?

3.23 Two different, but reasonable, DMs can have different (not even strate-
gically equivalent) MAV functions for the same decision situation (true 
or false).

3.24 What was the basic purpose behind the development of the SMART 
approach to MAV function assessment?

3.25 The TOPSIS approach relies on the use of both the ideal and the nega-
tive ideal (true or false).

3.26 What is one of the advantages of the AHP espoused by its proponents? 
Why do the detractors of AHP claim this as a disadvantage of the 
approach?

3.27 What is meant by “rank reversal” in the AHP? Why do some of the pro-
ponents of the AHP consider rank reversal to not be a major problem in 
its use?

3.28 Briefly describe the preference information required of a DM in order 
to use the ELECTRE III outranking method.

3.29 ELECTRE III typically provides only a partial order of the multidimen-
sional outcomes in a decision problem (true or false).

3.30 One can often arrive at a good alternative in a decision situation by 
using an appropriate technique for ranking alternatives even without a 
good problem structuring procedure (true or false).
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3.31 Briefly describe the type of preference information required from a 
DM (or DMs) in order to implement each of the following techniques: 
(1) identification of all nondominated solutions, (2) lexicographic order-
ing, (3) assessment of an MAV function, (4) TOPSIS, (5) AHP, and (6) 
ELECTRE III.

3.32 What aspects (attributes) of a decision problem should one consider in 
choosing a technique for ranking alternatives?

Exercises

3.1 Given that a decision problem has three attributes and that more of 
each attribute is preferred to less, select the nondominated outcomes 
from among the following set of outcomes.

 (6, 5, 4), (8, 2, 1), (4, 6, 7), (3, 4, 2), (7, 6, 2), (5, 7, 2), (4, 4, 4), (3, 6, 7), (3, 4, 5).

3.2 Suppose that as a graduating student, you have a net worth of $2000. 
You have five different job offers to evaluate. These offers are equiv-
alent in every important attribute except for yearly salary and num-
ber of days of vacation per year. Suppose that we have the following 
notation

 X = No. of days of vacation per year

 Y = Yearly salary

and the following outcomes to evaluate:

Outcome (X, Y)

1 (5, 55,000)
2 (7, 54,000)
3 (10, 52,000)
4 (15, 51,000)
5 (20, 49,000)

Rank order the outcomes.

 Now suppose that, because you have recently won the lottery, your 
net worth is $200,000. Rank order the outcomes under this assumption. 
Has your ranking changed? Discuss why or why not.

3.3 In a decision problem with two attributes, what can one say about the 
preference structure of the DM when the corresponding trade-offs con-
dition is satisfied?
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3.4 Give an example of two multiattribute value functions that are strategi-
cally equivalent, but not identical.

3.5 What is the marginal rate of substitution of X for Y at the outcome point 
(5, 7) given that an appropriate value function is

 v(x y 3x 7y., ) = +

3.6 Suppose that you have two different job offers. Each job gives you 
15 days of vacation. The first job pays $80,000 per year, while the sec-
ond job pays $50,000 per year. Each job gives you the option of “buy-
ing” five more days of vacation. What is the maximum amount you 
would “pay” from your salary for five more days of vacation from each 
job; that is, what are the values for x1 and x2 such that the following 
statements are true?

 ( , , ) ~ ( , )8 15 x 210 000 0

and

 ( , , ) ~ ( , ).5 15 x 220 000 0

If (80,000 − x1) is not equal to (50,000 − x2), then the MRS of salary for 
vacation days depends on the point you are at in the outcome space.

3.7 Suppose that one is assessing a scaled, additive multiattribute value 
function for a situation involving two attributes:

 v(x y c v (x c v y1 1 2 2, ) ) ( ).= +

Each attribute has a worst value of 0 and a best value of 100. Now, sup-
pose that the DM prefers the outcome (0, 100) to the outcome (100, 0). 
What can one say about the relative values of the scaling constants: c1 
and c2?

3.8 Suppose that you have a situation with two attributes, X and Y, and 
that your value function is given by v(x, y) = x + 3y2 (i.e., this is a case 
where the MRS of X for Y depends on the value for Y but not on the 
value of X). Draw the graphs in the X–Y space for three indifference 
curves, for the cases where the value function levels are given by 10, 20, 
and 30, respectively.

3.9 On a Saturday morning, a friend of yours asks you to pick up a friend 
of his at the airport. The two attributes are the amount of time that you 
need to spend to perform this task and the amount of money you will 
be paid:

 X = time required and Y = payment, in dollars,
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where
  x0 is the worst possible value for X = 180 minutes
  x1 is the best possible value for X = 10 minutes

and
  y0 is the worst possible value for Y = $1
  y1 is the best possible value for Y = $200

Assess your multiattribute value function for this situation and rank 
order the following outcomes:

Outcome: 1 2 3 4 5 6 7

X: 10 30 50 80 120 150 180
Y: 5 15 25 35 100 150 200

3.10 Consider a multiobjective problem in which you have five alternatives 
and respective corresponding outcomes. There are two attributes, X1 
and X2, each of which you want to maximize. The outcomes are given 
in the following table:

Outcome # X1 Value X2 Value 

1 98 22
2 57 45
3 65 37
4 22 68
5 75 31

Using the TOPSIS method, rank the five outcomes for the following 
two sets of weights, where w1 refers to the weight for attribute 1 and w2 
refers to the weight for attribute 2.

Case Weights 

Relative 
Closeness Values: 
C1, C2, C3, C4, C5 Rankings 

1 w1 =.9, w2 =.1
2 w1 =.1, w2 =.9

3.11 What is one of the major advantages of the analytic hierarchy process 
over the use of a multiattribute value function for solving a multiobjec-
tive problem?

3.12 Consider the following A matrix for the application of AHP:

 
A = 

1 7
1 7 1/

æ

è
ç

ö

ø
÷

What are the local priorities/weights for the two attributes?
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3.13 Consider a hierarchy (containing only the attributes for a problem, not 
the alternative solutions) for the AHP, with the following local weights:

.2 .8 .7 .3.4 .6

.6 .3 .1

Suppose also that two alternatives are being considered, and that the 
local weights for each of these alternatives for each of the six lowest 
level attributes, from left to right, are given by

Alt. 1 .7 .4 .8 .4 .2 .2
Alt. 2 .3 .6 .2 .6 .8 .8

Rank the two alternatives by computing their respective global 
priorities.

3.14 Consider a simple hypothetical situation involving three alternatives 
and two attributes. Both of the attributes are to be maximized, and the 
weights are .8 for the first attribute and .2 for the second attribute. The 
attribute values for each of the three alternatives are given by xj(Ai), 
the value for attribute j of the ith alternative:

xj(Ai) j = 1 j = 2 

i = 1 8 2
i = 2 2 6
i = 3 9 1

So, for example, Alternative 3 has an outcome of 9 on the first attribute 
and 1 on the second attribute.
 Using the following threshold values (where qj, rj, and vj are the 
indifference, strong preference, and veto thresholds, respectively, 
for attribute j) given in the following, determine a ranking for the 
three alternatives (note that ties are allowed) using the ELECTRE III 
procedure.

j qj rj vj 

1 2 5 7
2 1 3 8
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4
Goal Programming and Other Methodologies 
for Multiple Objective Optimization

4.1 Introduction

In this chapter, we present methodologies and applications for analyzing 
multiple objective situations with a very large (or even an infinite) number of 
alternatives. In addition to being multidimensional in order to represent the 
multiple objectives, the outcomes are also deterministic in nature.

Now the question occurs as to how a problem can have a very large or 
even an infinite number of alternatives. This problem characteristic occurs, 
because the alternatives are represented as a set of values assigned to a large 
number of decision variables, and these decision variables are classified as 
being either continuous or integer in nature. When the decision variables are 
continuous, they each can be assigned any value within a range of values; an 
example would be the amount of product to ship from a manufacturing facil-
ity to a distribution center. In such cases, the amount shipped could assume 
any of an infinite number of possible values.

In other cases, a decision variable could be integer in nature; more specifi-
cally, a decision variable could be zero-one or a general integer decision variable. 
A zero-one decision variable could correspond to a decision where the deci-
sion maker (DM) would either do something or not do something, such as 
locate a distribution center in a particular place, or do not locate a distribution 
center in that place. Other examples of such decision variables would be

 1. Include, or do not include, a destination in a route
 2. Include or do not include a route in a set of routes
 3. Include or do not include a project in a portfolio of projects

A general integer decision variable would be one that could assume any 
of a large number of integer values, such as 0, 1, 2,…, 20. Examples of such 
general integer decision variables would be the number of items to sample 
from a lot for acceptance sampling purposes, or the number of call takers 
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to assign to a particular shift at a call center. Since many of the solution 
methodologies for integer programming problems are designed for prob-
lems with zero-one decision variables, techniques have been developed 
to convert problems with general integer decision variables to those with 
only zero-one decision variables (e.g., see Hillier and Lieberman, 2010, 
pp. 478–479).

A set of values assigned to the respective decision variables in the type of 
problem discussed in this chapter represents an alternative. Typically, these 
problems can contain hundreds, thousands, or even millions of decision 
variables. When the problem contains only integer decision variables, the 
number of combinations of values that can be assigned to these variables can 
very easily become a very large number. For example, there are 2100 > 1030 var-
ious combinations of values for a problem with 100 zero-one decision vari-
ables. When there are continuous decision variables in addition to integer 
(or instead of integer) decision variables, the number of alternatives becomes 
infinite. With so many alternatives to consider, it is impossible to evaluate 
all of them. Hence, some type of optimization procedure, in which solution 
alternatives are implicitly evaluated, is required in order to determine the 
best solution.

Therefore, two types of processes are required in order to solve problems 
of the type discussed in this chapter—an optimization process and a process 
involving the articulation of the DM’s preference structure over the multiple 
objectives of the problem. The relative timing of these two processes is one 
way to categorize the various solution methodologies discussed in this chap-
ter (Evans, 1984): (1) prior articulation of preferences in which the articulation 
of preference information occurs prior to the optimization, (2) progressive 
articulation of preferences in which the articulation of preference informa-
tion is interspersed with the optimization, and (3) a posteriori articulation of 
preferences in which the articulation of preference information occurs after 
the optimization. Some algorithms employ a combination of two of the three 
approaches described earlier.

In addition to the types of decision variables associated with the prob-
lem and the timing of the articulation of the preference information relative 
to the optimization process, a third type of categorization, which one can 
employ for the problems/solution methodologies discussed in this chap-
ter, is how the relationships between the decision variables and objective/
constraint functions are modeled—either as all linear, or at least some non-
linear functions. (In this chapter though, the assumption is that the relation-
ship is always of a closed-form function.) The custom is to call the problem 
nonlinear if there is at least one nonlinear function out of all of the functions; 
otherwise, the problem is linear.

Figure 4.1 illustrates the classification scheme discussed earlier. In moving 
from left to right in the figure, choosing a single box out of each vertical box 
placement identifies the type of problem addressed.
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A general formulation of the problem addressed in this chapter is given by

 Optimize f x  f (x) f (x) subject to x X1 2 p{ ( ), , , }¼ Î  (4.1)

where
f1,f2,…,fp represent the p objective functions of the problem
x represents the set of decision variables (x = (x1,x2,…,xn))
X represents the constraint set

More specifically, X is allowed to represent both constraints on individual deci-
sion variables (such as xi ≥ 0 for nonnegative continuous decision variables, 
xi ∈  (0,1) for 0/1 decision variables, xi ∈  (0,1,2,…) for general integer decision 
variables) and on functions of decision variables (such as gj (x) ≥ 0). The use of 
the notation f1,f2,… is used to indicate that there is a closed-form representation 
for these functions, be they linear or nonlinear. This representation is analo-
gous to that of Chapter 3 in which xj(Ai) was used to represent the value for 
attribute j under alternative i (see Table 3.1). The word “optimize” is used in 
(4.1) to indicate that we could be either minimizing or maximizing any specific 
fi function.

Just as there is typically no superior solution for the problem situation pre-
sented in Chapter 3, there is typically no superior solution associated with 
problem (4.1); more specifically, there is no value for x ∈ X that optimizes all 
of the objective functions simultaneously. Hence, a “compromise solution,” 
involving trade-offs among the various objectives, is desired.

The reader is most likely familiar with “single-objective” mathematical pro-
gramming in which a single objective is optimized. (The field of single-objective 
mathematical programming is so pervasive that the phrase “single objective” 
is usually understood when the phrase mathematical programming is used.) 
Many researchers prefer the term optimization to mathematical programming. In 
the application of mathematical programming, one often has several objectives 
to be considered, but one objective may be paramount, and is thus modeled as 
the single-objective function. Meanwhile, the other objectives are constrained. 
For example, a routing problem could involve the minimization of travel dis-
tance while placing a constraint on the maximum total lateness of deliveries. 
By varying the right-hand side of the constrained objective, the analyst/DM is 
actually employing a multiple objective optimization methodology, even if the 
right-hand side variation is not being done in a systematic way.

Another way that a single-objective optimization model is often used to 
address a multiple objective problem is by “costing out” one or more of the 
objectives. An example of this would be the use of various “costs per unit of 
time” assigned to the waiting times of different respective categories of custom-
ers (see the call center example of Kelton et al., 2015, referred to in Chapter 3).

The subject matter of this chapter is applied in a wide variety of areas, and 
thus, the literature associated with this area is vast. Therefore, in this chap-
ter, we will focus on one area: goal programming (GP), which is probably the 
most popular of all of the multiple objective optimization methodologies. 
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For a more in-depth and comprehensive discussion of multiple objective 
optimization, the reader is referred to the books by Goicoechea et al. (1982), 
Barichard et al. (2009), Jones and Tamiz (2010), and Ehrgott (2000), among others.

In Section 4.2, we present the basic concepts of GP. Included in this sec-
tion are two simple examples involving the basic product mix problem; 
Example 4.1 is a lexicographic goal program, and Example 4.2 is a weighted 
goal program. Section 4.3 discusses a decision maker's preference structure 
associated with a goal program, including the concepts of lexicographic 
redundancy and Pareto inefficiency. Section 4.4 discusses an important 
aspect associated with the formulation of a goal program: determination 
of the weights for the deviational variables.

Section 4.5 discusses the use of integer decision variables and nonlinear 
functions in goal programs; included in this section are respective exam-
ples involving, first, supplier selection and, second, distribution center 
location and transportation planning. Section 4.6 provides an introduction 
to interactive GP and metagoal programming. Finally, Section 4.7 briefly 
discusses other approaches towards multiple objective optimization.

4.2 Goal Programming: Basic Concepts

GP as a concept was originally suggested by Charnes et al. (1955) as a special 
type of linear program. But the term goal programming was first used in 1961 by 
Charnes and Cooper (1961). The methodology was popularized through the 
works of several researchers during the 1960s and 1970s, including Lee (1972) 
and Ignizio (1976). It remains arguably the most popular technique developed 
for multiple objective optimization. For example, a search of the term goal 
programming in the journal European Journal of Operational Research conducted 
on April 1, 2015, yielded 3946 entries. The methodology of goal programming 
has been applied in diverse areas such as portfolio management (Aouni et al., 
2014), quality control (Cherif et al., 2008), design of closed-loop supply chains 
(Gupta and Evans, 2009), academic planning (Joiner, 1980), assignment (Lee 
and Schniederjans, 1983), agriculture (Minguez et al., 1988), acceptance sam-
pling (Ravindran et al., 1986), and site location (Schniederjans et al., 1982).

Since the two are closely related, in order to understand the methodology 
of GP, it is useful to have a working knowledge of mathematical program-
ming, especially linear programming; many goal programs are special cases 
of linear programs. In GP, the information concerning the DM’s preferences 
over multiple objectives is embodied in goals and associated weights on 
those goals. In addition to decision variables, denoted as x in (4.1), a goal 
program has deviational variables that measure respective distances from 
goals. The idea of setting and achieving goals, as embodied in GP, fits nicely 
with Simon’s concept of “satisficing” (Simon, 1960).



158 Multiple Criteria Decision Analysis for Industrial Engineering

Referring back to Section 4.1, basic GP fits into the category of methodolo-
gies involving a prior articulation of preferences, since the DM specifies his 
or her goals prior to any optimization process.

As noted by Jones and Tamiz (2010, Chapter 2), there are three main vari-
ants of GP: lexicographic (also called preemptive) goal programs, weighted 
(also called nonpreemptive or Archimedian) goal programs, and minmax 
(also called Chebyshev) goal programs.

In lexicographic goal programs, the goals are placed in ordered catego-
ries of importance such that goals in the most important category must be 
achieved before goals in the second most important category. Goals in a par-
ticular category cannot be achieved at the expense of the goals in a more 
important category. In weighted goal programs, direct trade-offs between 
all of the objectives are allowed—that is, all goals are placed in the same 
category. Finally, minmax goal programs involve a minimization of the 
maximum deviation from any goal. This type of goal program originated 
through the work of Flavell (1976); it can be thought of as a solution technique 
where the DM seeks to achieve a balance among the various goals. Due to 
the popularity of the first two categories of GP, as compared to the minmax 
GP, the remainder of this chapter will focus on lexicographic goal programs 
and weighted goal programs. For additional information on minmax goal 
programs, see Flavell (1976) and Jones and Tamiz (2010, pp. 15–16).

A general formulation of a lexicographic goal program is given in (4.2) 
through (4.5):

 

Lex Min Z w p w n w p w n

w

g1 g g2 g

g D

g1 g g2 g

g D2

=
ì
í
ï

îï
+ +

Î Î
å å( ), ( ), ,

(

1

…

gg1 g g2 g

g D

p w n
C

+
ü
ý
ï

þïÎ
å )  (4.2)

subject to

 f x n p b for g 1 Gg g g g( ) , ,+ = = ¼-  (4.3)

 x XÎ  (4.4)

 p n for g 1 Gg g, , ,³ = ¼0  (4.5)

In (4.2) through (4.5) the original decision variables are given as x = (x1,x2,…,xn) 
and the set of original constraints are x ∈ X as shown in (4.4) and (4.1). The 
parameter G denotes the number of goals. The fg(x) represent objective 
functions, while ng and pg are negative and positive deviational variables, 
respectively, for objective g for g = 1,…,G; the bg represent respective target 
values for the goals, which are numbers determined by the DM. The goals 
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are divided into categories: 1,2,…,C where Di is the set of goals contained in 
category i for i = 1,…,C.

Each category of priorities in (4.2) through (4.5) corresponds to a weighted 
sum of goal deviations, ( )w p w ng1 g g2 g

g D
+å Î 1

, in the lexicographic minimi-

zation. The deviational variables, pg and ng in (4.2) through (4.5), represent the 
positive and negative deviations, respectively, from the goal target value bg. For 
example, if one has a target goal of $10,000 (i.e., bg = 10,000) for profit, but after the 
optimization procedure achieves a value of only $9,700 (i.e., fg(x) = 9,700), then the 
corresponding deviational variable values will be ng = 300 and pg = 0.

The formulation is set up in such a way that at most, one of the two devia-
tional variables for any goal will achieve a strictly positive value. For exam-
ple in the aforementioned situation with a goal of $10,000 for profit where 
an actual value of $9,700 is achieved, the solution process will not achieve 
values of ng = 500 and pg = 200 (even though these values would still result 
in the satisfaction of the goal constraint fg(x) + ng – pg = bg with fg(x) = 9,700, 
ng = 500, pg = 200, and bg = 10,000). Instead, the process would yield values of 
ng = 300 and pg = 0.

The lexicographic minimization in (4.2) through (4.5) means that a sequence 
of single-objective minimizations must be performed. In particular, the 
function associated with the first category of goals must be minimized first, 
followed by the minimization of the function associated with the second 
category of goals (without degradation of performance with respect to the 
first set of goals). As noted by Ignizio and Cavalier (1994), this lexicographic 
optimization can be accomplished by including a constraint that restricts 
the current optimization such that the objective function from the previous 
optimization is set equal to its optimal objective function value.

The constants, wg1 and wg2, in (4.2) refer to weights assigned to the devi-
ational variables pg and ng, respectively. The larger the weight, the more 
important that deviational variable is within its particular category. Since it 
may not be possible to meet all of the goals for the objectives, as given by the 
b1,b2,…,bG values, the deviational variables and corresponding constraints 
given by (4.3) allow for some amount of deviation from these goals.

If there is only one category of goals (C = 1), then we are dealing with a 
weighted goal program, whereas if C > 1, we are dealing with a preemptive 
goal program. A general formulation for a weighted goal program is shown 
in (4.6) through (4.9):

 

Min Z w p w ng g g g

g

G

= +
=

å( ),1 2

1

 (4.6)

subject to

 f x n p b for g 1 Gg g g g( ) , ,+ = = ¼-  (4.7)
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 x XÎ  (4.8)

 p n for g 1 Gg g, , ,³ = ¼0  (4.9)

The reader should note that except for the objective function, Problem (4.6) 
through (4.9) is the same as Problem (4.2) through (4.5). The objective func-
tion in a goal program (either Problem 4.2 or 4.6) is called an “achievement 
function,” in order to differentiate it from an objective function in a typical 
mathematical program.

There are three types of goals possible, corresponding to

 1. Minimization of the underachievement of a value
 2. Minimization of the overachievement of a value
 3. Minimization of any deviation from a value

The first case would typically correspond to a situation where one would 
want to maximize a value (e.g., profit) but because of other, conflicting, objec-
tives, a target value (as opposed to an optimum value when the other objec-
tives are ignored) is acceptable; in this case, the weight associated with the 
negative deviational variable, wg2, would be set to 0.

The second case, involving minimization of overachievement, would corre-
spond to minimization of a value (e.g., cost); in this case, the weight associated 
with the positive deviational variable, wg1, would be set to 0. In the third case, 
both wg1 and wg2 would be set to strictly positive values. A fourth type of goal 
could involve achieving a value within a range (e.g., achieve a profit within a 
range of $30–$35 million). This situation could be formulated as two separate 
goals of the first and second types, for example, minimize the overachieve-
ment of $30 million and minimize the underachievement of $35 million.

Table 4.1 provides a summary of the notation given in (4.2) through (4.9).
When the concept of GP was initially developed, most of the applications 

involved lexicographic GP, as opposed to weighted GP. In particular, Tamiz 
et al. (1995) noted that about 75% of the applications prior to 1990 involved 
lexicographic GP, while about 25% involved weighted GP. Since 1990, there 
has been a shift toward the weighted approach—for example, Jones and 
Tamiz (2002) noted that from 1990 to 2000, about 59% of the published appli-
cations involved lexicographic GP, while 41% involved weighted GP. This 
shift toward the weighted GP approach and away from the lexicographic 
approach can be attributed to the greater flexibility (in terms of representa-
tion of preference structures) allowed by the weighted approach.

Let’s consider a relatively simple hypothetical problem in Example 4.1 
in order to illustrate the formulation and solution of a goal program. This 
example is similar to a type of example often given to illustrate the formula-
tion of a linear program in an entry-level course in that area.
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Example 4.1: A Lexicographic Goal Program 
for a Simple Product Mix Problem

Consider a problem involving the production of two products over a 
1-month period. Suppose these two products, labeled product A and 
product B, result in $50 and $80 of profit, respectively, for each unit pro-
duced. Production requires two types of resources. Four and ten units 
of Resource 1 are required, respectively, for each unit of products A and 
B produced, and seven and eleven units of Resource 2 are required, 
respectively, for each unit of products A and B produced. There are 
200 units of Resource 1 available and 264 units of Resource 2 available. 
The information regarding this production problem is summarized in 
Table 4.2.

As mentioned, a linear program associated with this type of problem 
is often found in many entry-level books in operations research. This 
problem can be stated as follows: determine the number of units of each 
product to manufacture over a 1-month period so as to maximize profit 
without exceeding the number of units of each resource available. If 
x1 and x2 represent the decision variables associated with the number 

TABLE 4.1

Summary of the Notation Given by the Goal Programs of (4.2) through (4.9)

Notation Description Comments, If Appropriate 

G Number of goals Typically, G will correspond to the 
number of objectives given in 
Equation 4.1.

C Number of preemptive goal 
categories

C = 1 corresponds to a nonpreemptive 
goal program, while C > 1 corresponds 
to a preemptive goal program.

Di Set of goals contained in 
preemptive goal category i for 
i = 1,…,C

—

x = (x1,x2,…,xn) Decision variables —
ng Negative deviational variable for 

goal g, for g = 1,…,G
—

pg Positive deviational variable for 
goal g, for g = 1,…,G

—

wg1 Weight associated with the 
positive deviational variable, pg

wg1 is set to 0 if the goal involves 
minimization of an overachievement.

wg2 Weight associated with the 
negative deviational variable, ng

wg2 is set to 0 if the goal involves 
minimization of an underachievement.

fg(x) Functional value for goal 
associated with objective g, as a 
function of x, for g = 1,…,G

—

bg Target value for goal g, for 
g = 1,…,G

—

x ∈ X Constraint set —
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of units of products A and B to produce, respectively, then this linear 
program can be stated as (4.10) through (4.13):

 Maximize Z 5 x 8 x1 2= +0 0 ,  (4.10)

subject to

 4x 1 x 21 2+ £0 00  (4.11)

 7x 11x 2641 2+ £  (4.12)

 x x1 2, ³ 0  (4.13)

In this formulation, Z stands for the objective function of profit, while the 
two “less than or equal to” constraints restrict the amounts of Resources 
1 and 2 used according to the respective amounts available.

Now, let’s consider a GP formulation of this problem. This GP formulation 
will allow much more flexibility in terms of considering goals in addition to 
profit. Suppose that the DM has four goals to be considered, according to the 
following three (decreasing) priority levels.

 1. At least $1800 of profit should be achieved.
 2. Not more than 190 units of Resource 2 should be used.
 3. (a) At least 10 units of Product 1 and (b) at least 10 units of Product 2 

should be manufactured.

Note that each goal corresponds to (1) the specification of an attribute/mea-
sure (e.g., profit achieved, amount of resource used, or number of units of a 
product manufactured), (2) a target value, and (3) a direction level (“at least,” 
or “not more than”). For the GP formulation, the goals would be restated as 
a minimization of a weighted sum of deviational variables. In addition, goal 
constraints would be added to the formulation, as follows:

TABLE 4.2

Summary of Information Regarding the Production Mix Problem

Product Type Per Unit Profit ($) 

Units of Resource 1 
Required per Unit 

of Production 

Units of Resource 2 
Required per Unit 

of Production 

A 50 4 7
B 80 10 11
Units of resources 
available

200 264
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5 x 8 x n p 18

7x 11x n p 19

x n p 1

x n p

1 2 1 1

1 2 2 2

1 3 3

2 4 4

0 0 00

0

0

+ + =

+ + =

+ =

+ =

–

–

–

– 110.

Note that each goal constraint has the same format: a function of the deci-
sion variables representing the measure, with a negative deviational variable 
added and a positive deviational variable subtracted, set equal to a target 
value. (Students are sometimes confused by the fact that the negative devia-
tional variable is added, while the positive deviational variable is subtracted 
from the left-hand side of a goal constraint.) For example, for the first goal 
constraint, 50x1 + 80x2 represents the profit in terms of the decision variables 
and 1800 is the target value.

A comment concerning the goal associated with the second-level priority 
(not more than 190 units of Resource 2 should be used) is in order. The reader 
might see this as being in contrast to the hard constraint associated with this 
resource (only 264 units of this resource are available for use). The idea here 
is that the DM would like to have some of this resource available for other 
uses; however, this might be considered as a “soft constraint” especially in 
light of the fact that it is only of second-level priority.

The complete lexicographic goal program is given as in (4.14) through (4.21):

 Lex Min Z n p n n1 2 3 4= +{ , , }  (4.14)

subject to

 5 x  8 x  n p 181 2 1 10 0 00+ + =–  (4.15)

 7x 11x n p 191 2 2 2+ + =– 0  (4.16)

 x n p 11 3 3+ =– 0  (4.17)

 x n p 12 4 4+ =– 0  (4.18)

 4x 1 x 21 2+ £0 00  (4.19)

 7x 11x 2641 2+ £  (4.20)

 x  x1 2, ³ 0  (4.21)
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Note that the constraint set contains two categories of constraints: the goal 
constraints and the “hard constraints” from the original linear programming 
formulation. The lexicographic minimization consists of one category for 
each priority level. For example, in the first priority level, we are attempting 
to minimize the negative deviation from a profit of $1800 by minimizing n1; if 
in solving this optimization problem, the optimal value of n1 turned out to be 
$25, then the profit achieved from the solution would be $1775, or $1800 – $25.

Similarly, for the second priority level, we are trying to minimize the posi-
tive deviation from 190 units of Resource 2 used by minimizing p2. The third 
priority level contains two goals. By just minimizing the sum of these of the 
two deviational variables, we are implicitly assigning equal weights to these 
two goals within the third priority level. Any time multiple goals are con-
tained within a single priority level, individual weights need to be assigned 
to the goals. Various approaches for assigning weights to the deviational 
variables within a goal category will be presented later in this chapter.

As mentioned earlier, solving a lexicographic goal program such as 
Problem (4.14) through (4.21) involves solving a sequence of linear programs. 
The first linear program for solving Problem (4.14) through (4.21) involves 
optimizing the first objective in (4.14) subject to the constraints as shown 
in (4.15) through (4.21). Using the software package LINGO™, the following 
optimal solution was obtained for this linear program:

 x x p p n36 and1
* = = = = =, , , , ,* * * *

2 2 3 40 62 26 10

with the optimal values for all of the other deviational variables being 0. 
This solution, since it has n1 0* = , meets the goal associated with the first-level 
priority.

The second linear program in the sequence involves optimizing the sec-
ond objective in the lexicographic minimization of (4.14), subject to the set of 
constraints, (4.15) through (4.21), along with the additional constraint: n1 = 0. 
The optimal solution obtained from this linear program is given as

 x x p p p58 88 1 11 and 5 551 2 2 3 411 11 15 55* * * * *. , . , . , . , . ,= ¼ = ¼ = ¼ = ¼ = ¼

with all optimal values for all of the other deviational variables being 0. 
The ellipsis is used to indicate a transcendental number. Note that since p2 0* > , 
the second goal of not using more than 190 units of Resource 2 was not achieved.

Finally, the third linear program associated with solving this lexicographic 
GP is given by an objective function given by the third objective in (4.14) 
subject to the constraints given by (4.15) through (4.21), along with the two 
additional constraints: n1 = 0 and p2 = 58.88. This linear program has the 
same optimal solution as the second linear program:

 x x p p p11 11 15 55 58 88 1 11 and 5 551 2 2 3 4
* * * * *. , . , . , . , .= ¼ = ¼ = ¼ = ¼ = ¼
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This third solution is the solution to the lexicographic goal program given by 
(4.14) through (4.21). A summary of the results associated with the solutions 
found from solving the three linear programs associated with the goal pro-
gram shown in (4.14) through (4.21) is shown in Table 4.3.

Looking at the results shown in Table 4.3 for Example 4.1, the goal associ-
ated with the first-level priority (achieve a profit of at least $1800) and the 
goals associated with the third-level priority (manufacture at least 10 units of 
each product) were met; however, the goal associated with the second-level 
priority (do not use more than 190 units of Resource 2) was not met. This 
illustrates the fact that in a lexicographic goal program, it is possible for lower-level 
priority goals to be met (third-level priority in this case), while higher-level priority 
goals (second-level priority in this case) are not met. The key fact here is that more 
than 190 units of Resource 2 needed to be used (thereby not achieving the 
second-level priority goal) in order to achieve a profit of at least $1800 (the 
first-level priority goal).

Each linear program (following the first one) in the sequence of linear pro-
grams solved for a lexicographic goal program differs from the previous lin-
ear program in two ways:

 1. The objective function is different.
 2. The feasible region includes one more constraint.

This relatively small difference from one linear program to the next indi-
cates that these linear programs do not have to be solved “from scratch.” 
For example, the solution process for each linear program can start at the 
optimal solution found from the previous linear program, which allows for 
a decrease in computational effort as opposed to starting from scratch; this 
starting solution is guaranteed to be feasible, since it automatically satisfies 
the additional constraint added for the new linear program.

In addition to starting the process at the previous optimal solution, Ignizio 
has suggested other procedures for reducing computational effort in solving 
the sequence of linear programs. For example, Ignizio (1982) notes that any 
variables with positive reduced cost at the optimal solution for the previous 

TABLE 4.3

Summary of Results for the Three Sequential Linear Programs Solved for GP 
(Equations 4.14 through 4.21)

Linear 
Program # 

Goal 1 (Profit) 
Value 

Goal 2 (Units of 
Resource 2 

Used) Value 
Goal 3 (Units of 
Product 1) Value 

Goal 4 (Units 
of Product 2) 

Value 

1 1800 252. 36 0
2 1800 248.88… 11.11… 15.55…
3 1800 248.88… 11.11… 15.55…
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problem can be restricted from assuming a value above their lower bound 
(normally 0) in this and following linear programs in the sequence. A further 
improvement was suggested by Ignizio (1985) when he noted that it is often 
desirable to solve the dual rather than the primal problem.

An alternate approach that is often used to solve a lexicographic goal pro-
gram involves solving one formulation of the problem in which the respec-
tive objective functions associated with the priority levels are multiplied by 
a series of decreasing constants (e.g., 1000, 100, 10) and then summed to form 
the overall achievement function. For example, for the problem given in (4.14) 
through (4.21) the achievement function would be given by

 Minimize 1 n 1 p 1 n n1 2 3 4000 00 0* + * + * +( ).  (4.22)

Solving (4.22) subject to the constraints given in (4.15) through (4.21) yields 
the same solution as that given by using the sequential procedure shown 
previously; however, as shown, the solution is obtained by solving just one 
linear program instead of three. The idea is that by assigning decreasing val-
ues for the constants (i.e., 1000, 100, and 10 in this case), the optimization will 
attempt to achieve the first objective prior to the second and so on.

This “single pass” procedure for solving a lexicographic goal program is 
often called the “Big P” approach, since the objective function of Problem (4.2) 
through (4.5) could be represented in an alternative way as
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(4.23)

where P1,P2,…,PC are constants such that P1 ≫ P2 ≫ ⋯ ≫ PC (where P1 ≫ P2 
means P1 is much bigger than P2, and so on). However, as noted by Jones and 
Tamiz, this approach/notation is not preferred, since it expresses the lexico-
graphic minimization as a summation, when it actually is not (see Jones and 
Tamiz, 2010, p. 33). In addition, one may very well run into scaling problems 
with this “single pass” approach.

As mentioned, a second main category of goal programs is the weighted 
goal program, in which all goals are placed in the same priority level. An 
example of this type of goal program is shown in Example 4.2.

Example 4.2: A Weighted Goal Program for 
a Simple Product Mix Problem

Let’s consider a weighted goal program corresponding to the product 
mix problem of Example 4.1. Let the weights for the four deviational 
variables be given as
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 1. .4 for the goal of achieving at least $1800 of profit
 2. .3 for the goal of not using more than 190 units of Resource 2
 3. .15 for the goal of producing at least 10 units of Product 1
 4. .15 for the goal of producing at least 10 units of Product 2

Hence, the weighted goal program for this problem is given as in the 
following equations:

 Minimize Z 4 n 3 p 15 n 15 n1 2 3 4= * + * + * + *. . . . ,  (4.24)

 Subject to constraints 4 through 4( . ) ( . ).15 21  (4.25)

The solution to the linear program of (4.24) and (4.25) is given by

 x x p p p11 11 15 55 58 88 1 11 and 5 51 2 2 3 4
* * * * *. , . , . , . , .= ¼ = ¼ = ¼ = ¼ = 55¼,

with all other variable values being 0. The reader will note that this 
solution is the same solution obtained from solving the lexicographic 
goal program of (4.14) through (4.21). The weighted goal program of 
(4.24) and (4.25) was modified by the use of two other sets of weights 
for the deviational variables. The results associated with solving these 
linear programs are shown in Table 4.4. The reader will note that the 
notation used for the weights in Table 4.4 is the same as that used in 
Table 4.1. For example, w32 is the weight for the negative deviational 
variable for the third goal: produce at least 10 units of Product 1.

Comments regarding the solutions shown in Table 4.4 are shown in 
Table 4.5.

4.3  Preference Structures Associated with Goal Programs, 
Lexicographic Redundancy, and Pareto Inefficiency

The preference structure associated with a lexicographic goal program is not 
necessarily the same as that associated with lexicographic ordering approach 
discussed in Chapter 3. In particular, the target(s) set for the respective goal(s) 
at the first-level priority for a lexicographic goal program are typically not 
set at the optimal value(s) for the relevant objective function(s); hence, this 
allows for some flexibility with respect to the achievement of second-level 
and lower-level priority goals.

As an example, in Example 4.1, the first priority goal was set at a target value 
of something less than the optimal value for a profit of $1904.40 obtained from 
solving the linear program given in (4.10) through (4.13). Setting the goal for 
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profit at $1800 allows for flexibility in achieving the other goals. Setting the 
goal for profit at its ideal level of $1904.40 could lead to what is called lexico-
graphic redundancy (Romero, 1991); in effect, this leads to the feasible region 
associated with the subsequent sequential linear programs consisting of a 
single point—that is, no optimization is actually accomplished in these sub-
sequent linear programs, since there is only one feasible solution. In addition 
to setting of unreasonable target levels for goals, another reason for lexico-
graphic redundancy is having too many priority levels; the consensus is that 
a lexicographic goal program should have no more than five priority levels 
(Jones and Tamiz, 2010, p. 33).

The problem of lexicographic redundancy can be contrasted with that of 
Pareto inefficiency. That is, a solution generated from either a lexicographic 
goal program or a weighted goal program may be a solution for which at 
least one of the objectives can be improved on without degrading any of the 
other objectives.

As an example, consider a modification of the lexicographic goal program 
given by (4.14) through (4.21) in which the target value for the second goal 
is set to 255 units of Resource 2; that is, instead of a goal of “not more than 
190 units of Resource 2 should be used,” the goal would be “not more than 
255 units of Resource 2 should be used.” The goal program of (4.14) through 
(4.21) would be modified so that the right-hand side of constraint (4.16) would 
be 255 rather than 190. Solving this new lexicographic goal program would 
yield an optimal solution:

 x x n p p11 1 15 5 6 1 1 1 5 51 2 2 3 4
* * * * *. , . , . , . , . ,= ¼ = ¼ = ¼ = ¼ = ¼

with all other variable values at 0. This solution satisfies all of the new goals, 
since the optimal values found for the deviational variables, namely, n1, p2, 
n3, and n4, are all 0.

Now, if the DM set a different target value for a profit of $1805 instead 
of $1800 and solved this second modified lexicographic goal program, 

TABLE 4.5

Comments Regarding the Solutions Shown in Table 4.4

Weight Set # 
Comments with Respect to the 

Solution for This Set of Weights 

1 Goals 1, 3, and 4 are satisfied
2 Goals 2 and 4 are satisfied
3 Goals 1, 3, and 4 are satisfied
4 Goals 1 and 3 are satisfied
5 Goal 2 is satisfied
6 Goals 1, 3, and 4 are satisfied
7 Goal 4 is satisfied
8 Goals 2, 3, and 4 are satisfied
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the resulting solution would also satisfy all of the goals and thereby yield 
an outcome, which dominates the outcome from the solution to the original 
modification of (4.14) through (4.21). These two solutions and associated out-
comes are shown in Table 4.6.

For an example of Pareto inefficiency with a weighted goal program, see 
Jones and Tamiz (2010, pp. 95–96). For methods to detect Pareto inefficiency 
and to generate a subsequent Pareto efficient solution, see Jones and Tamiz 
(2010, Chapter 6).

Even with the “relaxed values” for targets, thereby avoiding the problem of 
lexicographic redundancy, a lexicographic goal program may not accurately 
represent a DM’s preference structure; however, the representation may very 
well be accurate enough for a good decision. In particular, the DM may feel 
much more comfortable with the ideas of setting and satisfying goals than 
with the interviewing procedure associated with the assessment of a multi-
attribute value (MAV) function.

In general, solving a weighted goal program corresponds to optimizing 
a multiattribute value function in which that function consists of attributes 
defined as respective deviations from target values for goals; moreover, the 
function itself is additive and linear.

4.4  Determining Weights for the Deviational 
Variables in a Goal Program

An important aspect associated with accurately representing the DM’s pref-
erence structure in a goal program is the determination of the weights for 
the deviational variables in the achievement function. As previously noted 
with respect to Table 4.1, the type of goal determines whether the weight for 
a deviational variable associated with that goal in the achievement function 
will be zero or strictly positive. In addition, in a lexicographic goal program, 

TABLE 4.6

Results from Solving Two Modified Versions of the Lexicographic Goal Program 
(Equations 4.14 through 4.21)

Problem Solved 
Profit 

Attained ($) 
Goals 

Achieved Comments 

First modification to lexicographic 
goal program 4.5 (target goal values 
of 1800, 255, 10, 10)

1800 All four goals 
achieved

Solution obtained is 
Pareto inefficient.

Second modification to lexicographic 
goal program 4.5 (target goal values 
of 1805, 255, 10, 10)

1805 All four goals 
achieved

—
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for priority categories which contain only one goal, the weight for the rel-
evant deviational variable can be set to a value of 1. Therefore, the problem of 
setting nonzero values for weights comes into play in two situations:

 1. For the deviational variables associated with multiple goals within 
any particular priority level in a lexicographic goal program

 2. For each of the deviational variables contained in the achievement 
function for a weighted goal program

One of the important considerations in setting a weight for a goal is the 
target value for that goal. This can be accomplished through what is called 
percentage normalization (Jones and Tamiz, 2010, p. 34). This simple approach 
involves setting the weights so that the deviational variable values are in 
effect normalized. Consider problem (4.24) and (4.25), as shown in the follow-
ing equations, but with the appropriate symbols for the weights:

 Minimize Z w n w p w n w n12 1 21 2 32 3 42 4= + + +  (4.26)

subject to

 5 x 8 x n p 181 2 1 10 0 00+ + =–  (4.27)

 7x 11x n p 191 2 2 2+ + =– 0  (4.28)

 x n p 11 3 3+ =– 0  (4.29)

 x n p 12 4 4+ =– 0  (4.30)

 4x 1 x 21 2+ £0 00  (4.31)

 7x 11x 2641 2+ £  (4.32)

 x x1 2, ³ 0  (4.33)

Now, if we set the weights so that they are equal to the reciprocal of the target 
value associated with the corresponding goal, we would have the following:

 

w 1/18 w 1/19 16129 w 1/1 1

and w 1/1

12 21 32

42

= = = = = =

=

00 0005 0 0 0

0

. , . , . ,

== .1.

Then a particular percentage deviation from the goal, represented as a par-
ticular value for the deviational variable, would be measured the same over 
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all goals by the achievement function. For example, a 10% deviation from 
the four goals would be measured by n1 = 180, p2 = 19, n3 = 1, and n4 = 1, respec-
tively. These deviational variable values would contribute the same amount, 
.1, to the achievement function value; for example, w12n1 = (1/1800) * 180 = .1.

The large differences in the weights shown indicate that it is usually good 
practice to scale the target values for the goals so that they have values that 
do not differ too much from each other. For example, for the profit goal, one 
might state the target value in terms of hundreds of dollars of profit, thereby 
making the target 18, instead of 1800. Similarly, for the goal associated with 
units of Resource 2, the target value might be stated in terms of 10s of units 
of the resource, making the target value 19 instead of 190. This approach will 
allow the weights to be closer in value to each other and thereby allow the 
DM to think about them in a more rational fashion.

While using the respective reciprocals of the target values for the weights 
may be intuitively appealing because of its simplicity, it also may not accu-
rately represent the preference structure of the DM.

Therefore, a second approach would be to assess the MAV function over 
the deviational variables contained in the achievement function. Of course 
in using this approach, we are assuming that the deviational variables not 
in the achievement function are not relevant to the DM; for example, with 
respect to problem (4.26) through (4.33), this would mean that the DM places 
no value on achieving more than $1800 in profit, since the p1 deviational vari-
able is not in the achievement function. In addition, we are assuming that the 
individual attribute value functions for the deviational variables are linear 
and that the function itself is additive.

To employ this MAV function approach to determining the weights, we 
would first need to determine the best and worst possible values for the 
deviational variables so that we can scale the implicit individual attribute 
value functions properly from 0 to 1. This is illustrated in Figure 4.2, for the 
deviational variable p2 from problem (4.26) through (4.33), which has a best 
possible value of 0 and a worst possible value of 62.

In order to find these best and worst possible values for the deviational 
variables, we need to solve a series of single-objective optimization prob-
lems, one for each deviational variable in the achievement function for a 
weighted GP, or one for each deviational variable in a lexicographic category 
for a lexicographic GP.

For example, to find weights for the deviational variables for the GP given 
by (4.26) through (4.33), we would solve the sequence of problems given by

Minimize {n1}, Minimize {p2}, Minimize {n3}, and Minimize {n4}, each with 
the set of constraints given by (4.27) through (4.33).

Solving these four problems gives four sets of respective values for the 
deviational variables: n1, p2, n3, and n4, along with values for the other 
variables of the problem. Selecting the best (minimum) and worst (maxi-
mum) values for each deviational variable, we obtain the values shown in 
Table 4.7.
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The implicit scaled (from 0 to 1) single attribute value functions for the four 
deviational variables are given by the linear functions, which give a value of 
0 for the worst attribute value and a value of 1 for the best attribute value. 
More specifically, these functions are

 

v n 1/18 n 1

v p 1/62 p 1

v n 1/1 n

n1 1 1

p2 2 2

n3 3 3

( ) ( )

( ) ( )

( ) ( )

= - +

= - +

= - +

00

0 11

v n 1/1 n 1.n4 4 4( ) ( )= - +0

TABLE 4.7

Worst and Best Values Found for the Deviational 
Variables by Solving Four Single-Objective 
Optimization Problems

Deviational 
Variable Worst Value Best Value

n1 1800 0
p2 62 0
n3 10 0
n4 10 0

–8

v(
p 2

)

2 12 22 32
Deviational variable value for p2

42 52 62

0.1

0.3

0.2

0.4

0.5

0.6

0.7

0.8

0.9

1

0

FIGURE 4.2
Implicit individual attribute value function for p2 from problems (4.24) and (4.25).
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The scaled MAV function can then be written as

 v(n , p , n , n ) v n v p v n v n1 2 3 4 n1 p2 n3 n4= + + +l l l l1 1 2 2 3 3 4 4( ) ( ) ( ) ( ),

where λi for i = 1, 2, 3, 4 are the weights or scaling constants for the MAV 
function, such that li

i
=

=å 1
1

4
 and λi > 0.

Now, using the same approach in finding the weights for an MAV func-
tion as illustrated in Chapter 3, we would rank the following four outcomes, 
where each vector corresponds to the outcome with the best value for one 
deviational variable and the worst values for the other deviational variables:

 ( , , , ), ( , , , ), ( , , , ), , , ,0 0 0 00 0 0 0 00 0 0 00 062 1 1 18 1 1 18 62 1 and(18 62 1 00).

Note that the outcome vectors correspond to the values for (n1, p2, n3, n4).
Suppose that the aforementioned outcomes are ranked in decreasing order 

of preference as

 ( , , , ), ( , , , ), ( , , , ), ( , , ,0 0 0 00 0 0 0 00 0 0 00 062 1 1 18 1 1 18 62 1 and 18 62 1 00).

Then we know that w12 > w21 > w32 > w42 (where w12 is the weight for n1,w21 is 
the weight for p2,w32 is the weight for n3, and w42 is the weight for n4). Again, 
following the procedure described in Chapter 3, we would find the values for 
¢n1 such that the DM is indifferent between the following outcomes:

 ( , , , ) ( , , , )¢n 62 1 1 and 18 1 11 0 0 00 0 0 0 .

Suppose this value is ¢ =n1 200. Similarly, we would find the values for ¢¢ ¢¢¢n n1 1,  
such that the DM is indifferent between

 ( , , , ) ( , , , )¢¢n 62 1 1 and 18 62 11 0 0 00 0 0

and also between

 ( , , , ) ( , , , )¢¢¢n 62 1 1 and 18 62 11 0 0 00 0 0 .

Suppose that the values found for the unknowns are ¢ ¢¢= =n n2 91 100 00, ,
and n¢¢¢=1 1350, which allows us to set up the following equations in terms of 
the value function weights:

 
. , . , .8 5 251 2 1 3 1 4l l l l l l= = =and .
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(Note that these equations were formed from the set of indifferences 
expressed by the DM from earlier.) Solving these three equations along with 

the normalizing equation li
i

=1
1

4

=åæ
è
ç

ö
ø
÷ gives us the values for the value func-

tion weights, as approximately:

 l l l l1 2 3 438 34 19 09= = = =. , . , . , .and .

Therefore, the optimization in terms of the MAV function would be

 

Maximize v(n , p , n , n ) or
Maximize{ v (n ) v (p ) v

1 2 3 4

n1 1 p2 2 n3l l l1 2 3+ + ((n ) v (n )} or
Maximize{ n p

3 n4 4

1

+
+ +

l
- -

4

38 1 1800 1 34 1 62. ( ( ) ) . ( ( )/ / 22 3n
n or

Maximize{

+ + +
+ +

1 19 1 10 1
09 1 10 1

00021
4

) . ( ( ) )
. ( ( ) )

.
}

-
-

-

/
/

nn p n n1 2 3 4005484 019 009 1- - -. . . }.+

Now, in an optimization problem, a constant in the objective function can 
be eliminated without affecting the resulting optimal values for the decision 
variables. In addition, a maximization type problem can be transformed to 
an equivalent minimization type problem by multiplying the objective func-
tion by −1. These two steps give us the following objective:

 Minimize 21n 5484p 19n 9n1 2 3 4{. . . . }000 00 0 00+ + + ,

which gives us our achievement function for our goal program. Hence, 
the weights for the four respective deviational variables should be 
. ,00021  .005484, .019, and .009.

It is interesting in this case to compare the weights obtained from the percent-
age normalization procedure to the weights obtained by the MAV function pro-
cedure, respectively: (. , . , . , . ) ( , . , . , . )0005 016129 1 1 00021 005484 019 009versus . 
The weights obtained through the percentage normalization procedure cer-
tainly required much less effort, but the MAV function procedure leads to a 
more accurate representation of the DM’s preferences.

For a lexicographic goal program, the reader should note that, as was men-
tioned earlier, weights would only need to be determined for those devia-
tional variables contained in a goal category with multiple goals. But if an 
MAV function approach is used to determine these weights, a separate MAV 
function would be needed for each category with multiple goals.

The question arises as to why not just optimize an MAV function instead 
of using a goal programming approach involving an achievement function. 
First, the preference information associated with formulating a goal program 
involves the specification of goals, which differs from the type of preference 
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information required in the assessment of an MAV function. DMs often feel 
more comfortable in specifying goals than in specifying amounts of attributes 
for trade-offs, as required for the assessment of an MAV function. Second, 
an MAV function approach for determining the weights for the deviational 
variables in a goal program involves the use of the deviational variables as 
attributes. If one wanted to develop an MAV function for the same situation, 
the attributes used would correspond to the objectives of the problem. For 
example, for the situation involved with model (4.26) through (4.33), the attri-
butes used would most likely be profit, amount of Resource 2 used, number 
of units of Product 1 produced, and number of units of Product 2 produced.

There are other methods, such as the analytic hierarchy process, that have 
been suggested for determining the weights for the deviational variables in 
an achievement function for a GP. However, in many cases, an interactive 
approach is used in which the DM would try different sets of weights, based 
upon the solution obtained for the goal program with the previous iteration’s 
set of weights. As noted in Jones and Tamiz (2010, p. 39),

It is important to regard weight determination as a process of interaction 
with the decision maker(s) rather than a single a priori declaration of a 
weighting scheme.

4.5  Integer Decision Variables and Nonlinear 
Functions in a Goal Program

So far in Chapter 4, the examples have involved continuous decision vari-
ables, linear objective functions, and linear constraint functions. However, 
many optimization problems encountered by industrial engineers involve 
either or both integer decision variables and nonlinear objective/constraint 
functions. From the perspective of a goal programming formulation, such 
problems do not cause any particular difficulty with respect to their solution 
process. Typically, the same software that is used to solve single-objective 
mathematical programs with integer decision variables and/or nonlinear 
functions can also be used to solve goal programs with those same features.

In this section, we present examples of goal programs, which require inte-
ger decision variables in the formulation.

Example 4.3: A Goal Program for Supplier Selection*

The selection of suppliers and the subsequent negotiation with the same 
are important activities for many production organizations. Examples 
of optimization models used in these types of activities are given by 

* This problem is derived from a single-objective optimization problem described in an exer-
cise from Shapiro (2007, p. 156).
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Metty et al. (2005) and Sandholm et al. (2006), among others. Multiple 
objective optimization is an important tool for these activities.

Consider the AAA company, which purchases an important subassem-
bly from various suppliers for the production of their laptop computer. 
Four different suppliers can provide the subassembly, but the terms of 
purchase vary among the suppliers. In particular, the cost for purchas-
ing from a supplier depends upon the number purchased. Each supplier 
(except 1) has a fixed cost if any of the subassembly is purchased, a cost 
per unit up to a maximum number purchased, and then a less expensive 
cost per unit after a particular number of units is purchased. The data for 
the problem are shown in Table 4.8.

As an example of the meaning of the data in Table 4.8, consider 
Supplier 2. If any of the item is purchased from this supplier, there will 
be an initial cost (fixed cost) of $8000, and the per unit cost up to 180 units 
(the break point) will be $120. Any units purchased from Supplier 2 
beyond the break point will cost $105 per unit. So, if 500 units of the prod-
uct were purchased from Supplier 2, the cost would be $8,000 + (180 units)
($120  per  unit) + ((500 − 180)  units)($105  per  unit) = $8,000 + $21,600 + 
$33,600 = $63,200.

Now, the problem is to determine the amount that AAA should pur-
chase from each supplier in order to satisfy its demand over the next 
year of 5000 units. Three goals are to be considered:

 1. Achieve a cost of at most $160,000.
 2. Purchase at least 100 units from Supplier 1.
 3. Purchase at least 100 units from Supplier 2.

Suppliers 1 and 2 are companies with which AAA would like to main-
tain a close relationship because of other services and products that they 
can provide.

In order to simplify our formulation of this problem as a goal program, 
we will use some notation to represent some of the parameters. In par-
ticular, let

fi be the fixed cost in thousands of dollars, associated with sup-
plier i

bi be the break point for supplier i

TABLE 4.8

Data for the Supplier Problem

Supplier 
Number Fixed Cost 

Higher Cost 
(per Unit) 

Break Point 
(Number of 

Units) 
Cheaper Cost 

per Unit 
Maximum 

Number to Sell 

1 0 150 300 108 900
2 8000 120 180 105 1100
3 6000 115 240 80 600
4 9000 110 200 100 1000

Note: All costs are in dollars.
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mi be the maximum number of units that can be supplied by sup-
plier i

ci
h be the higher cost per unit, in thousands of dollars, associated 

with supplier i
ci

l be the lower cost per unit, in thousands of dollars, associated 
with supplier i

Note that all costs are given in thousands of dollars instead of in dollars. 
The purpose of this is to make the right-hand side of the goal constraint 
for cost ($160,000.) close in value to the right-hand sides of the other two 
constraints (100 units). As mentioned earlier, this is a typical approach 
in the formulation of goal programs in order to make the weights for the 
deviational variables relatively close to one another.

Now, the difficulty in this optimization problem is that the cost asso-
ciated with purchasing the item from any particular supplier is not a 
linear function of the number of units purchased from that supplier. In 
particular, we have a fixed cost for Suppliers 2, 3, and 4 if any units are 
purchased from these suppliers, and for all four suppliers, we have a 
break point at which the cost per unit becomes cheaper once a certain 
number of units have been purchased. These conditions can be handled 
with 0/1 decision variables. For this problem, therefore, our decision 
variables can be defined as the following:

xi
h is the number of units to purchase from supplier i at the higher 

per unit cost, for i = 1,…, 4.
xi

l is the number of units to purchase from supplier i at the lower 
per unit cost, for i = 1,…, 4.

yi
h = 1, if any units are purchased from supplier i.

 0, otherwise, for i = 1,…, 4.
yi

l  = 1, if any units are purchased from supplier i at the lower per 
unit cost.

 = 0, otherwise, for i = 1,…, 4.

Our goal program can be written as follows:

 Minimize Z w p w n w n12 1 21 2 31 3= + +  (4.34)

subject to

 
( )c x c x f y n p 16i
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i
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i i
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1 1+ + + =
=

å - 0
1
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 (4.35)

 x x n p 1h l
2 21 1 00+ + =–  (4.36)

 x x  n p 1h l
3 32 2 00+ + =–  (4.37)

 
( )x x 15i

l
i
h

i

+ =
=

å 00
1

4

 (4.38)
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 x b , for i 1 4i
h

i
h

i , ,£ = ¼y  (4.39)

 x ym b for i 1 4i
l

i
l

i i( ) , , ,£ - = ¼  (4.40)

 b for i 1 4y xi i
l

i
h , , ,£ = ¼  (4.41)

 n ,p for i 1 3i i ³ = ¼0, , ,  (4.42)

 x x for i 1 4i
h

i
l, , ,³ = ¼0  (4.43)

 y y are 1 for i 1 4i
h

i
l, , , ,0 = ¼  (4.44)

The achievement function (4.34) is a weighted sum of three deviational 
variables, one for each goal. In this function, we want to penalize posi-
tive deviations from the target goal of $160,000 of cost and also penal-
ize negative deviations from 100 units of the subassembly ordered from 
both Suppliers 1 and 2; hence, the deviational variables p1, n2, and n3 are 
included in the achievement function. The weights for these respective 
variables are denoted as w12,w21, and w31, respectively.

The three goal constraints (4.35) through (4.37) are each shown as an 
objective function of the decision variables, plus a negative deviational 
variable, minus a positive deviational variable, equal to a target value.

Constraint (4.38) assures that 1500 units will be purchased, while con-
straint (4.39) assures that the number purchased at the higher price from 
each supplier will be 0 if none are purchased, and less than or equal to the 
break point if any are purchased, according to the value of the yi

h variable.
Constraint (4.40) assures that the number of units purchased at the 

cheaper price from any supplier will be equal to 0 if none are purchased at 
the cheaper price (if yi

l = 0 for a particular supplier i) or less than or equal 
to the maximum that the supplier is able to sell minus the break point.

Constraint (4.41) assures that the number purchased from a supplier 
at the higher price will be greater than equal to 0 if none are purchased 
at the cheaper price, or greater than or equal to the break point (which 
means that the value will be equal to the break point when combined 
with constraint (4.39)) if any are purchased at the cheaper price.

Constraints (4.42) through (4.44) are either nonnegativity constraints 
or 0/1 constraints on the individual decision variables.

Our initial problem will involve setting the weights according to per-
centage normalization method described in Section 4.3. Hence, we set 
the weights equal to the reciprocal of the target value for the respective 
goal: w12 = 1/160 = .00625, w21 = 1/100 = .01, and w31 = 1/100 = .01. The 
problem was solved using the LINGO software package, with the solu-
tion for the deviational variable values given by

 p 12 1 n n p 71 2 3 3= = = =. , , ,0 0 00

and all other deviational variable values at 0.
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The solution dictated the purchase of 100 units, 800 units, 600 units, 
and 0 units from Suppliers 1, 2, 3, and 4, respectively. Hence, 620 units 
and 360 units were to be purchased from Suppliers 2 and 3, respec-
tively, at the cheaper price.

In viewing the values for the deviational variables, it can be seen that 
Goal 1, not to exceed a cost of $160,000, was not met, since p1 = 12.1; in 
other words, the cost for this solution is $172,100. Goals 2 and 3 were 
met, since both n2 and n3 each achieved a value of 0; and in fact, since the 
solution dictated the purchase of 800 units from Supplier 2 (p3 = 700), we 
are exceeding the third goal of purchasing 100 units from Supplier 2 by 
700 units.

If the DM were unsatisfied with this solution, then he or she could 
vary the weights on the deviational variables in the achievement func-
tion and/or change the target values. As it turns out for this problem, if 
one considered cost as the only objective, the best that one could achieve 
would be a cost of $163,400; hence, achieving the target value of $160,000 
is not possible as long as 1,500 units are to be purchased.

Example 4.4: A Goal Program for Distribution 
Center Location and Transportation Planning

The design and operation of supply chains and physical distribution sys-
tems have been a fertile area for the application of optimization models. 
Many of these applications are described in various journal publications 
and books—for example, see any of several publications in the journal, 
Interfaces, or in books such as Bramel and Simchi-Levi (1997) or Shapiro 
(2007).

Decisions to be made in these types of systems include locations and 
capacities of manufacturing facilities and distribution centers, determi-
nation of which items to produce, transportation plans, and production 
schedules. The decisions can involve time frames ranging from daily 
decisions, such as routings for daily deliveries, to long-range deci-
sions over several years such as those involving locations of production 
facilities.

The example problem described in this section is one derived from 
a single-objective optimization given in Shapiro (2007, Chapter 4). The 
problem involves the determination of the locations and capacities of 
distribution centers, as well as the amounts to transport from the dis-
tribution centers to existing markets in order to satisfy the market 
demands. Initially, we will provide a general formulation for the prob-
lem, followed by a specific example, with numbers.

Our problem situation involves S locations for which we want to make 
one of the three possible decisions: (1) locate a large distribution center at 
the location, (2) locate a small distribution center at the location, or (3) do 
not locate a distribution center at the location. There is a fixed cost for 
locating a large/small distribution center at location i, denoted as fli/fsi, 
for i = 1,…,S. In addition, there is a variable cost associated for each unit 
of product (where a unit is defined as a truckload in this case) shipped 
from a distribution center at location i, denoted as vli/vsi for a large/small 
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distribution center, for i = 1,…,S. Each potential distribution center at a 
location has a capacity in terms of the number of units of product that 
can be shipped from the center over the time period in question, depend-
ing on whether the distribution center is large or small; for location i, the 
capacity for a large/small distribution center is denoted as cli/csi.

The distribution centers need to supply markets at D locations, where 
the demand at demand location j is denoted as bj for j = 1,…,D. Therefore, 
the other type of decision that needs to be made is the amount of prod-
uct to ship from each distribution center to each market. Hence, in addi-
tion to the fixed cost associated with locating distribution centers and 
the variable costs of shipping product from these distribution centers, 
we are also interested in the transportation costs for shipping the prod-
uct from the distribution centers to the demand locations or markets. 
This transportation cost for shipping the product from a location i to a 
location j is computed as a constant, ctl (cost per mile per unit of product) 
multiplied by the number of units shipped from i to j times the distance 
from i to j (denoted as dij), for i = 1,…,S and j = 1,…,D.

The decision variables for this problem are denoted as follows:

yli = 1, if a large distribution center is located at location i. 
0, otherwise.

ysi = 1, if a small distribution center is located at location i. 
0, otherwise.

xlij is the number of units of product shipped from a large distribu-
tion center at location i to market at location j.

xsij is the number of units of product shipped from a small distri-
bution center at location i to market at location j.

A summary of the notation for this problem is shown in Table 4.9.
The decision makers for the problem have three goals to consider 

related to (in decreasing priority order): total cost, transportation cost, 
and total number of distribution centers to locate. Specifically, they 
would like to meet goals of C, TC, and DC Number for these three mea-
sures. This gives us a goal program as shown in (4.45) through (4.54):

 Lex Min Z p  p  p1 2 3= { , , } (4.45)

subject to
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i i

=
å £ = ¼

1

, ,  (4.52)

 xl xs for i 1 S and j 1 Dij ij, , , , ,³ = ¼ = ¼0  (4.53)

 ys and yl  are 1 for i 1 Si i 0, , ,= ¼  (4.54)

The achievement function (4.45) is a lexicographic minimization of the 
three deviation variables, in order: p1,  p2,  p3. Note that these are the 

TABLE 4.9

Summary of the Notations for the Distribution Center Location and Transportation 
Planning Problem

Notation Definition 

S Number of possible locations for distribution centers
D Number of markets
fli Fixed cost for locating a large distribution center at location i
fsi Fixed cost for locating a small distribution center at location i
vli Variable cost per unit shipped for a large distribution center at location i
vsi Variable cost per unit shipped for a small distribution center at location i
cli Capacity in terms of number of units to ship from a large distribution center 

at location i
csi Capacity in terms of number of units to ship from a small distribution 

center at location i
bj Demand at market j
dij Distance in miles from location i to location j
ctl Cost per unit mile to ship product
yli 0–1 variable indicating whether a large distribution center is located at i
ysi 0–1 variable indicating whether a small distribution center is located at i
xlij Number of units of product to ship from a large distribution center at 

location i to market at j
xsij Number of units of product to ship from a small distribution center at 

location i to market at j
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variables for which we want values of 0; for example, we do not want the 
total cost to be greater than C. The goal constraints are given by (4.46) 
through (4.48) for total cost, transportation cost, and total number of dis-
tribution centers located. Constraint (4.49) assures that at most, one dis-
tribution center will be located at each location. Constraint (4.50) assures 
that demand will be met at each market. Constraints (4.51) and (4.52) 
assure that the amount shipped from any location will not exceed the 
capacity for that location; note in each case that if a distribution center 
is not located at a particular location, then nothing can be shipped from 
that location. Finally, constraints (4.53) and (4.54) are the nonnegativity 
constraints and zero-one constraints, respectively, on the appropriate 
decision variables.

Let’s attach some data to a hypothetical problem of this type. Suppose 
that we have six potential locations for distribution centers and 15 mar-
kets. The fixed costs and the variable shipping costs for locating a small 
distribution center or a large distribution center for each of the locations 
are shown in Table 4.10. In addition, the respective capacities for small 
and large distribution centers at each location are given.

The demands at the markets are shown in Table 4.11, and the dis-
tances in miles from each distribution center to each market are shown 
in Table 4.12.

The final piece of data required for the problem is the value for ctl, 
the cost per unit/truckload-mile, which was set at a value of $.75. As 
an example of this parameter, if 400 units are transported from DC 
Location 1 to Market 1, the transportation cost associated with this ship-
ment would be .75 (dollars per truckload-mile) * 400 truckloads * 277 
miles = $83,100.

The goals associated with our example problem are $3.2 million for 
total cost, $.9 million for transportation cost, and four distribution cen-
ters located. Note that we are setting the goals related to the costs in 
“millions of dollars” (instead of dollars) so that these will be relatively 
close in numerical value to the goal for the number of distribution cen-
ters located.

The lexicographic goal program associated with this problem was 
solved using the “Big P” method discussed earlier through the use of 
the LINGO software package. A listing of the file associated with the 
model is shown in Figure 4.3.

The solution found to the goal program resulted in p1 = 0, p2 = 0, p3 = 1. 
This means that the goals associated with a total cost of $3.2 million and 
of transportation cost of $.9 million were met, but the third priority goal 
of locating at most four distribution centers was not met—that is, the 
solution dictates the location of five distribution centers. Also, since we 
had values for the negative deviational variables of n1 = .024, n2 = 0, and n3 
= 0, the total cost goal was actually “overachieved” by $.024 million, or 
$24,000. The detailed solution is shown in Tables 4.13 through 4.15.

The total cost for the solution was, as mentioned earlier, $3.176 mil-
lion, with a fixed cost (for locating DCs) of $1.06 million, a variable cost 
(for shipping from the DCs) of $1.22 million, and a transportation cost of 
$.9 million. (Note that because of round-off, the latter three costs do not 
quite add up to the $3.176 million total cost.)
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4.6  Additional Approaches for Goal Programming: 
Interactive and Metagoal Programming

Until now, we have discussed or at least mentioned three variants of goal 
programming: lexicographic (or preemptive) goal programming, weighted 
(or nonpreemptive) goal programming, and minmax (or Chebyshev) goal 
programs. In addition to linear goal programs of the first two types, 
we have also presented examples involving the use of integer decision 
variables.

TABLE 4.11

Demand at Each of the 15 Markets

Market Demand (Units) 

1 960
2 850
3 750
4 822
5 1450
6 1120
7 652
8 1650
9 490

10 690
11 570
12 534
13 587
14 605
15 1150

TABLE 4.12

Distances (in Miles) from Each Potential Distribution Center Location to Each Marketa

277 365 315 308 320 190 298 25 98 146 126 212 215 363 309
292 334 203 127 129 22 140 207 292 336 223 213 385 491 261
368 381 221 90 28 124 107 324 410 449 320 277 490 577 284
726 753 595 463 344 442 294 575 646 769 474 368 620 598 271
530 589 462 360 266 265 184 317 375 352 196 91 336 341 19
101 25 139 271 385 305 440 347 391 476 463 504 560 716 570

a Row i refers to potential DC location i and column j is for market j, for i = 1…6 and j = 1…15.
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Model:
!Example 4 _ 4;
Sets:
Dist/A, B, C, D, E,
F/:Fixedcostlarge,Fixedcostsmall,Varcostlarge,Varcostsmall, 

Caplarge,Capsmall,Xlarge,Xsmall; 
Market/1,2,3,4,5,6,7,8,9,10,11,12,13,14,15/:Demand; 
Link(Dist,Market):Distance,Ylargeship,Ysmallship;

ENDSETS
DATA:

! attribute values;
Fixedcostlarge = 300000, 250000, 325000, 225000, 275000, 350000;
Varcostlarge   = 77, 80, 86, 75, 91, 82;
Fixedcostsmall = 175000, 100000, 150000, 195000, 160000, 185000;
Varcostsmall   = 103, 110, 101, 96, 120, 108;
Caplarge     = 4000, 3500, 3200, 4000, 3800, 3500;
Capsmall     = 2500, 1750, 2000, 2000, 2400, 2000;
Demand     = 960, 850, 750, 822, 1450, 1120, 652, 1670, 490, 690, 570, 

534, 587, 605, 1150;
CTL        = .75;

Distance   =   277  365   315 308  320   190  298  25 98  146  126  212  215
363  309  292  334  203 127 129  22    140  207 292 336 223  213 385  491
261  368  381  221  90  28  124  107   324 410 449  320 277 490  577  284
726  753  595  463  344 442 294  575 646 769    474  368 620 598  271 
530  589  462  360  266 265 184  317 375 352    196  91  336 341  19
101  25   139  271  385 305 440  347 391 476    463  504 560 716  570;
ENDDATA
!Achievement Function;

Min = 1000*p1 + 100*p2 + 1*p3;
!Goal Constraints;
(@SUM(Dist (i): Fixedcostlarge(i)*Xlarge(i) + Fixedcostsmall(i)*Xsmall(i) ) + 

@SUM(Link(i,j): Varcostlarge(i)*Ylargeship(i,j) +
Varcostsmal l(i)*Ysmallship(i,j) ) + 

@SUM(Link(i,j): CTL*Distance(i,j)*Ylargeship(i,j) +
CTL*Distance(i,j)*Ysmallship(i,j) ))/1000000 + n1 − p1 = 3.2;

(@SUM(Link(i,j): CTL*Distance(i,j)*Ylargeship(i,j) +
CTL*Distance(i,j)*Ysmallship(i,j) ))/1000000 + n2 − p2 = .9;

@SUM(Dist(i):Xlarge(i) + Xsmall(i) ) + n3 − p3 = 4;
!Constraints;

@For(Dist(i):Xlarge(i) + Xsmall(i) <= 1);
@For(Market(j): [Demand _ Constraints]

@SUM(Dist(i):Ylargeship(i,j) + Ysmallship(i,j) ) = Demand(j) );
@For(Dist(i): [Supply _ Large _ Constraints]

@SUM(Market(j):Ylargeship(i,j) ) <= Caplarge(i) * Xlarge(i) );
@For(Dist(i): [Supply _ Small _ Constraints]

@SUM(Market(j):Ysmallship(i,j) ) <= Capsmall(i) * Xsmall(i) );
!Zero-one constraints;

@For(Dist(i):@BIN(Xlarge(i) ));
@For(Dist(i):@BIN(Xsmall(i) ));

End

FIGURE 4.3
Listing of the LINGO model for the goal program.
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The need for interaction with the decision maker was apparent in the dis-
cussion of the examples. This interaction should not just occur in the for-
mulation of the initial goal program, that is, in the determination of the 
preemptive categories of goals, the target values for the goals, and the weights 
for the deviational variables in the achievement function, but it should also 

TABLE 4.13

The Location and Capacity Decisions for the DC 
Location and Transportation Planning Problem

Distribution Center Location Location Solution 

1 Locate 1 large DC
2 Locate 1 small DC
3 Locate 1 small DC
4 —
5 Locate 1 small DC
6 Locate 1 large DC

TABLE 4.14

Shipments to Market 1 through Market 8 for the DC Location and Transportation 
Planning Problem

Distribution 
Center 
Location 

Amount 
to Ship 

to 
Market 1 

Amount 
to Ship 

to 
Market 2 

Amount 
to Ship 

to 
Market 3 

Amount 
to Ship 

to 
Market 4 

Amount 
to Ship 

to 
Market 5 

Amount 
to Ship 

to 
Market 6 

Amount 
to Ship 

to 
Market 7 

Amount 
to Ship 

to 
Market 8 

1 1670

2 1120 630

3 680 1320

4

5 82 22

6 960 850 750 60 130

TABLE 4.15

Shipments to Market 9 through Market 15 for the DC Location and Transportation 
Planning Problem

Distribution 
Center 
Location 

Amount 
to Ship to 
Market 9 

Amount 
to Ship to 
Market 10 

Amount 
to Ship to 
Market 11 

Amount 
to Ship to 
Market 12 

Amount 
to Ship to 
Market 13 

Amount 
to Ship to 
Market 14 

Amount to 
Ship to 

Market 15 

1 490 683 570 587

2

3

4

5 7 534 605 1150

6
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occur in the “reformulations” after the initial solution and after subsequent 
solutions of reformulated problems.

Tamiz and Jones (1997) discuss various approaches for decision maker 
interaction in the goal programming solution procedure. For example, one 
very simple and straightforward approach is to just solve a sequence of goal 
programs with varying weights and target levels, present the various solu-
tions to the DM(s), and allow them to choose the most preferred. The choice 
of each set of weights and target levels for each respective goal program 
would involve little, if any, particular thought.

A more sophisticated approach involves allowing some thoughtful process 
by the DM between iterations. For example, the DM might not be satisfied with 
the value for a particular deviational variable. By increasing the weight for 
that deviational variable in the achievement function, increased importance 
is placed on that deviation at the next iteration of the interactive algorithm.

Additional information, for example, sensitivity analysis information, 
can also be provided to the DM as an aid in changing target values. For 
example, the right-hand side ranges for the goal constraints can aid the DM 
in setting new target values for the goals. In Section 4.4, we discussed pro-
viding the DM with the minimum and maximum values for the deviational 
variables as an aid in setting the weights for these variables in the achieve-
ment function.

For additional information in the area of interactive goal programming, 
the reader is directed to the Tamiz and Jones (1997) paper, which discusses 
several of the publications in this area.

Finally, Rodriguez et  al. (2002) developed the concept of metagoal pro-
gramming. This approach allows the DM to set secondary goals, derived 
from the original set of goals, within an interactive process of the DM.

For a discussion of the merging of interactive and metagoal program, see 
Caballero et al. (2006). In addition, see Caballero et al. (2005) for information 
concerning a specialized software package for solving goal programs.

For future research areas of goal programming, see Caballero et al. (2009).

4.7  Additional Approaches for Multiple 
Objective Optimization

As mentioned in Section 4.1, there are many approaches in addition to goal 
programming for multiple objective optimization. These approaches can be 
classified according to Figure 4.1. Whereas the classical approaches involving 
goal programming employ a prior articulation of preferences, many of the 
earlier approaches for multiple objective optimization involved a progressive 
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articulation of preferences, which typically require an interactive procedure. 
Examples of these algorithms include the GDF algorithm of Geoffrion et al. 
(1972) and the algorithms of Zionts and Wallenius (1983), Korhonen and 
Laasko (1986), and Korhonen et al. (1986).

The Step method (Benayoun et al., 1971), or STEM, is another one of the early 
interactive multiple objective methods. The basic concept can be applied to 
both linear and nonlinear problems with continuous and/or integer decision 
variables. The method involves, first, solving the p single-objective problems 
(corresponding to the p objective functions in (4.1)) to form a “payoff table”; 
this payoff table gives an optimal solution and corresponding p objective 
function values for each of the p single-objective problems solved. Following 
this initial step, an iterative sequence of single-objective problems is solved. 
These problems each involve finding a nondominated solution, which mini-
mizes a maximum weighted distance to the ideal found in the initial step 
of the algorithm; in addition to the initial problem constraints, the DM is 
allowed to impose additional constraints on the objective functions of the 
problem. The weights imposed at this step are determined automatically and 
do not necessarily relate to the DM’s preferences.

More specifically, the initial step of STEM involves solving the p problems 
given by

 Maximize z f (x), subject to x X for i 1, , pi i= = Î ¼  (4.55)

If the objective function given by fi initially involves minimization, that 
function is replaced by its negative in order to allow an equivalent maximi-
zation problem. The payoff table associated with solving these p problems is 
illustrated in Table 4.16. This table will have (p + 1) columns and p rows. The 
first column contains the optimal solution found from solving each of the p 
problems given in (4.55). Note that these single objective problems, which are 
initially of the minimization type, will correspond to negative objective func-
tion values in Table 4.16 since the minimization problems are transformed to 
ones where the negative of the objective function is to be maximized.

TABLE 4.16

Payoff Table Associated with the Initial Step of the Step Method

Optimal Solution for 
Problem i, i = 1,…, p

Objective 
Function Value 
for Objective 1

Objective 
Function Value 
for Objective 2 …

Objective 
Function Value 
for Objective p

x1 f1(x1) f2(x1) … fp(x1)
x2 f1(x2) f2(x2) … fp(x2)
⋮ ⋮ ⋮ ⋮ ⋮
xp f1(xp) f2(xp) fp(xp)
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The diagonal entries of the matrix given in Table 4.16 (with the first column 
and first row deleted) f1(x1), f2(x2),…, fp(xp) form the ideal, that is, the point in 
the outcome space that represents the optimal value for each of the objectives 
individually. Even considering the possibility of multiple optimal solutions 
for the individual single-objective problems given in (4.55), only very rarely 
will there be a single solution that optimizes each of the individual objective 
functions f1(x), f2(x),…, fp(x) simultaneously.

Following this initial step of the Step method, the DM might be satisfied 
with one of the p solutions x1,x2,…,xp given in the payoff table. If so, the algo-
rithm terminates with this “best compromise” solution. Otherwise, problem 
(4.56)–(4.58), involving the minimization of a maximum weighted devia-
tion from the ideal, as restricted by the original set of constraints and aug-
mented by the DM's additional restrictions on the objective function values, 
is solved. The weights associated with the deviations from the ideal, as well 
as the DM’s restrictions on the objective function values, can change from 
one iteration to the next. The idea here is that the DM will learn about his or 
her preference structure as iterations continue:

 Minimize d  (4.56)

subject to

 w z  f x d for i 1 pi i
M

ii( ( )) , ,- £ = ¼  (4.57)

 x XÎ i  (4.58)

where
i represents the iteration number, which takes on sequential values of 

1, 2,…
wii is the weight associated with objective i and iteration i

The expression x ∈ Xι represents the set of constraints on x associated with 
iteration i. For the initial iteration, iteration 1, this would just be the initial 
set of constraints, x ∈ X, but for subsequent iterations, this initial set of con-
straints is augmented by any additional restrictions, which the DM places 
on the objective function values. For example, suppose that objective 1 in 
a problem is "cost" and that at a particular iteration of the algorithm a cost 
of $150,000 is achieved; in order to achieve a better value on some objec-
tive other than cost, the DM would accept a 15% increase in cost. Then, for 
the next iteration, the constraints would be augmented with the following 
restriction on the cost objective function f1(x) ≤ 1.15(150,000), thereby allowing 
a relaxation from the current objective function value for cost by 15%.

For a more in-depth discussion of STEM, the reader is directed to Steuer 
(1986, pp. 362–367).



191Goal Programming and Other Methodologies

Material Review Questions

4.1 Briefly explain how a problem can have a very large or even an infinite 
number of alternatives. Give an example of this type of problem.

4.2 Give an example of a decision variable.
4.3 What are the various categories of decision variables?
4.4 What are the two types of solution processes required to solve prob-

lems of the type discussed in this chapter?
4.5 In addition to decision variables, what other types of variables are con-

tained in a goal program?
4.6 In basic goal programming, what is the timing associated with the articu-

lation of preference information as compared to the optimization process?
4.7 What are the three main categories/variants of goal programming?
4.8 Of the three main variants of goal programming mentioned in Question 

4.7, which two are the most popular?
4.9 What is the term used for an objective function of a goal program?
4.10 Once the objectives, deviational variables, and decision variables have 

been defined for a goal programming situation, what type of prefer-
ence information must be defined by the DM to completely define the 
goal program?

4.11 In a goal program, if one deviational variable associated with a goal 
has a positive value in a solution, what must be the value associated 
with the other deviational variable for the goal?

4.12 A lexicographic goal program is typically solved by solving a sequence 
of minimization problems (true or false).

4.13 What are the three types of goals associated with a goal program?
4.14 If a particular goal in a goal program involves the minimization of the 

overachievement of a target value, which of the two deviational vari-
ables associated with this goal will have a weight of 0 in the achieve-
ment function?

4.15 During the earlier years of goal programming applications, which 
variant of goal programming was most popular?

4.16 What is the basic form of a goal constraint in a goal program?
4.17 In a lexicographic goal program, it is not possible to achieve a lower-level 

goal when a higher-level goal has not been achieved (true or false).
4.18 A standard approach for solving a lexicographic linear goal program 

involves solving a sequence of linear programs, one for each lexico-
graphic category (true or false).

4.19 Briefly describe the “Big P” method for solving a lexicographic goal 
program.

4.20 A weighted goal program might be considered a special case of a lexi-
cographic goal program with a single priority category (true or false).

4.21 What is lexicographic redundancy?
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4.22 What are two basic reasons for the existence of lexicographic redun-
dancy in a goal program?

4.23 What is a general rule for the maximum number of priority levels in a 
lexicographic goal program?

4.24 Define Pareto inefficiency in a goal program.
4.25 What are the two situations for which nonzero weights need to be 

determined for deviational variables in the achievement function of a 
goal program?

4.26 Why is it important to set target values (for goals in a goal program) 
that are relatively close in value to each other?

4.27 Of the two formal methods for determining weights for deviational 
variables discussed in the chapter, which one would typically repre-
sent the preference structure of the decision maker in a more accurate 
fashion?

Exercises

4.1 Consider a weighted goal program with three deviational variables: 
n1, p2, p3 for three respective goals. Three single-objective optimiza-
tion models, involving the optimization of each of the three deviational 
variables separately, have been solved. The minimum and maximum 
values for the three deviational variables from the three single-objective 
problems solved are given by

 n1: 0 and 10
 p2: 0 and 15
 p3: 0 and 5

 The DM for this problem has expressed the following set of preference 
relations:

 (0, 15, 5) is preferred to (10, 0, 5), and (10, 0, 5) is preferred to (10, 15, 0),

 where each of the vectors refers to an outcome: (n1,  p2,  p3). Suppose 
further that the DM has expressed the following sets of indifferences 
related to the outcomes:

 1. Indifference between (2.1, 15, 15) and (10, 0, 15)
 2. Indifference between (6.7, 15, 15) and (10, 15, 0)

 Using the approach discussed in the chapter for determining the devi-
ational variable weights, what should the achievement function be for 
the goal program?
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4.2 Consider the lexicographic goal program associated with Example 
4.4, for distribution center location and transportation planning. Solve 
modified versions of this goal program, with different orderings for 
the lexicographic goals:

 1. Lex Min Z = {p1,p3,p2}, subject to (4.46) through (4.54)
 2. Lex Min Z = {p2,p1,p3}, subject to (4.46) through (4.54)
 3. Lex Min Z = {p2,p3,p1}, subject to (4.46) through (4.54)
 4. Lex Min Z = {p3,p1,p2}, subject to (4.46) through (4.54)
 5. Lex Min Z = {p3,p2,p1}, subject to (4.46) through (4.54)

 Discuss how the solutions found differ from one another.
4.3 Consider the lexicographic goal program associated with Example 4.4. 

Use “trial and error” to experiment with the goal for total cost to see 
if you can obtain a solution, which satisfies all three of the goals. Is it 
possible to achieve all three goals by experimenting with the goal for 
total cost only?

4.4 Consider again the lexicographic goal program associated with 
Example 4.4. Experiment with the goal for transportation cost to see if 
all three goals can be satisfied. Is it possible to achieve all three goals 
by experimenting with the goal for transportation cost only?

4.5 Consider Example 4.3, involving the selection of suppliers. Formulate 
and solve this problem as a lexicographic goal program in which the 
first priority goal is to achieve a cost of at most $160,000, the second 
priority goal is to purchase at most 100 units from Supplier 1, and the 
third priority goal is to purchase at least 100 units from Supplier 2.

4.6 Experiment with the goal of $160,000 set for cost in Exercise 4.5 
(Example 4.3) to determine if all three goals could be met with a differ-
ent cost goal.
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5
A Brief Review of Probability Theory

5.1 Introduction

Decisions are often made in the presence of forecasts concerning uncertain 
quantities. How these quantities are represented, for example, through the 
use of particular probability distribution or density functions, will affect 
the outcome forecast for an alternative decision. For example, the produc-
tion rate associated with a particular scheduling policy will depend upon 
the reliability of the machines in the production facility; machine reliability 
might be represented through the use of a density function, which in turn 
represents the times between machine breakdowns. Additional examples of 
these uncertain quantities/parameters would include the following:

 1. Arrival times of customers, patients, and trucks to their appropriate 
facilities

 2. Fractions of customers or patients belonging to various categories
 3. Activity/task times associated with various activities of a process or 

of a project
 4. Amount of sales associated with a new product
 5. Vendor lead times
 6. Number of competitors bidding on a contract

The primary approach used to handle uncertainty involves the use of con-
cepts from probability theory. This chapter will review probability theory, 
especially with respect to how it relates to decision making in the presence 
of uncertainty. More specifically, we will be concerned with how to develop 
evaluation models, which reflect the uncertainty in the outcome associated 
with a decision.

Much, if not all, of the material in this chapter is covered in an introduc-
tory course in probability and statistics. Hence, the reader can skip this chap-
ter if he or she is already familiar with the material.
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5.2  Events/Experiments, Sample Space, 
Outcomes, and Partitions

An event or an experiment is a procedure or process with an outcome that 
cannot be known in advance. A sample space is the set of all possible outcomes 
associated with an event/experiment.

Note that an experiment can correspond to a purposeful activity associated 
with some human endeavor (e.g., a doctor performs surgery on a patient, a 
corporation decides to locate a new production facility in Denver, Colorado, 
or an analyst runs 30 replications of a simulation model of a production facil-
ity), or to some process for which the decision maker, or any human, has no 
direct influence (e.g., tomorrow’s weather).

The sample space associated with any specific experiment can typically be 
defined in any of several different ways. For example, when a surgeon per-
forms an operation on a patient, the sample space might be defined in any of 
the following three ways, among others:

SS1 = {survival of longer than one day, survival of less than one day}
SS2 = {number of days spent in the hospital after the surgery}
SS3 = {quality-adjusted life years following the surgery}

If the experiment involves operating a production facility over the next 
6 months, the sample space could be any of the following:

SS1 = {percentage of production orders meeting a due date}
SS2 = {mean inventory level over the 6 months}

A partition of the sample space is a collection of subsets from the sample 
space such that the intersection of any two subsets is the null set and the 
union of all subsets is the sample space.

Note that the way that the sample space is defined is often tied into either 
the attributes associated with a decision problem or the possible data, which 
one can collect from an experiment. For example, if a decision situation 
involves which inventory policy to choose for the next 6 months, the sample 
space might be

 {expected holding cost, expected ordering cost, expected shortage},

where each of the three quantities is evaluated per day, over the 6-month 
period. If a decision situation involved a plan to schedule activities and allo-
cate resources in a construction project, the sample space might be

 {project duration, direct project cost}.
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5.3 Probability

A probability is associated with an outcome; hence, we refer to the “probabil-
ity of an outcome or a set of outcomes,” such as the probability that a patient 
will survive at least 1 day following an operation, or the probability that at 
least 98% of the production orders over the next 6 months will be met by 
their due dates.

As such, probability might be thought of as a function that maps from the 
space of outcomes onto a closed interval of real number line: [0, 1]. Such a 
function, P A: [ , ]® 0 1 , a mapping from any outcome or subset of outcomes, 
A, contained in the sample space, S, onto the closed interval [0, 1], should 
satisfy the following axioms:

 1. 0< = P(A)< = 1
 2. P(S) = 1, where S is the entire sample space
 3. If Ai, for i = 1,2, …, n are a set of pairwise, mutually exclusive sets of 

outcomes, then

 P A U A U U A P A P A P(A )1 2 n 1 2 n( ) ( ) ( )… �= + + +

  (Note that two sets of outcomes, A1 and A2, are mutually exclusive if 
their intersection is the null set—i.e., there is no intersection.)

These three axioms are sufficient to derive the other properties of 
probability, including

 4. P(Φ) = 0, where Φ refers to the null space, the space of no outcomes
 5. P(A) = probability of not A = 1 – P(A)

5.4 Random Variables

A random variable is a function, which is a mapping from the outcome space 
to the space of real numbers. Note that a random variable is neither random 
nor variable. Typically, we think of the range of the function as being the 
random variable.

There are two basic types of random variables: discrete random variables and 
continuous random variables. A discrete random variable is one for which the 
values are integers or can be mapped as integers. For example, the number 
of customers arriving at a fast-food restaurant between 11 a.m. and 12 noon 
is a discrete random variable. The fraction of the items in a lot of 1000 parts, 
which are defective, is also a discrete random variable, since the possible 
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values for this fraction can be enumerated as 0, 1/1000, 2/1000, 3/1000, …, 1. 
So another way to think about discrete random variables is that their pos-
sible values can be enumerated.

A continuous random variable is one for which the possible values are all 
real numbers within some interval. Typically, these random variables would 
represent time (e.g., the amount of time between arrivals of customers to a 
bank branch), volume, length (e.g., the length of a part), weight (the weight of 
the contents of a bag of potato chips), velocity, and so on.

Example 5.1:  Sample Space, Random Variable, and Probabilities 
Associated with the Experiment of Throwing a Die

Suppose that we throw a dice three times and observe the sequence of 
numbers that emerge. The sample space might be defined as

 

SS 1 1 1  (1 1 2)  (1 1 3) 1 1 6  (1 2 1)

(1 2 2)

= ¼

¼

{( , , ), , , , , , , , ( , , ), , , ,

, , , (( , , ), , ( , , ) .1 2 6 6 6 6¼ }

That is, the sample space is every combination of three consecutive inte-
gers ranging from 1 to 6. Each sequence of three integers is an outcome 
in the sample space. Now, define a random variable as a function, which 
maps from the outcome space to Y: the number of “ones,” which occurs 
in the three rolls of the dice. Typically, we would say that a random 
variable would be “the number of ones that occur in three rolls of the 
dice,” that is, the range of the mapping. Refer to the following table for 
an example:

Outcome → Y: Random Variable 

(1, 1, 1) → 3
(1, 2, 1) → 2
(6, 6, 4) → 0

Now, one can observe that there are 6 ∗ 6 ∗ 6 = 216 possible combina-
tions of three consecutive integers, or there are 216 mutually exclusive 
outcomes within the sample space. Each of these outcomes has an equal 
chance of occurrence. One could compute the probability associated 
with Y equaling a particular value:

 P(Y 3) 1/216 463.= = = .00

Note that this probability could have been computed by observing that 
only 1 out of the 216 outcomes in the outcome space had three consecu-
tive “ones.” If one wanted to take a “more scientific approach,” to the 
computation, it could be observed that
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Example 5.2: Random Variable Associated with Waiting 
Time in a Hospital Emergency Department

Suppose that we conduct an experiment in which we observe the patients 
who enter the emergency department of a hospital from 5 to 7 p.m. over 
10 consecutive days. In particular, we gather data on the waiting time 
(the amount of time from when the patient enters the emergency room 
until treatment begins) for each patient. An example of a random vari-
able in this case would be the fraction of patients who must wait longer 
than 30 minutes for treatment.

There is a final note to be made here concerning terminology and notation. 
Some authors refer to a chance event as “something about which the decision 
maker is uncertain” (see Clemen and Reilly, 2001, p. 249). Thus, a chance 
event is a random variable as defined earlier. In addition, random variables 
(or chance events) are denoted as capital letters (e.g., A, B,…, X, Y, or Z), while 
values (or outcomes) associated with these random variables are denoted by 
small letters such as a, b, and c.

5.5  Conditional Probabilities, Forecasts, Joint Probabilities, 
Independence, Causality, and Conditional Independence

Let a1 and b1 be two respective outcomes; then P(a1|b1) denotes the conditional 
probability of a1 occurring given that b1 has occurred or will occur. Note that both 
a1 and b1 represent specific outcomes associated with random variables and not 
the random variables themselves.

Note also that b1 does not have to actually occur prior to a1. For example, one 
could consider the conditional probability of a weather forecast predicting 
more than 3 in. of rain given that there will be 3 in. of rain:

P(forecast is more than 3 inches of rain | there will be at least 3 inches of rain).

Forecasts are common in decision analysis; another word for forecast is pre-
dictor. Some examples of forecasts/predictors include medical tests, surveys, 
and lot sampling.
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Now, the joint probability of both a1 and b1 occurring is denoted as P(a1,b1) or 
P(a1 and b1).

Two random variables, X (with possible outcomes of x1, x2, …, xm) and 
Y (with possible outcomes of y1, y2, …, yn), are independent if and only if 
P(xi|yj) = P(xi) for all outcomes xi and yj. In other words, the outcome associ-
ated with Y has no bearing on the outcome associated with X.

If two events, X and Y, are independent, then we can say the following:

 
P(x ) P(x y )

P(x y )
P(y )

i i j
i j

j
= =|

,
,

or

 P(x y ) P(x )P(y )i j i j, = .

Consider the following two events, each with two outcomes:

 1. University of Louisville’s men’s basketball team plays a game on a 
Saturday afternoon with outcomes of Louisville wins or Louisville 
loses.

 2. University of Kentucky’s men’s basketball team plays a game on a 
Saturday afternoon with outcomes of Kentucky wins or Kentucky 
loses.

These two events can be considered as independent (as long as the teams are 
not playing each other). So we can say that

P (Louisville wins and Kentucky wins) = P (Louisville wins)
× P (Kentucky wins).

Independent events are not to be confused with mutually exclusive outcomes. 
For example, as noted, Louisville winning a basketball game on Saturday is 
independent of Kentucky winning a game on Saturday, but Louisville win-
ning and Kentucky winning are not mutually exclusive outcomes.

In Chapter 7, we will present a type of model used in decision analysis 
called an influence diagram. In an influence diagram, nodes are used to repre-
sent events in a decision situation, and an arc from one event node to another 
indicates probabilistic dependence.

A final note concerning probabilistic dependence concerns causality. If two 
outcomes are probabilistically dependent, this does not necessarily imply a causal 
relationship. For example, a weather forecast that predicts that a hurricane will 
hit New Orleans does not cause the hurricane to hit New Orleans. But these 
two outcomes (1) weather forecast predicting that a hurricane will hit New 
Orleans and (2) hurricane hitting New Orleans are probabilistically dependent.

Conditional independence can apply in a situation involving three events, say 
X, Y, and Z. In particular, one can say that the events X and Y are conditionally 
independent, given event Z if and only if the following holds:

 P(X Y Z) P(X Z).| , |=
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Example 5.3: Conditional Independence Regarding 
Two Different Types of Medical Tests

Consider three different sample spaces, each with two outcomes:

 1. A particular child has lead poisoning (LP) or does not have lead 
poisoning (NLP).

 2. An imperfect urine test for the child is negative for lead poison-
ing (NUT) or is positive for lead poisoning (PUT).

 3. A perfect blood test for the child is negative for lead poisoning 
(NBT) or is positive for lead poisoning (PBT).

Now, considering the urine test, we have P(NLP|NUT) < 1 and P(LP|PUT) 
< 1, but both conditional probabilities are close to 1. Considering the per-
fect blood test, we have the conditional probabilities of P(NLP|NBT) = 1 
and P(LP|PBT) = 1. The reader will recall from Chapter 2 that the con-
ditional probabilities of P(NLP|NUT) and P(NLP|NBT) are called the 
specificities of the urine test and blood test, respectively; P(LP|PUT) and 
P(LP|PBT) are called the sensitivities of the urine test and blood test, 
respectively.

We also have

 

P(I J and K) P(I K) for I LP NLP J NUT PUT

and K NBT PB

| | { , }; { , };

{ ,

= = =

= TT}.

In other words, we are interested in knowing whether or not the child 
has lead poisoning; if I and J are conditionally independent given K, then 
learning the outcome of J (the urine test outcome) given K (the blood test 
outcome) adds no new information regarding I (whether or not the child 
has lead poisoning) if the outcome of K (the blood test) is known.

Therefore, I (the outcome of whether or not the child has lead poison-
ing) is conditionally independent of J (the outcome of the urine test) given 
K (the outcome of the blood test).

5.6 Probability Functions

The function, p(x), is a probability distribution function of the discrete random 
variable, X, if for each possible outcome x:

 1. p(x) ≥ 0.

 2. p x
all x

( )å = 1.

 3. p(x) = P(X = x).
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The function, F(x), called the “cumulative distribution function” of the dis-

crete random variable, X, is given by F(x) p(t)
t

=
£å x

. Note that F(x) gives the 

probability that the random variable, X, will have a value less than or equal 
to x, P(X ≤ x).

The function f(x) is a probability density function for the continuous random 
variable, X, defined over R, the space of real numbers, if

 1. f(x) ≥ 0 for x∈ R

 2. f (x)dx 1=
-ò ¥

¥

 3. P a X b f (x)dx
a

b

( )< < = ò
The cumulative distribution function (or sometimes just called “distribution 

function”), F(x), of a continuous random variable, X, is given by F(x) tf ( )dt=
-¥ò
x

, 

where f is the probability density function for X. Note that F(x) gives the prob-
ability that the random variable, X, will have a value less than or equal to x, 
P(X ≤ x). Also, note that f(x) = dF(x)/dx; that is, f(x) is the first derivative of F 
with respect to x.

A summary of the terminology and notation for these probability func-
tions is given in Table 5.1.

There are two types of distribution/density functions: empirical and theo-
retical. Examples of theoretical distribution functions are binomial, hyper-
geometric, and Poisson for a discrete random variable; normal, uniform, 
triangular, exponential, beta; and so on for a continuous random variable. 
These theoretical distributions often correspond to some type of event or 
experiment.

Empirical distributions are typically formed to correspond to data that 
have been gathered from a process. Example 5.4 provides an illustration of 
an empirical distribution function.

TABLE 5.1

Summary of Terminology and Notations for Probability Functions

Type of Random 
Variable 

Name and Notation for 
Function Type 1 

Name and Notation for 
Function Type 2 

Discrete: X p(x) = P(X = x), probability distribution 
function

F(x), (cumulative) distribution 
function

Continuous: Y f(y), probability density function F(y), (cumulative) distribution 
function
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Example 5.4: Empirical Probability Distribution 
Function for Customer Arrivals

Suppose that you have been hired as an analyst to determine the staffing 
policy for a fast-food restaurant. You have decided to develop a simula-
tion model of the restaurant’s operations in order to experiment with 
different staffing policies. One of the parameters for this model is the 
number of customers arriving between 10:30 and 10:45 a.m. to the restau-
rant. Through consultation with the restaurant’s management, you have 
determined that any 10:30–10:45 a.m. time period from Monday through 
Thursday can be treated as the same with respect to the characteristics of 
customer arrivals. The restaurant has collected data for several consecu-
tive 10:30–10:45 a.m. time periods for Monday through Thursday and has 
obtained the following results, as shown in Table 5.2.

Using the proportional values allows the formation of an empirical dis-
tribution function to represent the number of customers arriving between 
10:30 and 10:45 a.m. on Monday through Thursday. For example, if X rep-
resents this random variable, then P(X = 0) = 2/(2 + 3 + 5 + ⋯ + 2) = 2/63 ≈ 
.031476. The entire empirical distribution function is shown in Table 5.3.

Note also that there is no distinction between open and closed intervals for 
continuous random variables; that is, P(X = a) = 0 and P(X ≤ a) = P(X < a) for 
any continuous random variable X, and any constant, a.

5.7 Parameters Associated with Probability Functions

Probability functions can be characterized by their parameters, including 
the mean (or expected value), variance, minimum, maximum, and quantiles. 

TABLE 5.2

Number of Data Points Collected for the Various Numbers 
of Customers Entering a Fast-Food Restaurant between 10:30 
and 10:45 a.m. on Monday through Thursday

Data Point Value Collected Number of Data Points 

0 2
1 3
2 5
3 4
4 8
5 5
6 12
7 3
8 10
9 9

10 2
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Often, an attribute for a decision situation is specified in terms of such a 
parameter; for example, instead of considering the entire distribution of 
waiting times for customers in a service system in order to evaluate the qual-
ity of customer service, the mean waiting time or the fraction of the num-
ber of customers waiting longer than some prespecified number of minutes 
might be used. For example, one of the performance measures typically used 
for 911 (emergency) call centers is the fraction of callers who wait more than 
12 seconds to have their call answered.

The expected value (or mean) of a random variable is a weighted (by the 
associated probability) average of the values that the random variable can 
assume. The expected value of a random variable is also a measure of the 
central tendency of that random variable. As such, at least as a single mea-
sure associated with a distribution, this parameter can give a good repre-
sentation for important performance measures such as mean waiting time 
and mean utilization. “Expected value” is actually a misnomer, since the 
expected value of a random variable could very easily be a value with 0 prob-
ability of occurring; this is certainly true for a continuous random variable, 
and very possibly true for a discrete random variable. For example, a random 
variable with a .5 probability of realizing a value of 0, and a .5 probability of 
realizing a value of 1 would have an expected value of .5.

The variance of a random variable can be thought of as a measure of the 
amount of spread for a distribution. The standard deviation for a random vari-
able is the square root of the variance.

Often, the minimum and maximum values for a random variable are 
minus infinity and plus infinity, respectively, or zero and plus infinity, 
respectively. For example, normally distributed random variables have a 

TABLE 5.3

Empirical Distribution Function for the 
Number of Customers Entering a Fast-Food 
Restaurant between 10:30 and 10:45 a.m. on 
Monday through Thursday

x P(X = x) 

0 .031476
1 .047619
2 .079365
3 .063492
4 .126984
5 .079365
6 .190476
7 .047619
8 .158730
9 .142857

10 .031476
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range of (−∞, + ∞), and gamma distributed random variables have a range 
of (0, +∞). Other random variables, such as those that are uniformly distrib-
uted, have finite values for minimum and maximum.

There are several quantiles for a random variable; in particular, a q-quantile 
for a random variable is that number, xq, such that F(xq) = q, where F is the 
(cumulative) distribution function for the random variable, as denoted in 
Table 5.1. As examples, the median (or .5-quantile) is denoted as x.5, and the 
octiles for a random variable are given by x.125 and x.875.

Table 5.4 gives a summary for the various parameters of a random variable. 
Additional parameters include location, scale, and shape parameters.

In addition to the parameters that are associated with a random variable, 
there are also parameters associated with samples of data, collected from a 
population. For example, if one has a sample, denoted as X1, X2, …, Xn, where, 
for example, these values might denote waiting time for sequential custom-
ers, then the sample mean would be given by (X1 + X2 + ⋯ + Xn)/n. The stan-
dard deviation, variance, quantiles, minimum, maximum, and mode could 
also be computed from the sample data.

5.8  Some Specific Theoretical Probability 
Distribution Functions

There are several specific theoretical distribution functions, for both discrete 
and continuous random variables, which correspond to real-world processes 
or experiments, and are therefore useful for modeling in decision analysis. 
Examples of such functions for discrete random variables include those 
associated with the binomial distribution, the hypergeometric distribution, 
and the Poisson distribution. Examples associated with continuous random 
variables include the normal distribution, the uniform distribution, the tri-
angular distribution, the exponential distribution, and the beta distribution, 
among others. In this section, we will describe some of the characteristics of 
these distribution functions, as well as relationships between them. Table 5.8 
provides a summary of some of this information.

TABLE 5.4

Important Parameters of a Random Variable

Type of Random 
Variable Expected Value Variance Quantiles 

Discrete E X x p x
x

( ) ( )= = åm E [(X−µ)2] xq, such that F(xq) = q, for 
q = .25, .5, .75

Continuous
E X xf x dx( ) ( )= =

-¥

+¥

òm
E [(X−µ)2] xq, such that F(xq) = q, for 

q = .25, .5, .75
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The binomial distribution can be used to represent the number of items in a 
sample of size n with a particular characteristic, where there is a probability of p 
associated with each item having that characteristic (often termed as a success). 
As such, this distribution is often used to represent “sampling with replace-
ment.” More specifically, if one has a group of items for which some fraction 
of these items has a particular characteristic, and one randomly samples some 
subset of these items (while placing each item sampled back into the group after 
being sampled), then the number of items in the sample having the character-
istic will be a random variable with a binomial distribution. As such, the bino-
mial distribution has applications in acceptance sampling for quality control as 
well as in testing a subset of people from a larger population for a disease.

The hypergeometric distribution, on the other hand, can be used to repre-
sent “sampling without replacement.” The distribution can be used to rep-
resent the number of items in the sample with the identified characteristic, 
except that after sampling, the item is not placed back in the group—hence, 
“sampling without replacement.” As the reader can readily determine, the 
hypergeometric distribution is much more complicated in nature than the 
binomial distribution, since the probability that an item sampled has the rel-
evant characteristic will change with each item sampled when the item sam-
pled is not placed back in the group—this is not the case when sampling with 
replacement where the probability does not change with each item sampled.

When the number of items in the group is large relative to the sample size, 
then the binomial distribution represents a good approximation to the hyper-
geometric distribution. Hence, for a situation where, for example, a medical 
organization is setting up a screening test for a disease at a state fair and has 
an estimate of the percentage of people in the overall population with the dis-
ease, the number of people going through the screening test with the disease 
could be represented with a binomial distribution (even though a screened 
test subject obviously would have zero chance of being tested again).

To see the difference between the binomial and hypergeometric distribu-
tions more vividly, let’s consider two situations. In the first situation, let’s 
suppose that we have 10 items in the population and that 5 items are sam-
pled from this population. Three items out of 10 (or 30%) have the character-
istic of interest. The probability distributions for this situation are shown in 
Table 5.5. One can see that in this situation, a binomial approximation to the 
hypergeometric distribution would be poor. For example, the probabilities of 
the random variable having a value of 0 are .1681 for the binomial and .0833 
for the hypergeometric. In addition, note that for this hypergeometric distri-
bution P (Y = y) = 0 for y = 4 or 5, since when sampling without replacement 
the probability of achieving more successes in the sample than there are in 
the entire population must be 0.

Now, let’s consider a second situation involving a comparison of the bino-
mial and hypergeometric distributions. In this second situation, suppose that 
the population size is 100, the sample size is 5, and the number of characteris-
tic items in the population is 30. The comparison of the values for the binomial 
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and hypergeometric distributions is given in Table 5.6. From viewing the 
probabilities given in Table 5.6, the binomial is a much better approximation 
of the hypergeometric distribution for this situation with a population size of 
100 than the first situation with a population size of 10. Note also that P(Y = y) 
for y = 4 or 5 is nonzero in this situation, since the number of characteristic 
items in the population is greater than 5, that is, equal to 30.

A rule of thumb that is often used is that if the population size is at least 
20 times the sample size, then the binomial will be a good approximation of 
the hypergeometric distribution.

The Poisson distribution has a wide range of applications. In particular, it is 
often used to represent the number of arrivals to some type of service sys-
tem, such as a hospital emergency department, a bank, or a restaurant within 
some period of time. This is accomplished by representing the arrivals as a 
nonstationary Poisson arrival process (see Law, 2007, pp. 377–379) in which 
the number of arrivals for a particular period of time is distributed accord-
ing to a Poisson random variable, but the average number of arrivals varies 
by period; for example, the average number of arrivals to a fast-food restau-
rant during the 7–8 a.m. time period would be much larger than the average 
number during the 10–11 a.m. period, but the random variable describing 
each could still be Poisson distributed.

TABLE 5.6

Binomial Distribution Values versus Hypergeometric Distribution Values for a 
Situation with a Population Size of 100, Sample Size of 5, and the Number of 
Characteristic Items in the Population Is 30

Binomial distribution, X
x 0 1 2 3 4 5
P(X = x) .1681 .3601 .3087 .1323 .0283 .0024

Hypergeometric distribution, Y
y 0 1 2 3 4 5
P (Y = y) .1608 .3654 .3163 .1302 .0255 .0019

TABLE 5.5

Binomial Distribution Values versus Hypergeometric Distribution Values for a 
Situation with a Population Size of 10, Sample Size of 5, and the Number of 
Characteristic Items in the Population Is 3

Binomial distribution, X
x 0 1 2 3 4 5
P(X = x) .1681 .3601 .3087 .1323 .0283 .0024

Hypergeometric distribution, Y
y 0 1 2 3 4 5
P(Y = y) .0833 .4167 .4167 .0833 0 0
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In addition, it can be shown that if the number of events occurring during 
some period of time is Poisson distributed, then the time between events 
must be distributed according to an exponential distribution. In particular, if 
the number of events occurring within a period of time, say 1 hour, is distrib-
uted according to a Poisson random variable with a mean of λ, then the time 
between events is distributed according to an exponential random variable 
with a mean of 1/λ hour—for example, if λ is 5 (per hour), then the average 
time between events is 1/5 hour, or 12 minutes.

Finally, the Poisson distribution can be used as an approximation of the 
binomial distribution if n is large and p is small enough so that np is not 
“too large” (see Ross, 1998, p. 154). In this case, the approximation of the 
binomial distribution with the Poisson distribution will have a parameter 
value of λ = np.

As an example of a Poisson approximation to a binomial distribution, con-
sider a situation where n = 100 and p = .1; then the Poisson approximation 
to the binomial distribution will have λ = np = 10. A way to think about this 
situation for the binomial distribution is that you are sampling 100 items, 
and there is a .1 probability that any one item sampled will have a certain 
characteristic; the number of items in the sample of 100 that have the char-
acteristic is the value for the random variable. From Table 5.7, the probability 
that 10 items in the sample of 100 will have the characteristic is .132.

One way to think about this situation for the Poisson distribution is an 
arrival process in which on average 10 (=.1 * 100) items arrive on average per 
hour, but the actual number arriving is a Poisson distributed random vari-
able. As mentioned previously, the time between arrivals will be exponen-
tially distributed with a mean value of 6 minutes (=(60 minutes/hour)/(10 
arrivals/hour)). One reason for the simplicity of the Poisson and exponential 
distributions is that they are each completely defined by a single parameter.

The density function values for this situation for various values of x for 
both the binomial distribution and the Poisson approximation are shown in 
Table 5.7.

The normal distribution is often used to represent the sum of a large number of 
independent quantities; such a representation is valid as a result of the central 

TABLE 5.7

Poisson Distribution Approximation to the Binomial 
Distribution with n = 100 and p = .1

Binomial distributed random variable, X
x 8 9 10 11 12
P(X = x) .115 .130 .132 .120 .099

Poisson distributed random variable, Y
Y 8 9 10 11 12
P(Y = y) .113 .125 .125 .114 .095
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limit theorem. A special case of this distribution, which turns out to be quite 
useful, is the standard normal distribution function, which is a normal distri-
bution with a mean of 0 and a standard deviation of 1; this specific normal dis-
tribution is one for which lookup tables are typically given in the appendix for 
introductory books in statistics. In particular, if X is a normally distributed ran-
dom variable with a mean of µ and a standard deviation of σ, then Z = (X − µ)/σ 
is a random variable with the standard normal distribution. This relationship 
between Z and X, in which X = Zσ + µ, allows us to determine the probability 
that X lies within some range of values through the use of the standard normal 
tables. For example, if X is normally distributed with a mean of 20 and a stan-
dard deviation of 5, then the probability that X is less than 28 is given by
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From the standard normal tables, P (Z < 1.6) = .9452. Hence, P(X < 28) = .9452.
The uniform distribution can be used to represent an uncertain, but con-

tinuous, quantity about which little is known, other than its minimum and 
maximum possible values. As noted by Law (2007, p. 282), it is often used as 
a “first” representation of a quantity, prior to the collection of any data. As 
such, it might be used to represent a random variable that is not thought to 
be too important with respect to the decision under consideration.

The triangular distribution, as its name indicates, has a density function, 
which looks like a triangle. As such, it has three parameters: a minimum 
possible value (denoted as a), a maximum possible value (denoted as b), and 
a mode (denoted as m); the mode represents the y value at which the density 
function (f(y)) reaches its maximum. It is often used in situations where an 
“expert” might provide numbers that correspond to a minimum, maximum, 
and most likely values for a quantity, such as the minimum, maximum, and 
most likely values for the amount of time required to perform some task. 
One thing to keep in mind about this distribution function is that the mode 
(i.e., the most likely value) will not be the expected value unless the density 
function is symmetric.

The exponential distribution is often used as a representation of the time to 
failure for a machine or as the time between arrivals, for example, for cus-
tomers arriving to a service system, as noted in the discussion of the Poisson 
distribution. It has some nice properties, which are especially useful in queu-
ing theory when the service times and interarrival times are represented as 
exponentially distributed random variables. As mentioned earlier, another 
useful feature is the fact that this distribution can be completely described 
by a single parameter (its mean value) (Table 5.8).
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In addition to its relationship with the Poisson distribution as discussed 
earlier, the exponential distribution has relationships to the gamma and 
Weibull distributions, as well as the m-Erlang distribution (see Law, 2007, 
p. 284).

5.9 Bayes’ Theorem

Bayes’ theorem allows one to compute a conditional probability as a func-
tion of other conditional and joint probabilities. One form of this theorem is 
given by

 

Pr B |A
P B A

P B A
k

k

k

( )
( , )

( , )
=

æ
è
ç

ö
ø
÷

=åk

K

1

,

where the B1,B2, …, BK form a partition of outcomes over the sample space. 
In many cases, there are only two outcomes considered in the sample space 

TABLE 5.8

Characteristics of Specific Distribution Functions

Distribution

Type of 
Random 
Variable Parameters Mean Variance 

Binomial Discrete n = number of trials
p = probability of 
success

np np(1−p)

Hypergeometric Discrete N = population size
k = no. of successes 
in population

n = sample size
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N 1
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Poisson Discrete λ = average 
number of events

λ λ

Normal Continuous µ = mean
σ2 = variance

µ σ2

Uniform Continuous a = minimum value
b = maximum value

(a + b)/2 (b–a)2/12

Triangular Continuous a = minimum value
m = mode
b = maximum value

(a + m + b)/3 (a2 + m2 +
b2 − ab − am − bm)/18

Exponential Continuous µ = mean µ µ2

Beta Continuous α1
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(e.g., B1 is a patient who has a particular disease and B2 is a patient who does 
not have that particular disease).

Example 5.5: Bayes’ Theorem Applied in a Disease-Testing Problem

Let’s consider an example involving an application of Bayes’ theorem. 
Suppose that you know that “about” 1,000 people out of 100,000 in a city 
have a certain disease. You have a medical test available with the following 
characteristics: sensitivity of .95 (remember that sensitivity in this case is the 
conditional probability of a person testing positive for the disease given 
that the person has the disease) and specificity of .90 (remember that speci-
ficity in this case is the conditional probability of a person testing negative 
for the disease given that the person does not have the disease). Suppose 
that 1000 people, randomly selected from the city, are tested for the disease 
and that we want to determine expected values for the following quantities:

 1. The number of people testing positive for the disease
 2. The number of people testing negative for the disease
 3. The number of people testing positive who do have the disease
 4. The number of people testing positive who do not have the 

disease
 5. The number of people testing negative who do have the disease
 6. The number of people testing negative who do not have the 

disease

First, define the various outcomes associated with a randomly selected 
person from the city being given the medical test:

D is the outcome that the selected person has the disease.
ND is the outcome that the selected person does not have the 

disease.
PT is the outcome that the selected person tests positive for the 

disease.
NT is the outcome that the selected person tests negative for the 

disease.

Now, let’s give the probabilities that we know:
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Therefore, we have that P(NT|D) = 1 – P(PT|D) = .05 and P(PT|ND) = 
1 – P{NT|ND) = .1

Using Bayes’ theorem, we want to derive probabilities like P(D|PT). 
So we will let the partition B1, B2, … associated with Bayes’ theorem be 
given as D, ND.
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Therefore, using Bayes’ theorem, we obtain
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Also, we obtain

 P ND PT 1 P D PT 1 876 9124( | ) ( | ) . .= - = - =0 ,

and

 

P(ND NT) P ND NT / P ND NT P D NT

P NT ND / P NT ND P

| ( , ) ( ( , ) ( , ))

( , ) ( ( , ) (

= +

= + NNT D

P NT ND P ND / P NT ND P ND P NT D P D

1 99 /

, ))

( | ) ( ) ( ( | ) ( ) ( | ) ( ))

. (. )

= +

= ((. (. ) . (. ))

.

1 99 5 1

99497,

+

=

0 0

and

 

P D NT 1 P ND NT

1 99497

5 3

( | ) ( | )

.

. .

= -

= -

= 00 0

Finally, we can obtain the probability associated with a randomly 
selected person getting a positive test result as follows:
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and the probability of a randomly selected person getting a negative test 
result:
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A summary of the various probabilities is shown in Table 5.9.

A “probability table” is often helpful to summarize the probabilities in a 
situation such as this. In this case, the probability table is given in Table 5.10.

Note that there is some round-off error in Table 5.10. Also, note that the 
marginal probabilities are formed by summing the joint probabilities, for 
example, P(PT) = P(PT,D) + P(PT,ND) = .1084, and that the conditional prob-
abilities can be found by dividing the joint probabilities by the marginal 
probabilities, for example, P(PT|D) = P(PT,D)/P(D) = .0095/.01 = .95 and 
P(D|PT) = P(D,PT)/P(PT) = .0095/.1084 = .0876.

A perhaps surprising result, among others, is the relatively low value of 
the probability that a randomly selected person who tests positive for the 
disease actually has the disease (i.e., P(D|PT) = .0876). At first, this seems 
counterintuitive given that the sensitivity of the test (.95) seems to be fairly 
good. However, this relatively low value for P(D|PT) can be explained by the 
low value of P(D) ( = .01) in the first place. P(D) is called a “prior probability,” 
and P(D|PT) is called a “revised probability” (or a “posterior probability”), 
given the additional information of a positive test.

Now, to determine the quantities for which we were originally interested, 
we should realize that the testing process represents 1000 trials, which are 

TABLE 5.10

Probability Table for the Disease-Testing Situation

D ND

PT P(PT,D) = .0095 P(PT,ND) = .099 P(PT) = .1084
NT P(NT,D) = .0005 P(NT,ND) = .891 P(NT) = .8916

P(D) = .01 P(ND) = .99 1.

TABLE 5.9

Summary of Various Probabilities Found for the Disease-Testing Situation

Probability 
Found P(D|PT) P(ND|PT) P(ND|NT) P(D|NT) P(PT) P(NT) 

Probability .0876 .9124 .99497 .00503 .1084 .8916
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“almost independent.” In fact, the expected values that we want to find are 
expected values associated with a hypergeometric random variable. In order 
to keep things relatively simple, we will use a binomial approximation to the 
hypergeometric distribution; this would usually be permissible in this case, 
since the number of people being tested (1,000) is relatively small compared 
to the number of people in the entire city (100,000). As noted previously, the 
expected value associated with a binomial random variable is just the prob-
ability of a “success” multiplied by the number in the sample. Hence, our 
expected values are given by

 1. Expected value of the number of people testing positive = 
.1084(1000) = 108.4

 2. Expected value of the number of people testing negative = 
1000 − 108.4 = 891.6

 3. Expected value of the number of people tested who will have the 
disease = 1000P(D) = 1000(.01) = 10

 4. Expected value of the number of people tested who will not have the 
disease = 1000P(ND) = 1000(.99) = 990

 5. Expected value of the number of people testing positive who do 
have the disease = 1000P(PT,D) = 1000P(PT|D)P(D) = 1000(.95)(.01) = 
1000(.0095) = 9.5

 6. Expected value of the number of people testing positive who do not 
have the disease = 1000P(PT,ND) = 1000P(PT|ND)P(ND) = 1000(.1)
(.99) = 99

 7. Expected value of the number of people testing negative who do have 
the disease = 1000P(NT,D) = 1000P(NT|D)P(D) = 1000(.05)(.01) = .5

 8. Expected value of the number of people testing negative who do not 
have the disease = 1000P(NT,ND) = 1000P(NT|ND)P(ND) = 1000(.9)
(.99) = 1000(.891) = 891

So, by testing 1000 people at random, we would have on average 99 people 
who tested positive who do not have the disease and only 9.5 people who test 
positive who do have the disease. This is not a very good result, which is why 
one often gives a screening test prior to a more sophisticated test.

Material Review Questions

5.1 Define the following terms: event/experiment and sample space. Give 
an example of each, not contained in the book.

5.2 There is a unique definition for a sample space for any specific event/
experiment (true or false).
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5.3 What is a partition of a sample space? Give an example of a partition, 
not contained in the book.

5.4 A probability can be thought of as a mapping from the space of out-
comes into the [0, 1] interval (true or false).

5.5 What is a random variable?
5.6 What are the two basic types of random variables?
5.7 Give two examples of discrete random variables.
5.8 Give two examples of continuous random variables.
5.9 Typically, several different random variables can be defined for any 

particular experiment (true or false).
5.10 For a conditional probability, denoted as P(x1|y1), the outcome denoted 

as y1 must occur prior to the outcome of x1 (true or false).
5.11 Independent events are the same as mutually exclusive events (true or 

false).
5.12 If two outcomes are probabilistically dependent, then one of the out-

comes must have a causal effect on the other (true or false).
5.13 For a continuous random variable, X, the value of P(X = 5) will be 0 (true 

or false).
5.14 What does an empirical distribution function typically correspond to?
5.15 What is a rule that one can use to determine whether or not a binomial 

distribution can be used in place of a hypergeometric distribution?
5.16 What distribution is typically used to model arrivals of customers to a 

service system?
5.17 If the number of “events” (such as traffic accidents) that occur during a 

particular unit of time (such as a day) is Poisson distributed, then what 
is the distribution for the time between these events?

5.18 When can a Poisson distribution be used as an approximation for a 
binomial distribution?

5.19 Since a Poisson distribution is associated with a discrete random vari-
able, its mean must be an integer (true or false).

Exercises

5.1 On August 11, 2015, the home team won all 15 major league baseball 
games. This was the first time that the home teams had won all of their 
major league baseball games since (when the home team record was 
12–0) May 23, 1914. Show why such a long stretch between home teams 
winning all of the games is not unusual.

More specifically, consider the situation where (1) the probability of 
the home team winning is .5 and (2) there are 100 days in a season where 
there are 15 games. What is the probability associated with there being 
one day out of 10,000 days (i.e., 100 seasons) where the home teams win 
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all of the games? What about 2 days out of 10,000 days where the home 
teams win all of the games?

5.2 Suppose that there are three manufacturing facilities, each producing 
the same item. The three facilities have a defect rates of 2%, 8%, and 
4%, respectively. In addition, the three facilities produce 60%, 10%, and 
30%, respectively, of the total output of the three facilities. You choose 
one item at random from the output of all three facilities. What is the 
probability that the item chosen is defective?

5.3 The amount of time required for students to finish a final exam is nor-
mally distributed with a mean of 130 minutes and a standard deviation 
of 30 minutes. What is the probability that a randomly selected student 
will finish the exam in less than 150 minutes?

5.4 The number of arrivals per hour to a hospital emergency department 
is a Poisson random variable with a mean value of 15. An arrival to 
the department has just occurred. What is the probability that the next 
arrival will occur within 5 minutes? Within 10 minutes?

5.5 A high school has 1000 students. It is estimated that 10% of the students 
have a particular disease. Out of 40 randomly selected students, what 
would be the probability that 5 of these students have the disease? 
What would be the expected number of students out of 40 with the 
disease?

5.6 A parts supplier stipulates that a particular part has a 1% defect rate. If 
the 1% claim is true, what is the probability associated with finding 5 
or more defective parts in a sampling of size 50 from a lot of size 1000?

5.7 The number of calls to an emergency call center in a major metropoli-
tan area during a particular hour of the week is distributed according 
to a Poisson distribution with a mean value of 100. What is the prob-
ability associated with receiving between 97 and 100 calls, inclusive, 
during this hour?
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6
Modeling Preferences over Risky/
Uncertain Outcomes

6.1 Introduction

Any decision will result in an outcome that is both multidimensional and 
uncertain or risky in nature. The basic reason for the uncertain or risky aspect 
of the outcome is that the decision will be made sometime in the future and 
the outcome will occur over time, after the decision is made (see Figure 6.1). 
The future is always uncertain.

Within the context of a decision analysis, this uncertainty manifests itself 
in uncertainty in the multiple attribute values associated with the decision’s 
effects.

Even though there is uncertainty associated with the effects of any deci-
sion, we do not always model or represent this uncertainty, as noted in 
Section 3.1 of Chapter 3. But when it is important to represent this uncer-
tainty, such as when the decision is only to be made once (and is therefore 
not repetitive in nature) and there is much variability in the outcome, then 
it is also usually important to represent the decision maker’s (DM’s) prefer-
ences over uncertain or risky outcomes.

In this chapter, we address the issue of how to model the preferences of the 
DM over uncertain or risky outcomes, not how to determine the uncertainty 
in the outcome, which results from the decision (see Figure 6.2). Modeling 
the uncertainty in the outcome as a function of the alternative chosen (rep-
resented by the mapping M1 in Figure 6.2) is discussed in subsequent chap-
ters; this area of study, involving the mapping M1 in Figure 6.2, employs the 
general methodologies of simulation modeling, influence diagrams, decision 
trees, and others.

The typical way to represent uncertainty in an outcome is through the 
use of a probability distribution over the attribute values associated with the 
problem (either a simple marginal probability distribution for those situa-
tions with a single attribute or a joint probability distribution for those situ-
ations involving multiple attributes). However, there are other ways, such 
as the use of confidence intervals, a mean value coupled with a variance, or 
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outcomes associated with alternative scenario combinations. Each of these 
other ways to represent the outcomes, however, stems from the original 
probability distributions associated with the attributes.

Thus far in this chapter, we have used the words uncertainty and risk in 
an interchangeable fashion. The convention, however, is to consider (1) situ-
ations involving uncertainty and (2) situations involving risk as separate in 
nature. In particular, decision making under uncertainty is defined as a situa-
tion in which there can be more than one outcome from any decision, but 
the respective probabilities of occurrence associated with those outcomes 
are unknown. Decision making under risk is defined as a situation in which 
the respective probabilities of occurrence associated with the outcomes are 
“known,” meaning that we can at least estimate these probabilities.

Example 6.1 presents a simple hypothetical example involving a decision 
situation with a single attribute, but an uncertain outcome. Section 6.2 pres-
ents methods for decision making under uncertainty, as defined earlier.

Sections 6.3 and 6.4 provide material on single attribute and multiattribute 
utility (MAU) functions, respectively. These functions allow one to represent 
preferences over single dimensional and multidimensional risky outcomes, 
respectively, for a DM. In addition to defining these concepts, these sections 
provide the reader with material on how to assess these functions. Section 
6.4 contains Examples 6.2 and 6.3, involving the use of MAU functions for 
acceptance sampling, and Example 6.4 involving the use of MAU functions 
for medical diagnosis.

Example 6.1: A Simple Project Investment 
Example Involving a Single Attribute

Suppose that we have two possible projects in which to invest. Each 
project can result in one of the three possible outcomes, depending on 
whether the economy is good, satisfactory, or poor. This “state of the 
economy” is typically called the “state of nature or scenario.” Note 

Time

Implement decisionAnalysis Effects of decision

FIGURE 6.1
Effects of a decision occurring after the decision is made.

Alternative
decisions Mapping M1 Mapping M2Uncertain

outcomes
Ranking of alternative

decisions

FIGURE 6.2
Two types of mappings involved in decision making under uncertainty or risk.
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that there is one thing that we can control (the decision, i.e., the project 
in which to invest) and one thing that we cannot control (the state of 
nature).

Let

 

P Net profit from alternative i Project i under state of nature jij = ( ) ,,

for i 1 2 and j 1 2 3.= =, , ,

Now, suppose that a model has been developed to give the value for Pij 
in all cases and that probabilities associated with the various states of 
nature have been developed; these are typically illustrated through the 
use of a payoff table (see Table 6.1).

Note that Project 1 does better than Project 2 under the good state of 
nature, but worse than Project 2 under the poor state of nature. Hence, nei-
ther project stochastically dominates the other; that is, there is no value of i 
such that Pij ≥ Pkj for all k ≠ i and j = 1, 2, 3 and Pij > Pkj for all k ≠ i and at 
least one j = 1, 2, 3.

6.2  Methods That Do Not Consider the Probabilities 
Associated with the States of Nature

Let’s suppose for the time being that we do not know the probabilities asso-
ciated with the states of nature. As discussed in Section 6.1, this situation is 
often called decision making under uncertainty, as opposed to decision making 
under risk, where the probabilities are known. Basically, in decision making 
under uncertainty, one assumes that there is not enough confidence in the 
situation to attach probabilities to any of the states of nature.

There are at least three potential approaches that one could use in decision 
making under uncertainty: the maximin approach, the maximax approach, 
and the minimax regret approach.

The maximin approach involves choosing the alternative that maximizes the 
minimum gain over all states of nature. For example, the minimum gain from 
Project 1 is $3000, and the minimum gain from Project 2 is $4000, so under 
this criterion, one would choose Project 2. This “rule” is often called the 

TABLE 6.1

Payoff Table for a Simple Example

State of Nature, Θ Probability, P(Θ) Project 1 Outcome Project 2 Outcome 

Good .3 $10000 $9000
Satisfactory .4 $5000 $5000
Poor .3 $3000 $4000



220 Multiple Criteria Decision Analysis for Industrial Engineering

“pessimistic criterion,” since it assumes that the worst scenario will occur. 
Note here that if the outcomes are measured in terms of losses rather than 
gains, one would minimize the maximum loss under this approach.

The maximax approach involves choosing the alternative that maximizes the 
maximum gain over all states of nature. For example, the maximum gain from 
Project 1 is $10000 and the maximum gain from Project 2 is $9000, so under 
this criterion, one would choose Project 1. This “rule” is often called the 
“optimistic criterion,” since it assumes that the best scenario will occur. Note 
here that if the outcomes are measured in terms of losses rather than gains, 
one would minimize the minimum loss under this approach.

The minimax regret approach involves choosing the alternative that mini-
mizes the maximum regret, where regret, denoted as Rij, is defined for every 
alternative scenario combination as follows:

 

R Regret if scenario j occurs and alternative i is selected,

the d

ij =

= iifference in gain between the alternative with the best value

for gaiin and the value for gain associated with alternative i

if scenario j ooccurs,

Sup P Pi j ij= -¢
i¢

{ } .

“Sup” is short for “supremum” or the maximum value over a set of values. 
Hence, Sup{Pi’j} over all i′ for this example would be the maximum value over 
all alternatives (projects) for a particular value of j.

For the example, Rij is given in Table 6.2.
Note, for example, that R13 (= $1000) is the regret that would occur if alter-

native 1 is chosen and state of nature 3 occurs; this is computed from the 
following fact:

 

R Sup{P P } P

Sup{ 3 4 3

4 3

1

13 13 23 13= -
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=
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, }$ $ $

$ $

$

000 000 000

000 000

0000.

TABLE 6.2

Regret, Rij, for the Simple Example

i|j 1 2 3 

1 $0 $0 $1000
2 $1000 $0 $0
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Hence, if Project 2 had been chosen, one could have had a gain of $4000 
under Project 2 instead of the $3000 under Project 1 ($1000 = $4000 − $3000).

Now, with Project 1, the maximum regret is given by Sup($0, $0, $1000) = 
$1000, while with Project 2, the maximum regret is given by Sup($1000, $0, 
$0) = $1000. Hence, there is a tie for the best alternative between Project 1 and 
Project 2 under the criterion of minimize the maximum regret (minimax regret).

Rarely will there be a decision-making situation for which nothing is 
known about the probabilities associated with the outcomes for the dif-
ferent alternatives. In the next section, we will discuss methodologies that 
do consider probabilities associated with the outcomes for the various 
alternatives.

6.3 Single Attribute Utility Functions

6.3.1 Using Expected Payoff as a Criterion

One approach that employs the probabilities associated with the outcomes 
of the alternatives involves the selection of the alternative, which maximizes 
the expected value of the payoff. In our simple example, the expected payoff 
for Project 1 is given by

 

Expected payoff for Project 1 3( 1 4( 5 3( 3= + +

=

. $ ) . $ ) . $ )

$

0000 000 000

55900,

while the expected payoff for Project 2 is given by

 

Expected payoff for Project 2 3( 9 4( 5 3( 4

5

= + +

=

. $ ) . $ ) . $ )

$

000 000 000

9900.

Hence, under the criterion of maximizing expected payoff, Project 1 and 
Project 2 would be equally preferred.

As noted in Chapter 5 on the review of probability, the expected value 
of a random variable might be thought of as a measure of the central ten-
dency of that random variable; however, also as noted in that chapter, the 
term expected value is a misnomer, since the expected value may not actually 
occur. In our example, we note that it would be impossible for a gain of $5900 
to occur for either alternative. This might be thought of as one of the draw-
backs associated with the use of this criterion.

Another drawback associated with this criterion is that it does not con-
sider the amount of risk associated with an outcome. For example, let’s 
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suppose that one had the opportunity to purchase a lottery ticket for $5 
to win $10000. Let’s also suppose that the odds of winning the $10000 is 1 
in 5000, or 1/5000 = .0002. The payoff table associated with this situation is 
given in Table 6.3.

Note that in Table 6.3, the payoff associated with betting on the lottery, 
given that the lottery is won, is the $10000 won minus the $5 bet on the lot-
tery, or $9995; the payoff associated with betting on the lottery, given that the 
lottery is lost, is the $0 won from the lottery, minus the $5 bet, or −$5.

The expected gain associated with each decision is given by

 E (bet on lottery 2( 9995 9998( 5 3) . $ ) . $ ) $= + = -000 -

and

 E (do not bet on lottery 2( 9998() . $ ) . $ ) $ .= + =000 0 0 0

Even though the expected gain from betting on the lottery is less than the 
expected gain from not betting on the lottery, there are still many people 
who would undoubtedly choose the decision of betting on the lottery.

6.3.2 Accounting for Risk in a Decision Situation

Often, one wants to account for risk in making a decision. Using the expected 
value of a performance measure as the criterion is not the way to do this. For 
example, if one used expected value as a criterion, one would probably never 
purchase an insurance policy, purchase a warranty on an appliance, buy a 
lottery ticket (as discussed in the aforementioned example), place a bet on 
a horse race, get a physical exam, place a bet in a casino, or wear a seatbelt.

Note that there are two sides to many of these decision situations. For 
example, the company that sells the appliance with a warranty must have a 
situation in which their expected income will be positive through the offer of 
the warranty; this can only occur if the expected income from the purchase 
of the warranty on the consumer side is negative. From the appliance man-
ufacturer’s viewpoint, some of the consumers will actually gain by taking 
out a warranty; but the majority of consumers will lose money on the deal, 
resulting in an expected gain by the producer.

There are many different ways to account for the risk in a decision situation. 
One classical approach that arises from modern portfolio theory (Elton and 

TABLE 6.3

A Payoff Table Associated with a Lottery Decision

State of Nature, Θ Probability, P(Θ) Bet on Lottery Do Not Bet on Lottery 

Win lottery .0002 $9995 $0
Do not win lottery .9998 −$5 $0
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Gruber, 1997) is called “mean−variance optimization.” The basic idea is that 
if one has a performance measure to be maximized, while minimizing the 
amount of risk associated with the value obtained, then one will want to max-
imize the expected value of the measure subject to a constraint on the maxi-
mum variance of the measure. In this case, risk is measured by the variance 
of the outcome measure. Looking at the simple example as given in Table 6.1, 
the mean and variance of the payoff associated with each project are given by
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Hence, since the two projects have the same expected payoff, but Project 2 
has the lower variance, Project 2 would be preferred. One of the complica-
tions associated with modern portfolio theory is that one is choosing some 
subset (i.e., a portfolio) of projects from a larger set, and therefore, the cor-
relations between the projects must be considered in determining the mean 
and variance of the payoff.

Now in some cases, a DM might prefer more risk rather than less. This case 
would be an example of where the concept of a single attribute utility func-
tion becomes useful. A (single attribute) utility function is a mapping from X 
(a single dimensional attribute/outcome space) to a subset of the real number 
line (usually [0, 1]) such that the following applies:

 1. A probability distribution over X is preferred by the DM to another 
probability distribution over X if and only if the expected utility 
associated with the first probability distribution is greater than the 
expected utility associated with the second probability distribution.

 2. A DM is indifferent between two probability distributions over the 
outcome space if and only if their expected utilities are equal.

Note that the expected utility associated with a probabilistic outcome is just 
the expected value of a function (i.e., the utility function) of a random vari-
able (where the random variable corresponds to the probabilistic outcome).

Note that the definition for the utility function given is operational in 
nature, in that it defines utility in terms of a test of its validity. Note also that 
a utility function is a subjective concept in that it is for a specific DM—that 
is, different DMs will typically have different utility functions for the same 
situation, depending upon how they evaluate risk.
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6.3.3 Assessment of a Single Attribute Utility Function

Determining a utility function for a particular DM and situation is a rela-
tively straightforward process, which we will illustrate for the simple exam-
ple. The basic idea is to determine points on the function, denoted as u(x) 
(i.e., values for u(x) for various values of x), and then either fit a curve to the 
u(x) points or just use linear interpolation for the values of u for those points 
not assessed directly through the assessment. The process involves one or 
more sessions in which an analyst (or analysts) interviews a DM (or a group 
of DMs who answer as one).

The first step is to assign utility function values of 0 and 1 for the worst 
possible value and the best possible value, respectively, of X. Note that since 
u will range from 0 to 1, we are assessing what is called a “scaled utility func-
tion.” In the case of the simple example, as illustrated through Table 6.1, we 
set initial values for the utility function as follows:

 u($3 and u($1 1.000 0 0000) )= =

Note that oftentimes in the assessment process, an analyst may want to 
choose best and worst values that “bound” the actual best and worst values, 
in order to allow for new alternatives, which might arise. In this example 
though, we will just use the current best and worst values.

Now, the next step is to find what is called the “certainty equivalent” for 
the lottery associated with a 50% chance (or a .5 probability) of receiving 
$3000 and a 50% chance of receiving $10000. Note that the two values chosen 
for the lottery are values for which we already have utility function evalua-
tions. The certainty equivalent for a lottery is defined as the certain value for 
an attribute for which the DM is indifferent between receiving the outcome 
associated with that value and the outcome associated with the lottery.

The 50–50 lottery is denoted by 〈$3000, $10000〉, and the certainty equiv-
alent is typically found by having the DM “hone in” on its value; this is 
accomplished through the analyst having the DM rank pairs of outcomes, 
with one of these in each pair being the 50–50 lottery: 〈$3000, $10000〉. As an 
example, consider the sequence of questions and answers shown in Table 6.4.

TABLE 6.4

Honing In on the Certainty Equivalent for 〈$3000, $10000〉
Analyst: Do you prefer $4000 for certain or the 50–50 lottery <$3000, $10000>?
DM: I prefer the 50–50 lottery.
Analyst: Do you prefer $6000 for certain or the 50–50 lottery <$3000, $10000>?
DM: I prefer $6000 for certain.
Analyst: Do you prefer $5500 for certain or the 50–50 lottery <$3000, $10000>?
DM: I am indifferent between these two outcomes.
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Note that after the DM answers the first question shown in Table 6.4, the 
analyst knows that the DM prefers the 50–50 lottery to receiving the certain 
outcome of $4000; hence, the certainty equivalent for 〈$3000, $10000〉 must be 
more than $4000. So, in the next question involving a pairwise ranking, the 
DM tries a value greater than $4000, or in this case $6000.

Following the answer to the last question shown in Table 6.4, one knows 
that the expected utility of the 50–50 lottery: 〈$3000, $10000〉 is equal to the 
expected utility of $5500 for certain, or just 1.∗u($5500). Hence, we have the 
following:

 $ . $ , $55 3 100 000 0000I á ñ

or
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Note that we are using the same notation, I, to indicate indifference between 
two outcomes as we did in Chapter 3; except in this case, we are allowing 
probabilistic outcomes.

Now, we have three points on the utility function curve. As a next step, the 
analyst could obtain the certainty equivalent for either 〈$3000, $5500〉 or for 
〈$5500, $10000〉. Let’s suppose that he or she obtains the certainty equivalent 
for 〈$3000, $5500〉, again through a series of questions, which allows the DM 
to hone in on the true value. Suppose the analyst finds that

 $4 3 55000 000 00I á ñ$ , $

or
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Finally, we find the certainty equivalent for 〈$5500, $10000〉. Let’s sup-
pose that this turns out to be $7400; hence, we have u($7400) = .5u($5500) + 
.5u($10000) = .5(.5) + .5(1) = .75. So, at this point, we have five points on the 
utility function curve, as seen in Table 6.5.

A graph associated with this utility function is shown in Figure 6.3.
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Additional points on the curve could be found by, for example, finding 
the certainty equivalent for 〈$3000, $4000〉, which would give the x value for 
u(x) = .125.

One important aspect of utility function assessment is the use of consistency 
checks. For example, the analyst should check for this assessment: the certainty 
equivalent of 〈$3000, $10000〉, which was found to be $5500, is the same as the 
certainty equivalent for 〈$4000, $7400〉; if this turned out to not be the case, then 
the analyst would want to have the DM rethink some of his or her answers.

Now, with respect to using the utility function to evaluate alternative out-
comes for the simple example, as mentioned earlier, one could either fit a 
curve to the points found or use linear interpolation. Let’s use linear inter-
polation to evaluate those points, which have not been directly evaluated in 
the assessment as shown in the following:
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FIGURE 6.3
Graph corresponding to the utility function of Table 6.5.

TABLE 6.5

Five Points on the Utility Function Curve

x($) u(x) 

3000 0
4000 0.25
5500 0.5
7400 0.75

10000 1
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Now, we have already assessed u($4000) = .25, and in a fashion similar to the 
aforementioned, we obtain u($9000) = .9038.

The expected utility for each project would then be computed as follows:

• Eu (Project 1) = .3u($10000) + .4u($5000) + .3u($3000) = .3(1) + .4(.415) + 
.3(0) = .466.

• Eu (Project 2) = .3u($9000) + .4u($5000) + .3u($4000) = .3(.9038) + 
.4(.415) + .3(.25) = .512.

So, under the expected utility criterion, this DM would prefer Project 2 to 
Project 1, since Project 2 gives the larger expected utility. Keep in mind that this 
utility function, and therefore the ranking of projects, is specific to this DM.

In summary, the basic steps for forming a single attribute, scaled utility 
function are

 1. Determine the best (xb) and worst (xw) possible values for the attri-
bute over all alternatives.

 2. Set u(xb) = 1 and u(xw) = 0.
 3. Determine the certainty equivalent, x.5, for the 50–50 lottery, 〈xw,xb〉. 

Set u(x.5) = .5.
 4. Determine the additional certainty equivalents: x.25,x.75,x.125,x.375,x.625, 

x.875, and so on, as desired. Set u(x.25) = .25,u(x.75) = .75, and so on.
 5. Perform consistency checks, and reevaluate, if needed.

6.3.4 Risk Attitudes

An important characteristic of a DM is his or her risk attitude, which can 
be quantified for his or her utility function. For example, the DM might be 
inclined to take risks, or the DM might be inclined to avoid risks over a cer-
tain range of the outcome as defined by the attribute under consideration.

In order to quantify a DM’s risk attitude, we need to quantify the con-
cept of a risk premium (RP). An RP for a probabilistic outcome over a single 
attribute is defined as the expected value of the probabilistic outcome minus 
the certainty equivalent for that probabilistic outcome. More specifically, we 
have Definition 6.1.

Definition 6.1: An RP for a probabilistic outcome over a single attribute 
(defined by a random variable y) is defined as RP(y) = EV(y) – CE(y), where 
EV(y) is the expected value of y and CE(y) is the certainty equivalent for y for 
the relevant DM.

As an example, consider the RP for our DM for Example 6.1. For the 50–50 
lottery, 〈$3000, $10000〉, we have
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With the RP for a DM, we can define various risk attitudes, as shown in 
Definition 6.2.

Definition 6.2: A DM is

 1. Risk averse if the RP is positive
 2. Risk neutral if the RP is 0
 3. Risk prone if the RP is negative

We also note that these risk attitudes correspond to specific types of utility 
functions. For example, a risk-averse (risk-neutral, risk-prone) DM will have 
a concave (linear, convex) utility function.

In the Example 6.1, since the DM’s utility function is concave (i.e., all RPs 
computed over the domain of [$3000, $10000] are positive), the DM is risk 
averse. Note that a DM could be risk averse over some domains, risk neu-
tral over others, and risk prone over still others. For example, it may very 
well be that a typical individual of reasonable wealth would be risk averse 
over a range of $0–$1 million of income but risk prone over a range of 
$10  million–$20  million of income.

6.3.5 Caveats in Interpreting Utility

There are several things to remember in the interpretation of utility. First, 
utility theory is a normative, not a descriptive theory. That is, utility theory is 
used to describe how people should make decisions, not how they actually 
do make decisions; in some sense, one could say that is a good thing since 
otherwise there would be no need for people to study or use the theory.

Second, utility functions, as was mentioned earlier, are subjective in nature. 
That is, two different reasonable people could, and probably would, have dif-
ferent utility functions for a given situation, depending on their attitude toward 
risk (in the case of a single attribute) and/or the way they would trade off 
between different attributes of the situation (in the case of multiple attributes).

Third, utility differences do not convey strength of preference. That is, utility 
should be thought of as an ordinal measure, not an interval measure. For 
example, if the expected utilities of three specific outcomes A, B, and C are, 
respectively, .9, .89, and .2, then one cannot a priori say that the difference in 
preference between A and B is much less than the difference in preference 
between B and C. Hence, the expected utility values can only be used to rank 
the outcomes (and their corresponding alternatives).
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6.3.6  Alternative Approaches in the Assessment of 
Single Attribute Utility Functions

In the assessment procedure presented earlier, the DM was asked to pro-
vide certainty equivalents for risky outcomes (lotteries). The DM’s response 
allowed the formation of an equation with one unknown, which could then 
be solved to give a point on the DM’s utility function curve.

In a more general sense, the DM was presented with two outcomes involv-
ing four parameters (O1, O2, O3, and p):

 1. Outcome 1: O1, a certain value for the attribute
 2. Outcome 2: A value of O2 with probability p, or a value of O3 with 

probability (1 – p), where O2 > O3

In the assessment procedure discussed earlier, the values for O2, O3, and p 
were set; in particular, the value for p was set at .5, and hence, the DM was 
asked to provide the certainty equivalent for 〈O2, O3〉. This approach is called 
the “certainty equivalence response mode.” The other response modes for 
the assessment process depend upon which of the four parameters that the 
DM is to provide a value for, given values for the other three parameters, 
so that he or she is indifferent between the two outcomes. Hence, the four 
response modes are as follows:

 1. Certainty equivalence, in which the values for O2, O3, and p are set and 
the DM is asked to provide the value for O1

 2. Probability equivalence, in which the values for O1, O2, and O3 are set 
and the DM is asked to provide the value for p

 3. Gain equivalence, in which the values for O1, O3, and p are set and the 
DM is asked to provide the value for O2

 4. Loss equivalence, in which the values for O1, O2, and p are set and the 
DM is asked to provide the value for O3

As an example, consider the probability equivalence response mode for 
Example 6.1. The analyst might ask a series of questions with corresponding 
answers as follows:

Analyst: Suppose that you were to choose between the following out-
comes. Which would you prefer?
Outcome 1: $6500 for certain
Outcome 2: Receiving $10000 with the probability of 2/3 or receiving 

$3000 with a probability of  1/3
DM: I would prefer the second outcome (Outcome 2).

At this point, the analyst knows that the probability equivalence value 
(i.e., the probability of receiving $10000 in the second outcome) must be 
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set at a value less than 2/3. So, the analyst might ask a second question 
as follows:

Analyst: OK. Suppose that you were to choose between the following 
outcomes. Which would you prefer?
Outcome 1: $6500 for certain
Outcome 2: Receiving $10000 with a probability of .6 or receiving 

$3000 with a probability of .4
DM: I think that I would be indifferent between these two outcomes.

At this point, the analyst knows that the expected utilities of these two out-
comes must be equal. Hence, the following equations hold

 Eu(Outcome 1 Eu(Outcome 2) )=

or
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Note that in most cases, the preferred mode for an assessment is the cer-
tainty equivalence response mode; one reason for this is that people often 
have trouble in providing answers to questions regarding preferences in 
terms of probabilities.

6.3.7  Some Standard Functional Forms for a 
Single Attribute Utility Function

Once the “points” of a single attribute utility function have been assessed 
as described, there are at least two approaches for specifying a functional 
format. (Throughout this chapter, we will assume that the utility function is 
scaled such that a functional value of 1(0) is associated with the best [worst] 
attribute value.) We will also assume, at least initially, that this utility func-
tion is increasing as X increases in value—that is, more of an attribute is 
desired. Later in this section, we will discuss decreasing utility functions.

One approach is to just assume that the function is linear in between the 
assessed points. While this approach would obviously be an approxima-
tion, it may be sufficient for the purpose of the study being undertaken. In 
addition, the larger the number of points assessed, the more accurate this 
approach of linear interpolation will be in terms of actually representing the 
preferences of the DM.

Let’s suppose that we want to use this approach of having a linear utility 
function “in between” the assessed points. In some rare cases, this function 
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may be linear over the entire range of the attribute. In this case, the function 
could just be represented as (6.1):

 u(x c x c1 2) ,= +  (6.1)

where c1 and c2 are appropriate constants. As mentioned previously, this 
type of utility function represents a risk-neutral DM.

In most cases, however, a “piecewise linear” function would be a more 
accurate representation of the DM’s preference structure than a linear func-
tion. Let’s suppose that the assessed points for the utility function are denoted 
by (x1, u(x1)), (x2, u(x2)),…, (xn, u(xn)), where n is the number of assessed points 
and the xi, which are increasing as i increases from 1 to n, represent various 
attribute values and u(xi) is the assessed value of utility for xi. Let’s also sup-
pose that x1 represents the “worst value” for the attribute and that xn repre-
sents the “best value” for the attribute. Therefore, for our scaled, increasing 
utility function, we would have u(x1) = 0 and u(xn) = 1. A piecewise linear 
function connecting the assessed points would be given by

 u x a x b for x x xi i i i( ) ( , ),= + +Î 1  (6.2)

where
ai = (u(xi + 1) – u(xi))/(xi + 1 – xi)
bi = u(xi) − xi(u(xi + 1) − u(xi))/(xi + 1 − xi), for i = 1,2,…, n − 1

As an example, let’s suppose that we were assessing a utility function over 
an attribute, X, where the worst value, xw, was 0 and the best value, xb, 
was 40. Suppose also that the utility function values for 10 points (n = 10) 
were assessed, including u(0) = 0 and u(40) = 1. Given two assessed points, 
u(x3) = u(15) = .42 and u(x4) = u(20) = .54, the value for u(17) could be inter-
polated as u(17) = a3x + b3, where a3 = (.54 − .42)/(20 − 15) = .024 and b3  = 
.42 − 15(.54 − .42)/(20 − 15) = .06. Hence, u(17) = .024(17) + .06 = .468.

A second category of approaches for representing a utility function would 
be to use a particular functional form, which is a best fit for the set of assessed 
points. There are several possibilities, which could be tried. For example, a 
general exponential utility function appears as

 u(x c c exp( c x c1 2 3 4) ( )),= - - -  (6.3)

where c1 ≥ 0, c2 > 0, c3 > 0, and c4 (unrestricted) are all constants. The function 
given by (6.3) is concave, thereby representing a risk-averse DM. In addition, 
smaller values of c3 make the graph of u(x) “flatter,” thereby representing an 
increasingly less risk-averse DM as c3 decreases in value, given that c1 and c2 
remain the same.

The constant, c4, represents a shift parameter for the function; that is, the 
graph for an exponential utility function of type (6.3) with c4 = 10 will appear 
the same as the graph with c4 = 0 (with c1, c2, and c3 having the same values 
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in each case), except that the first graph will be shifted to the right by 10 units 
of the attribute represented by X. If c4 is assigned a negative value, the graph 
will be shifted to the left. See Figure 6.4 for an illustration of this shift.

The reader will note that in (6.3), u(c4) = c1 − c2 since exp(0) = 1. Also, if the 
user of this function wants to have u(xw) = 0 and u(xb) = 1, where xw and xb 
are the worst and best possible values of x, respectively, then c1, c2, c3, and c4 
must have values such that (6.4) and (6.5) are satisfied:

 
x

(c /c
c

cw 1 2

3
4= - +ln )
,  (6.4)

 
x

( c 1 /c
c

cb 1 2

3
4= - - +ln ( ) )
.  (6.5)

Since ln(1) = 0, in order to have xw = c4 (the shift parameter value), one must 
have c1 = c2. In addition, since ln(x) is undefined for x ≤ 0, c1 must be greater 
than 1 in order for xb to achieve a finite value in (6.5). Various values for xw 
and xb for different values of c1, c2, and c3 (which satisfy (6.4) and (6.5)) are 
shown in Table 6.6, where c4 is set to 0.

Additional functional forms for a single attribute utility function are given as

 u(x c c log c x c1 2 1 3 4) ( ( )) ,= + -0  (6.6)

 u(x c c x c c
1 2 4

3) ( ) ,= + -  (6.7)

 u(x c c x c exp(c x c1 2 3 5 4) ( )),= + + -  (6.8)
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FIGURE 6.4
Two single attribute utility functions, 2 – 2e−.01x, and its shifted (by 10 units of X) counterpart, 
2 – 2e−.01(x−10).
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where c1, c2, c3, c4, and c5 are all constants, set so that the resulting function 
fits the set of points assessed by the analyst for the DM. In each case for the 
functions of (6.3), (6.6), (6.7), and (6.8), c4 represents the shift parameter dis-
cussed earlier.

The utility function shown in Equation 6.6 is concave and hence corre-
sponds to a risk-averse DM just as a function of type (6.3). The utility func-
tion of type (6.7), however, is convex and hence would correspond to a 
risk-seeking DM. As noted by Clemen and Reilly (2001), (6.8) is called a linear 
plus exponential utility function.

Now, in many cases, one would want a utility function, u(x), that decreases 
in value as x increases. This would be the case, for example, if X represents 
an attribute such as cost, fraction defective, or percentage of dissatisfied cus-
tomers. In these situations, one could use 1 minus one of the respective util-
ity functions given in (6.3), (6.6), (6.7), or (6.8); for example, the negative of (6.3) 
is given by

 u(x 1 c c exp( c x c1 2 3 4) ( )),= - + - -  (6.9)

where, as before, c1, c2, c3, and c4 are all constant values. Note that (6.9) repre-
sents a convex, as opposed to a concave function as in (6.3) and (6.6). Hence, 
a utility function such as (6.9) would represent a risk-seeking DM. Any time 
that a scaled, concave utility function is replaced by 1 minus that function, 
the resulting function will be convex; similarly, any time a scaled convex 
utility function is replaced by 1 minus that function, the resulting function 
will be concave.

TABLE 6.6

Resulting Values for xw and xb for Various 
Values of c1, c2, and c3 in Equation 6.3 (Where 
xw and xb Are Defined as u(xw) = 0 and u(xb) = 1)

c1 c2 c3 c4 
Resulting 

Value for xw 
Resulting 

Value for xb 

1 1 .01 0 0 Infinity
2 2 .01 0 0 69.3
3 3 .01 0 0 40.5
4 4 .01 0 0 28.8
1 1 .05 0 0 Infinity
2 2 .05 0 0 13.9
3 3 .05 0 0 8.2
4 4 .05 0 0 5.75
2 3 .01 0 40.5 109.9
2 4 .01 0 69.3 138.6
2 5 .01 0 91.6 160.9
2 6 .01 0 109.8 179.1
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A listing of various single attribute utility functions along with some 
of their respective characteristics is shown in Table 6.7. Except for the last 
entry, only increasing utility functions are shown in Table 6.7. As noted 
earlier, decreasing functions can be formed by subtracting the functions 
given in the table from the number 1.

6.3.8 Axioms Associated with Utility Theory and the Allais Paradox

Von Neumann and Morgenstern (1947) provided seven axioms, which 
assured that the maximization of expected utility is an appropriate criterion 
to use in a risky decision situation. These seven axioms are also discussed 
in Luce and Raiffa (1957), Bunn (1984, pp. 53–56), Clemen and Reilly (2001, 
pp. 572–575), and Goodwin and Wright (2009, pp. 131–133). As noted by Bell 
and Farquhar (1986) and as described in Fishburn (1970), von Neumann and 
Morgenstern’s initial seven axioms have been refined by various researchers 
and reduced to three axioms, as described in the following.

Axiom 1 (rationality): For any pair of probabilistic outcomes, denoted as 
O1 and O2, either O1 is preferred to O2, O2 is preferred to O1, or the 
DM is indifferent between O1 and O2.

TABLE 6.7

Listing of Single Attribute Utility Functions and Relevant Comments 
(Values for xw and xb Are Given Such That u(xw) = 0 and u(xb) = 1)

Utility Function Functional Form Comments 

Linear u(x) = c1 + c2x Corresponds to a risk-neutral DM
Piecewise linear u(x) = aix + bi for x ∈ (xi,xi + 1)

where ai and bi are as shown 
just below Equation 6.2.

Increased accuracy with increased 
number of assessed points

Exponential u(x) = c1 − c2 exp(− c3(x − c4)) Concave function (risk-averse DM)
x (c /c /c c

x ( c 1 /c /c c

w
1 2 3 4

b
1 2 3 4

= - +

= - - +

ln ) ,

ln ( ) )

Logarithmic u(x) = c1 + c2 log10 (c3(x − c4))  Concave function (risk-averse DM)
x 1 /c c

x 1 /c c

w c c
3 4

b 1 c c
3 4

1 2

1 2

= +

= +

-

-

0

0

/

( )/

Polynomial u(x c c x c1 2 4
c3) ( )= + - Convex function (risk-seeking DM)

x ( c /c c

x ( 1 c /c c

w
1 2
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4

b
1 2
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4

3

3

= - +
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)
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/

Linear plus 
exponential

u(x) = c1 + c2x + c3 

exp(c5(x − c4))
Decreasing 
utility function

u(x) = 1 − u′(x)
where u′(x) is an increasing 
function

u(x) is concave if u′(x) is convex 
and vice versa
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Axiom 2 (independence): Consider three probabilistic outcomes: O1, O2, 
and O3 and a probability, p. If O1 is preferred to O2, then the com-
pound lottery pO1 + (1 − p)O3 is preferred to the compound lottery 
pO2 + (1 − p)O3 for all outcomes O3 and for all p ∈ [0, 1].

Axiom 3 (continuity): Consider three deterministic outcomes: D1, D2, and 
D3, which are ranked by the DM as D1 is preferred to D2 and D2 is 
preferred to D3. There exists some probability p such that the DM 
will be indifferent between D2 and the probabilistic outcome: D1 
with probability p and D3 with probability (1 – p).

Bell and Farquhar (1986) note that DMs often do not behave in a way that 
satisfies the von Neumann–Morgenstern axioms, especially as this behavior 
relates to the independence axiom (Axiom 2). Even when it is pointed out to 
individuals that their decisions do not satisfy the von Neumann–Morgenstern 
axioms, these individuals often will not alter these decisions. This concept of 
decision behavior violating axioms of utility theory is embodied in the Allais 
Paradox (see Allais, 1953).

The Allais Paradox involves a hypothetical situation in which a DM is pre-
sented with four outcomes:

 1. O1: Receive $1 million for certain (i.e., with a probability of 1)
 2. O2: Receive $5 million with a probability of 0.1, $1 million with a 

probability of 0.89, or $0 with a probability of 0.01
 3. O3: Receive $5 million with a probability of 0.1 or $0 with a probabil-

ity of 0.9
 4. O4: Receive $1 million with a probability of 0.11 or $0 with a prob-

ability of 0.89

The DM is then asked to rank the following pairs of outcomes in decreasing 
order of preference: O1 versus O2 and O3 versus O4.

Now, various studies have been conducted, which show that most people 
prefer O1 to O2 and O3 to O4. However, this pair of rankings under the crite-
rion of maximization of expected utility is not possible for any utility func-
tion via the following argument. Let our attribute, X, be payoff in millions 
of dollars, and let u be the DM’s utility function over this payoff. Suppose 
we scale the utility function so that u(0) = 0 and u(5) = 1. Then the expected 
utilities for outcomes O1 and O2, denoted as Eu(O1) and Eu(O2), are given by

 Eu(O u(11) )=

and

 Eu(O 1 89u(1)2) . . .= +
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Therefore, O1 is preferred to O2 if and only if u(1) > .1 + .89u(1) or equivalently 
if .11u(1) > .1.

Now, similarly,

 Eu(O 1 and Eu(O 11u(13 4) . ) . ).= =

Therefore, O3 is preferred to O4 if and only if .1 > .11u(1), which contradicts 
the previous inequality. Therefore, O1 preferred to O2 and O3 preferred to O4 
are inconsistent choices (as are O2 preferred to O1 and O4 preferred to O3). 
The only coherent choices are O1 preferred to O2 and O4 preferred to O3 or O2 
preferred to O1 and O3 preferred to O4

Besides indicating that people do not necessarily make choices according 
to expected utility theory, the Allais Paradox suggests that when assessing a 
DM’s utility function, the analyst should perform many consistency checks 
as well as much sensitivity analysis.

6.4 Multiattribute Utility Functions

6.4.1 Introduction

MAU functions are used to represent preferences over risky outcomes with 
two or more attributes.

Examples of applications involving MAU functions from the literature are 
shown in Table 6.8.

So, what is an MAU function? Basically, an MAU function is a mapping 
from an attribute space with two or more attributes into the space of real num-
bers; usually, the utility function will be scaled so that it is mapped into the 
[0, 1] closed interval. Such a function has the characteristic that a joint prob-
ability distribution over the outcome space is preferred by the relevant DM to 
another joint probability distribution over the outcome space (i.e., the space 
of attributes) if and only if the expected utility of the first joint probability 
distribution is greater than the expected utility of the second joint probability 
distribution. Example 6.2 is used to illustrate the use of an MAU function.

Example 6.2: A Simple Acceptance Sampling Problem

Let’s consider a simple hypothetical problem to illustrate a decision sit-
uation in which an MAU function might be used. Suppose we have a 
quality control problem involving a lot of two items. Suppose from past 
experience with the supplier for these items that there is a 50–50 chance 
that one item in the lot will be defective. That is, either (1) one of the items 
in the lot will be defective (with a probability of .5) or (2) none of the 
items in the lot will be defective (also with a probability of .5). We have 
two alternatives to investigate:
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 Alternative A1: Let the lot proceed with no inspection.
 Alternative A2: Randomly sample one item from the lot. If it is defec-

tive, rework that item and let the lot proceed. If it is not defective, 
let the lot proceed with no further inspection. The cost for inspec-
tion of a part is $20, while the cost for reworking a part is $50.

There are two attributes to consider in making the decision:

X1: The total cost associated with the alternative
X2: The quality of the outgoing lot as measured by the fraction of 

defective items in this outgoing lot

TABLE 6.8

Applications of Multiattribute Utility Functions from the Literature

Application References 

Considered attributes related to nonproliferation, operational 
effectiveness, environment, safety, and health with respect to 
evaluation of alternatives for the disposition of excess waste 
plutonium from excess nuclear weapons

Butler et al. (2005)

Considered attributes related to software capabilities, hardware 
capabilities, and vendor performance in the selection of a GIS

Ozernoy et al. (1981)

Considered attributes related to fishing stock size, long-term and 
short-term economic benefits, social acceptability, and opportunities for 
learning in evaluating alternatives for the opening day of fishing season

McDaniels (1995)

Considered attributes related to cost, malfunction cost, failure rate, 
and proportion of each failure mode related to aspects of circuit 
design and packaging technology

Ronen and Pliskin 
(1981)

Employed utility functions in developing a methodology for the 
allocation of resources to competing risk-reducing activities

Bodily (1980)

Considered attributes related to ecological and environmental effects, 
toxicology, pollution control, process and operational data analysis, 
and industrial hygiene and occupational health to develop a 
portfolio of environmental and health research programs for a 
commercial-scale synthetic fuels facility

Peerenboom et al. 
(1989)

Considered attributes related to nonproliferation, operational 
effectiveness, and environment, safety, and health in the evaluation 
of alternatives related to selection of a technology for the disposition 
of surplus weapons-grade plutonium

Dyer et al. (1998)

Considered attributes related to economics, management, 
environment, socioeconomics, health/safety, public attitudes, and 
feasibility with respect to alternative generation technologies for 
Baltimore Gas and Electric Company

Keeney et al. (1986)

Considered attributes related to health status and life years for 
choosing between alternative treatments for coronary artery disease 
and chronic kidney disease

Pliskin et al. (1980)

Illustrative applications involving air pollution control, preference 
trade-offs among instructional programs, fire department operations, 
structuring of corporate preferences, evaluating computer systems, 
and siting and licensing of nuclear power facilities

Keeney and Raiffa 
(1993, Chapter 7)
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X1 (total cost) includes two types of cost—the inspection cost and the 
reworking cost.

Now, the choice of either alternative will lead to an uncertain outcome, 
as measured by the two attribute values. In other words, we have a situ-
ation where an MAU function might be useful.

If alternative A1 is chosen, the cost will be 0 (X1 = 0), while the fraction 
of defectives in the outgoing lot (X2) will be .5 (i.e., one defective item out 
of the two items in the lot) with probability .5 and 0 with probability .5.

If alternative A2 is chosen, the computation of the probabilistic out-
come is a little more, but not much more, complicated. In particular, if 
there are 0 defectives in the incoming lot (probability of .5), there will 
obviously be 0 defectives in the sample, and the lot will proceed with 
0 defectives with a cost (for the one inspected part) of $20. If there is 
one defective in the incoming lot (probability of .5), there will be a .5 
probability of sampling this defective and reworking it, leading to an 
outgoing lot with 0 fraction defective and a cost of $70 (the $20 cost of 
the sampling plus the $50 cost for the reworking); there will be a .5 prob-
ability of not discovering the defective item in the sample and then the 
lot will proceed with .5 fraction defective and the cost will be $20 (the 
cost of sampling 1 part). The outcome associated with alternative A2 is 
illustrated in Figure 6.5.

In Figure 6.5, the first set of branches portrays the state of nature of the 
incoming lot (zero defective items with a probability of .5 or one defec-
tive item with a probability of .5). The second set of branches portrays 
the probability associated with the one defective item being sampled (.5), 
or not being sampled (.5). The outcomes associated with this situation 
are given at the “ends” of the branches as (X1, X2). Note that the two 
events (a lot with zero or one defective item, and the event of sampling 
or not sampling the defective item given that there is a defective item in 
the lot) are independent.

In summary, the outcomes associated with the alternatives A1 and A2 
are shown in Tables 6.9 and 6.10, respectively.

.5

.5

($20, 0)

.5

.5

($70, 0)

($20, .5)

FIGURE 6.5
Illustration of the outcome associated with alternative A2 of Example 6.2.
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Now, it is not obvious as to which alternative should be chosen. For 
example, alternative A1 will certainly have a lower cost ($0) as compared 
to A2, which will have a cost of either $20 (with a probability of .75) or a 
cost of $70 (with a probability of .25). However, alternative A2 will have 
a higher probability of having 0 defectives in the outgoing lot (.75 prob-
ability versus .5 probability for alternative A2).

Although this example is relatively simple, it does illustrate the basic 
aspects associated with applications involving MAU functions:

 1. A set of multiple alternatives from which one is to be selected
 2. Multiple attributes
 3. Probabilistic outcomes over the attribute values associated with 

one or more of the alternatives

In this case, the probabilistic outcomes could be computed through the 
use of a very simple analytic model. In other, more complex situations, 
decision trees, influence diagrams, general simulation models, and/or 
expert judgments may be needed.

Now, in order to employ expected utility as a criterion, we need to dis-
cuss how to compute the expected utility for an alternative decision, given 
(1) a joint probability distribution corresponding to the alternative and (2) 
the DM’s MAU function. The expected utility of a probabilistic outcome 
(sometimes called a “lottery”) with multiple attributes is computed as 
follows. Suppose that you have p attributes and that the joint probability 
distribution function representing the outcome for alternative i is repre-
sented as fi(x1, x2,…, xp) for i = 1,…, n where n is the number of alternatives.

The expected utility associated with the ith alternative is given by
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TABLE 6.9

Outcome Associated with Alternative A1 of Example 6.2

Outcome (X1, X2) Probability 

($0, 0) 0.5
($0, .5) 0.5

TABLE 6.10

Outcome Associated with Alternative A2 of Example 6.2

Outcome (X1, X2) Probability 

($20, 0) 0.5
($20, .5) 0.25
($70, 0) 0.25
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or by
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Note that this computation is just the expected value of a function (i.e., the 
utility function) of several random variables: X1,X2,…,Xp.

Let’s consider how this expected utility computation would work 
for our simple example involving acceptance sampling, Example 6.2. 
Suppose that we have assessed our DM’s utility function as follows (the 
topic of utility function assessment will be discussed in greater detail 
later in this chapter):

 u(x x w u (x w u (x ww w u (x u x1 2 1 1 1 2 2 2 1 2 1 1 2 2, ) ) ) ) ( ),= + +

where
the functions u1 and u2 are called the individual attribute utility 

functions
w1, w2, and w are the scaling constants

The function u is a multiplicative type of utility function. This type of 
utility function will be discussed in more detail later.

Let’s also suppose that we have w = 3, w1 = .2, w2 = .5. Determining 
these values for the scaling constants would normally be a part of the 
assessment process; in addition, there is a specific functional relation-
ship between w, w1, and w2, so once w1 and w2 are determined through 
the assessment process, the value for w is automatically determined.

The best and worst values for cost are given as xb
1 0= $  

and x 7w
1 0= $ . The best and worst values for fraction defective are 

given as xb
2 0=  and x 5w

2 = . . Hence, we want to have u1($0) = 1, u1($70) = 0, 
u2(0) = 1, and u2(.5) = 0; therefore, both of our individual attribute utility 
functions will be decreasing functions.

Now, let’s also suppose that the individual attribute utility functions 
are given as decreasing exponential utility function for the cost attribute 
and as a decreasing linear utility function for the fraction defective attri-
bute, as shown:

 u (x 1 1x and u (x 1 2x1 1
1 83

2 2 2) . ) ..= - = -0 1
0

The reader will note that for each attribute, the utility function value 
for the best (worst) possible value for the attribute is 1(0), at least in the 
approximation; that is,

 u ($ 1 u ($7 u ( 1 u ( 51 1 2 20 0 0 0 0) , ) , ) , . ) .= = = =

Now, evaluating the utility function values for the various outcomes 
given in Tables 6.9 and 6.10, we obtain
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Therefore, the expected utility associated with alternative 1 is given by

 . , ) . ,. ) . .) . . ) . ,5u($ 5u($ 5 5(1 5( 2 60 0 0+ = + =

and the expected utility associated with alternative 2 is given by

 . , ) . ,. ) . , ) . . ) . . ) .5u($2 25u($2 5 25u($7 5( 87 25( 148 25(0 0 0 0 0+ + = + + .. ) .5 597.=

Hence, under the criterion of maximization of expected utility, alter-
native 1 would be preferred to alternative 2. Of course given the close-
ness of the expected utility values between the two alternatives, a slight 
change in the utility function could easily result in a change in the rank-
ing of these alternatives.

6.4.2  Independence Conditions and the Form of 
the Multiattribute Utility Function

Just as in the case of a multiattribute value function, we can assume a spe-
cific functional form for an MAU function if the DM’s preferences satisfy 
certain independence conditions. The first of these is utility independence, 
as defined in Definition 6.3.

Definition 6.3: A set of attributes X is utility independent (UI) of its comple-
mentary set X′ if the conditional preference structure over lotteries on X 
given values for the attributes in X′ does not depend on the values for those 
attributes.

It is virtually impossible to “prove” utility independence for any particular 
situation since the condition must hold over the entire range of the attri-
butes. Instead, the typical approach is to provide evidence that utility inde-
pendence holds. This can be accomplished, for example, for the two-attribute 
case, by showing that the certainty equivalent for a 50–50 lottery over one 
attribute is not dependent on the value for the other attribute.

Let’s consider a situation similar to that portrayed in Example 6.2, involv-
ing two attributes: X1 (cost associated with inspection and reworking) and 
X2 (fraction of defective items in the outgoing lot). Let’s also suppose, in this 
more general situation, that the best and worst values associated with X1 are 
$0 and $1000, respectively, and that the best and worst values associated with 
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X2 are 0 and .3, respectively. In order to test if X1 is utility independent (UI) of 
X2, the analyst might ask the DM the following sequence of questions:

Analyst: Suppose that X2 = .1 (i.e., there is 10% defective items in the 
outgoing lot), what would be your certainty equivalent for the 50–50 
lottery over X1 given by 〈$0, $500〉?

DM: I would be indifferent between a 50–50 lottery for the cost of 
〈$0, $500〉 and a certain cost of $280.

Analyst: OK. If X2 had a value of .01, would your certainty equivalent for 
the 50–50 lottery of 〈$0, $500〉 change from $280?

DM: No, it would stay at the value of $280.

At this point, the analyst might be able to assume that preferences with 
respect to lotteries over X1 do not depend upon the value for X2 and that 
therefore X1 is UI of X2. Note that X1 being UI of X2 does not necessarily mean 
that X2 is UI of X1. The analyst would need to ask similar questions with X1 
and X2 reversed in order to show this.

Now, if one wants to show that X is UI of X′ where there are two or more 
attributes in the set X, then the lotteries on the set X must correspond to joint 
probability distribution functions; these questions posed to the DM would 
be obviously much more difficult to answer.

As shown by Keeney and Raiffa (1993, pp. 293–294), if one has a set of attri-
butes: X1, X2,…, Xp for a decision situation and Xi is UI of its complement for 
i = 1,…, p, then the MAU function will have a multilinear form; the multi-
linear form is the most general form used with any regularity for an MAU 
function, as given by Definition 6.4.

Definition 6.4: The multilinear form for a utility function is given by
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where
ui is a single attribute utility function over Xi scaled from 0 to 1
wi, also scaled from 0 to 1, is the scaling constant for attribute i
wijm are scaling constants, which measure the impact of the interaction 

among attributes i, j, and m on preferences
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As an example, for the case with three attributes: X1, X2, and X3, in order for 
Xi to be UI of Xj for all i ≠ j, one must have X1 UI of X2, X1 UI of X3, X2 UI of X1, 
X2 UI of X3, X3 UI of X1, and X3 UI of X2, or six individual utility independence 
conditions. The corresponding multilinear utility function for this situation 
will have the following form:

 

u (x x x w u (x w u x w u (x w u (x u (x

w

1 2 3 1 1 1 2 2 2 3 3 3 12 1 1 2 2

1

, , ) ) ( ) ) ) )= + + +

+ 33 1 1 3 3 23 2 2 3 3 123 1 1 2 2 3 3u (x u (x w u (x u (x w u (x u (x u x) ) ) ) ) ) ( ).+ +

In general, when one has p attributes, showing that the corresponding MAU 
function is multilinear means showing that p ∗ (p − 1) individual utility inde-
pendence conditions hold.

A special case of the multilinear utility function is the multiplicative utility 
function. An MAU function will have this form if the corresponding set of 
attributes is mutually utility independent (MUI), as defined in Definition 6.5.

Definition 6.5: A set of attributes X is mutually utility independent (MUI) if 
every subset X′ ∈ X is utility independent of its complement.

As an example, a set of three attributes X1, X2, X3 is MUI if and only if six 
individual utility independence conditions are satisfied:

 1. X1 is UI of X2,X3

 2. X2 is UI of X1,X3

 3. X3 is UI of X1,X2

 4. X1,X2 is UI of X3

 5. X1, X3 is UI of X2

 6. X2,X3 is UI of X1

In general, if one has p attributes, the number of individual utility indepen-
dence conditions that must be satisfied for mutual utility independence is 
the sum of the number of combinations of p things taken i at a time, summed 
from i = 1 to i = p − 1, or p!/i!(p i)!

i 1

p 1
-

=

-å .

As mentioned earlier, if the set of attributes X = (X1,X2,…,Xp) is MUI, then 
one has a multiplicative form for the MAU function, as given by Definition 6.6.

Definition 6.6: The multiplicative form for an MAU function with p attributes 
is given by ((1 ww u x 1)/w)( ))i i i

i 1

p
+ -

=Õ  where the ui(xi) are the individual 

attribute utility functions scaled to have a minimum value of 0 and a maxi-
mum value of 1 and the w, w1, w2,…, wp are the weights (constants) associ-
ated with the individual attribute utility functions.
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Another, less compact but probably more understandable, form for the multi-
plicative MAU function is given by (6.10) through (6.14):
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(6.10)

where

 The utility function, u, is scaled from 0 to 1, (6.11)

 The individual attribute utility functions (the ui) 
 are scaled from 0 to 1, (6.12)

 wi is equal to u with all attribute values except xi at their worst possible
 values and xi at its best possible value for i = 1,…, p, (6.13)

 w is a constant such that 1 w (1 wwi

i=1

p

+ = +Õ ).
 

(6.14)

As mentioned earlier, w is found by solving (6.14) for w once the individual 
wi are found. Bunn (1984, p. 95) notes that if the sum of the weights wi is 

greater than 1 (i.e., w 1i
i 1

p
>

=å ), then w must be between −1 and 0:

 - < <1 w 0.

If the sum of the weights wi is less than 1 (i.e., w 1i
i 1

p
<

=å ), then w must be 
greater than 0:

 w > 0.

(6.14) can be rewritten as

 
w 1.(1 wwi

i 1

p

= -+
=

Õ )  (6.15)

(6.15) can be solved in an iterative fashion by choosing a reasonable value for 
w, substituting its value into the right-hand side of (6.15), and then comput-
ing a new value based on the right-hand side of (6.15). This is repeated until 
convergence is achieved.
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For example, let’s suppose that we have a multiplicative utility function 
with three attributes and that the following values have been determined 
for the weights:

 w 2 w 7 and w 4.1 2 3= = =. , . , .

Since the weights do not sum to 1, we know that the utility function is not 
additive and therefore w ≠ 0; and since the sum is larger than 1, we know that 
w must be between −1 and 0. Let’s begin our iterations by setting w = −.4. 
Substituting this value and the assessed values of w1 = .2, w2 = .7, and w3 = .4 
into the right-hand side of (6.15), we obtain

 w (1 ( 4 2 (1 ( 4 7 (1 ( 4 4 1 4436.= + + - + - - = -- . )(. )) . )(. )) . )(. )) .

Substituting w = −.4436 into the right-hand side of (6.15) and continuing, we 
achieve the following sequence of values for w:

 - - - ¼ - -. , . , . , , . , .4436 483 5177 6466 6467.

Hence, we could reasonably assume a value of −.6467 for w.
If there are only two attributes (p = 2), (6.14) is relatively easy to solve for 

w in terms of w1 and w2, as shown in the following. (6.14) can be rewrit-
ten as

 1 w (1 ww (1 ww1 2+ = + +) ),

or

 1 w 1 ww ww w w w1 2
2

1 2+ = + + + ,

or

 w w(w w ww w1 2 1 2= + + ),

or assuming that w is not 0 and dividing both sides by w, one obtains

 1 w w ww w1 2 1 2= + + ,

and solving for w,

 
w

(1 w w
w w

1 2

1 2
= - - )

.  (6.16)
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Substituting this for w into the multiplicative form for the MAU function for 
p = 2, the two-attribute case yields

 u(x x w u (x w u (x (1 w w u (x u x1 2 1 1 1 2 2 2 1 2 1 1 2 2, ) ) ) ) ) ( ).= + + - -  (6.17)

For the case of three attributes, a multiplicative MAU function would appear as
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(6.18)

The corresponding multilinear utility function for three attributes is given by
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(6.19)

Note the differences between the multilinear and multiplicative MAU func-
tions as indicated in (6.18) and (6.19). The general multilinear utility func-
tion has many more scaling constants to assess than the multiplicative utility 
function; for example, with three attributes, the general multilinear utility 
function has seven scaling constants (w1, w2, w3, w12, w13, w23, and w123), while 
the multiplicative utility function will have four scaling constants (w1, w2, w3, 
and w) to assess. The difference in the number of scaling constants between 
the multiplicative and the general multilinear utility function increases as 
the number of attributes increases. As noted by Butler et al. (2001), for a mul-
tiplicative utility function, “the strength of interactions among all criteria is 
the same.”

Testing for MUI when one has three or more attributes can be a prohibi-
tive task, but Keeney and Raiffa (1993, p. 292) state an equivalent condition 
for MUI:

If X = (X1,X2,…,Xp) denotes a set of p attributes, then the following condi-
tions are equivalent:

 1. Attributes X are MUI
 2. X1 is UI of (X2,…,Xp) and (X1, Xi) is preferentially independent (PI) of 

its complement for i = 2, 3,…, p where p ≥ 3

The equivalence condition indicates that in order to show MUI for a set of 
attributes, instead of performing 2p − 2 UI tests, one only has to perform 1 
UI test and n − 1 PI tests. In addition to greatly reducing the number of tests 
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required, the questions associated with a preferential independence test are 
typically much easier for a DM to answer than the questions associated with 
a utility independence test. This difference in the number of tests required 
to show MUI is shown in Table 6.11.

Now, it may be difficult for the reader to conceive of a situation for which 
an attribute is not utility independent of another attribute. However, Keeney 
and Raiffa (1993, p. 232) provide an example of such a situation: a farmer’s 
preferences with respect to the amount of sunshine received (denoted as an 
attribute X1) would not be utility independent of the amount of rain received 
(denoted as an attribute X2). In particular, a farmer might prefer a 50–50 lot-
tery of 40% days of sunshine and 60% days of sunshine to a certainty of 98% 
days of sunshine if the rainfall is only 2 inches over a 3-month period, but 
that same farmer might prefer the certainty of 98% days of sunshine to the 
50–50 lottery if the rain is 25 inches over a 3-month period.

The additive form for an MAU function is given by (6.20) through (6.22):
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The multiplicative form for an MAU function reduces to the special case 
of the additive form when w 1i

i 1

p

=å =  or equivalently when w = 0 in (6.10) 
through (6.14).

TABLE 6.11

Results of the Equivalence Theorem for Various Numbers of Attributes 
(p) in the Decision Problem

Value of p 
Number of UI Tests 

Required to Show MUI 
Number of UI and PI Tests Required as 

a Result of the Equivalence Theorem 

3 6 1 UI test and 2 PI tests
4 14 1 UI test and 3 PI tests
5 30 1 UI test and 4 PI tests
6 62 1 UI test and 5 PI tests
7 126 1 UI test and 6 PI tests
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The DM’s utility function will have the additive form of (6.20) through 
(6.22) if and only if additive independence (AI) holds, as given by 
Definition 6.7.

Definition 6.7: AI occurs if preferences over lotteries on {X} depend only on 
the marginal probability distributions of the xi and not on the overall joint 
probability distribution over the {X}.

AI is a very restrictive condition and therefore rarely holds. For example, in 
the case of Example 6.2, AI would be satisfied only if the DM were indifferent 
between the following two outcomes:

 Outcome 1: 〈($70, 0), ($0, 0.5)〉, Outcome 2: 〈($0, 0), ($70, 0.5)〉.

Note that in our notation, Outcome 1 corresponds to a .5 probability of 
achieving a $70 cost with 0 defectives in the outgoing lot and a .5 prob-
ability of achieving a $0 cost with 0.5 fraction defective in the outgoing 
lot, while Outcome 2 corresponds to a .5 probability of achieving a $0 cost 
with 0 defectives in the outgoing lot and a .5 probability of achieving a $70 
cost with 0.5 fraction defective in the outgoing lot. Note that the marginal 
probabilities of achieving particular attribute values are the same for each 
outcome. Note also that the fact that the DM is indifferent between these 
two outcomes is a necessary but not a sufficient condition, since the con-
dition must be satisfied for any pair of outcomes for which the marginal 
distributions are the same. In reality though, if one is able to show that 
the condition holds for one or two pairs of such outcomes, that is typically 
considered enough to indicate AI.

The steps associated with assessing an MAU function are as follows:

 1. Determine the worst and best possible values for each respective 
attribute over all alternatives.

 2. Assess each of the scaled individual attribute utility functions, as 
shown in Section 6.3.3.

 3. Test for the various independence conditions described earlier in 
order to show that a particular form for the MAU function is appro-
priate. Start with the less restrictive conditions (e.g., those leading 
to a multilinear or multiplicative utility function) and work toward 
the more restrictive conditions (those leading to an additive utility 
function).

 4. Determine the scaling constants for the MAU function.

We have not discussed the fourth step in the process outlined earlier, but 
typically, the first activity in determining the scaling constants w1, w2,…, wp 
for an MAU utility function is to determine their order in terms of decreasing 
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value. This can be done in a relatively simple fashion by asking the DM to 
rank order, from most to least preferred, the p outcomes associated with the 
ith attribute having its best value, and all other attributes at their worst val-
ues for i = 1,…, p:

 
x x x x x x x x x x x x, , , , , , ,1
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The reader will note from the definitions given for these weights that the 
utility for the ith outcome is equal to wi; hence, in ranking these p outcomes, 
the DM is equivalently ordering the weights from largest to smallest.

This activity gives the DM some experience in thinking about these out-
comes, but we still need the actual weights. As the reader might surmise, 
determining the actual weights involves having the DM provide respective 
values for probabilities or attribute values such that he or she will be indiffer-
ent between sets of two outcomes, leading to a series of equations that can be 
solved for the scaling constants. The number of equations needed is equal to 
the number of scaling constants for the MAU function. For example, a multi-
plicative MAU function with three attributes has four scaling constants (w1, 
w2, w3, and w); since w is already expressed as a function of w1, w2, and w3 
in (6.15), we need three additional equations in order to determine the values 
for w1, w2, and w3.

Keeney and Raiffa (1993, p. 303) note that two types of questions can be 
asked to form these scaling constants, one type involving probabilistic out-
comes and the other type involving deterministic outcomes, as shown in the 
following:

 1. What is the value for the probability, q, such that you (the DM) are 
indifferent between the outcomes?
O1: Probability q of achieving the best outcome ( , , )x x x,1

b
2
b

p
b…  and 

probability (1 − q) of achieving the worst outcome ( , )x x x, ,1
w

2
w

p
w… .

O2: The deterministic outcome of all attribute values at their worst 
levels except for attribute i, which is at its best level (i.e., outcome 
( , )x x x x, , , ,1

w
2
w

i
b

p
w… … ).

 2. What is the value for attribute i, denoted as xi, and a value for attri-
bute j, denoted as xj, such that you are indifferent between the fol-
lowing two outcomes:
O1: ( , , , , , ),x x x x x1

w
2
w

i j
w

p
w, ,… … …  

O2: ( , , , , , )x x x x x1
w

2
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i
w

j p
w, ,… … … ,

where all attributes except for i and j are set at their worst levels: 
x x x x x x1

w
2
w

i 1
w

i 1
w

j 1
w

j 1
w, , , , , , , ,¼ - + - +…  for O1 and O2, respectively.

Note that the fact that both the overall utility function and the individ-
ual attribute utility functions are scaled from 0 to 1 makes the equations 
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(resulting from setting the expected utilities associated with the aforemen-
tioned outcomes equal to each other) easy to solve. Specifically, many of the 
terms from the resulting equations will “zero out.” For example, setting the 
expected utilities for the two outcomes associated with the first question 
equal to each other yields the following equation:

 qu x x x x x x x x x x1 q u u1
b

2
b

p
b

1
w

2
w
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w
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2
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i
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The left-hand side of this equation reduces to q, and the right-hand side 
reduces to wi; hence, we have wi = q.

The answer to the second question results in the following equation:

 w u (x w u xi i i j j j) ( ).=

Since we already have the values for ui(xi) and uj(xj), we can determine wi as 
a function of wj.

This fourth step of the process will be illustrated in the next section 
through the use of an example.

As was noted with the assessment of a multiattribute value function, even 
if the form selected for the MAU function does not exactly match the prefer-
ence structure of the DM, the function can still be very useful for decision-
making purposes.

Example 6.3: Assessing and Using a Multiattribute 
Utility Function in Acceptance Sampling

Consider a problem involving a lot of 100 purchased parts from a vendor 
by a manufacturer. There are three alternatives that the manufacturer is 
considering regarding possible inspection of the lot:

A1: There is no inspection, and the parts proceed to assembly.
A2: There is inspection of the entire lot with subsequent reworking 

of any defective items found.
A3: A single sample acceptance sampling plan, in which 10 items 

would be randomly sampled from the lot. If two or fewer of the 
sampled items are found to be defective, then only the defective 
items found in the sample will be reworked, and the lot will 
proceed to assembly. If more than two items are found defective 
in the sample, then those defective items will be reworked, and 
the rest of the lot will be inspected, along with the reworking 
of any defective items being found in the remainder of the lot.

The reader will note that the third alternative has n = 10 and a = 2 as 
parameters for the single sample acceptance sampling plan.

Prior experience with this vendor indicates that about 10% of any lot 
will be defective.
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The cost for inspection per unit is $3, and the cost of rework per unit 
is $15.

In order to evaluate the three alternatives described, the quality man-
ager would like to assess his or her MAU function over two attributes:

X1: The cost associated with inspection and reworking of the lot
X2: The fraction of defective items in the lot once one of the three 

alternatives has been implemented

As noted earlier, the first step in assessing the MAU function is to deter-
mine the worst and best attribute values over all alternatives for both 
attributes. Remember that all that is required is that the worst and best 
values be bounded by the values actually chosen.

The first alternative, A1, would give a value of $0 for X1, obviously the 
best possible value for this attribute, along with a value of .1 for X2, since 
the previous experience indicates 10% defective. The second alternative, 
A2, would lead to a value for X1 of $450 ($300 for the inspection cost plus 
$150 for the rework cost), and a value for X2 of 0 (the best possible value 
for this attribute).

The third alternative, A3, involves a more difficult calculation, since 
the outcome for (X1, X2) will be probabilistic in nature. However, the 
worst and best possible values for X1 and X2 for A3 will not be worse 
or better than those found thus far from examining alternatives A1 
and A2.

Hence, the worst and best possible values for X1 will be $450 and $0, 
respectively, while the worst and best possible values for X2 will be .1 
and 0, respectively. Let’s bound these values for this situation and use 
values of x x x5 151

w
1
b

2
w= = =$ , $ , .00 0 , and x2

b = 0, thereby possibly allow-
ing the utility function to be used for other, similar, situations as long 
as these bounds still hold. Table 6.12 shows the best and worst values 
associated with each attribute.

Since we are assessing a scaled utility function, the initial utility func-
tion values are given by

 u ($5 u ($ 1 u ( 15 and u ( 11 1 2 200 0 0 0 0) , ) , . ) , ) .= = = =

Now, using the certainty equivalence approach discussed earlier, we 
obtain the utility function values shown in Tables 6.13 and 6.14.

Tables 6.13 and 6.14 correspond to the individual utility function 
graphs shown in Figures 6.6 and 6.7.

TABLE 6.12

Best and Worst Values for Each Attribute

Attribute xi
b xi

w 

X1, cost $0 $500
X2, fraction defective 0. 0.15
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TABLE 6.13

Individual Attribute Utility Function Values for X1, Cost

x1($) u1(x1) 

500 0.
480 0.125
440 0.25
400 0.375
330 0.5
269 0.625
210 0.75
120 0.875

0 1.

TABLE 6.14

Individual Attribute Utility Function Values for X2, 
Fraction Defective in Outgoing Lot

x2 u2(x2) 

0.15 0
0.142 0.125
0.13 0.25
0.118 0.375
0.104 0.5
0.084 0.625
0.064 0.75
0.034 0.875
0. 1.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500

U
til

ity

Cost ($)

FIGURE 6.6
Individual attribute utility function for cost.
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Now, the next step in the assessment process is to verify the existence 
of any independence conditions. A first step would be to show that X1 
(cost) is UI of X2 (fraction defective). This could be accomplished through 
the following set of questions and answers:

Analyst: Suppose that you have a lot with a fraction defective of .01. 
What would be your certainty equivalent for a 50–50 lottery of 
a cost of $50 and $450 for inspection and reworking for this lot?

DM: My certainty equivalent would be about $300.
Analyst: Now suppose you had a lot with a fraction defective of .14, 

what would be your certainty equivalent for the 50–50 lottery 
of $50 and $450 change?

DM: No, it would have the same value of about $300.

At this point, the analyst might reasonably assume that for this DM, 
cost is UI of fraction defective—that is, that preferences over lotteries 
on X1 do not depend on the value of X2. The question and answer ses-
sion shown assumes the DM is familiar with the concept of certainty 
equivalence. If that were not the case, the analyst would have to be more 
basic in her questioning, for example, by “honing in” on the value for the 
certainty equivalent.

Once X1 has been shown to be UI of X2, the next step would be to 
show whether or not X2 is UI of X1 for this DM by asking questions 
similar to the aforementioned ones, but with X1 and X2 reversed. Let’s 
suppose that X2 is also UI of X1. Hence, at this point in the assessment 
process, we can assume that (X1, X2) is MUI and the utility function has 
the multiplicative form shown in 

 u (x x w u (x w u (x ww w u (x u x1 2 1 1 1 2 2 2 1 2 1 1 2 2, ) ) ) ) ( ),= + +  (6.23)
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FIGURE 6.7
Individual attribute utility function for fraction defective.
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where
u is scaled from 0 to 1
u1 and u2 are as shown in Figures 6.6 and 6.7 and are therefore also 

scaled from 0 to 1
w1 = u($0, .15)
w2 = u($500, 0)
w is a constant such that 1 + w = (1 + ww1)(1 + ww2)

Note that this utility function is just the specific case of the multiplicative 
utility function for two attributes.

Now, as was shown in the previous section, for a scaled multiplicative 
utility function in two attributes, w can be expressed as a function of w1 
and w2 so that (6.23) reduces to

 u (x x w u (x w u (x (1 w w u (x u x1 2 1 1 1 2 2 2 1 2 1 1 2 2, ) ) ) ) ) ( ).= + + - -  (6.24)

At this point in the assessment process, the analyst could show that the 
utility function is additive by asking the DM questions concerning AI. 
For example, if the DM said that he or she was indifferent to the fol-
lowing two outcomes, then this would be evidence that the DM’s utility 
function is additive:

O1: ($0, 0) with a probability of .5 and ($500, .15) with a probability of .5
O2: ($500, 0) with a probability of .5 and ($0, .15) with a probability of .5

Note that the marginal distributions for the outcomes associated with 
individual attribute values are the same—that is, for both O1 and O2, 
there is a .5 probability of achieving the best value for both cost and frac-
tion defective and a .5 probability of achieving the worst value for both.

Of course, another way to show that the utility function is additive 
would be to continue the assessment process for the scaling constants, 
w1 and w2, and show that they sum to 1, in which case the third term in 
(6.24) would become 0.

Let’s suppose that the DM has answered that he or she is not indiffer-
ent to the two outcomes O1 and O2. Continuing the assessment process, 
the next step would be to determine the scaling constants, w1 and w2. 
This step begins by ordering the scaling constants from largest to small-
est in value. In this case, this can be accomplished by asking the DM 
which of the following two outcomes is preferred:

($0, .15) (an outcome with a cost of $0 and a fraction defective of .15)
($500, 0) (an outcome with a cost of $500 and a fraction defective of 0)

Let’s suppose that the DM answers that he or she prefers the outcome of 
$500 in cost with 0 fraction defective. Then, we know that

 ($500, 0) P($0, .15) → u($500, 0) > u($0, .15) → w2 > w1.

Next, the values for w1 and w2 are determined. Suppose that the follow-
ing question and answer session ensues between the analyst and the DM.

Analyst: Which of the following two outcomes would you prefer?
 O1: A probability of .5 of the best possible outcome: ($0., 0.) and 

a probability of .5 of the worst possible outcome: ($500, .15)
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 O2: The deterministic outcome: ($0, .15)
DM: I would prefer O1.

At this point, the analyst knows that in order to decrease the attractive-
ness of outcome O1 (to achieve indifference between O1 and O2), the 
probability associated with ($500, .15) would have to be increased. The 
analyst tries the probability of .6:

Analyst: OK, let’s suppose that we increase the probability associ-
ated with ($500, .15) in O1 to .6 and thereby decrease the prob-
ability associated with ($0, 0) to .4 in O1. Now which outcome 
do you prefer?

DM: I would be indifferent to these two outcomes.

Since the expected utilities of the revised O1 and O2 are equal, we have 
the following:
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At this point, the analyst asks a question of the second type in order to 
determine a relationship between w1 and w2—that is, determine values 
for x1 and x2 such that the DM is indifferent to the following outcomes: 
(x x )1 2

w,  and (x x )1
w

2, :

Analyst: Suppose that you had an outcome with a cost of $100 and 
a fraction defective of .15 compared to an outcome with a cost 
of $500 and a fraction defective of .05, which outcome would 
you prefer?

DM: I would prefer the second outcome—the one with a cost of 
$500 and a fraction defective of .05.

Since ($500, .05) is preferred to ($100, .15) by this DM, there must be a 
value for X2, fraction defective, that is greater than .05 but less than .15, 
such that the DM will be indifferent between the two outcomes: ($500, x2) 
and ($100, .15). Suppose that the analyst tries a value of .08 and therefore 
finds that the DM is indifferent between the outcomes of ($500, .08) and 
($100,  .15). Therefore, we can set the utility function values equal for 
these two outcomes, as shown in the following:

 u($5 8 u 1 1500 0 00,. ) ($ ,. ),=

or since we have a multiplicative utility function,
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Since we have the individual attribute utility functions for u1 and u2, we 
can substitute the values for u1($500), u2(.08), u1($100), and u2(.15), namely, 
0, .65, .896, and 0, respectively. Hence, several of the terms in the equation 
earlier are “zeroed out” and the equation becomes

 . . . .65w 896w or w 1 378w2 1 2 1= =

Since we have already shown that w1 = .4, we have w2 = .55. Therefore, 
the final utility function is given by

 u(x x 4u (x 55u (x 5u (x u x1 2 1 1 2 2 1 1 2 2, ) . ) . ) . ) ( ),= + + 0

where u1 and u2 are as shown in Figures 6.6 and 6.7, respectively.
Now we can compute the expected utilities for the respective alter-

natives discussed earlier. If the alternative A1, no inspection, is chosen, 
then X1, cost, will have a value of $0, and fraction defective will be .1. 
Hence, the expected utility for this alternative is given by
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If alternative A2, complete inspection, is selected, then X1, cost, will be 
$3 ∗ 100 (the cost for inspecting the entire lot) + $15 ∗ 10 (the cost for repair 
of defective items), and X1, fraction defective, will be 0, since any defec-
tive items will be repaired. Hence, the expected utility for this alterna-
tive will be
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Finally, if alternative A3, the single sampling plan with n = 10 and a = 2, is 
chosen, the probability of having 0, 1, or 2 defective items in the sample 
is given by a hypergeometric distribution function; in particular, these 
probabilities are shown in Table 6.15.

TABLE 6.15

Probability Associated with Having x 
Defective Items in a Sample of 10 Items from 
a Lot of 100 Items in Which 10 Are Defective

x Pr(X = x) 

0 0.33
1 0.4
2 0.2
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Adding up the probabilities associated with having 0, 1, or 2 defectives 
in the sample, we find that the probability of accepting the lot is .93 and 
the probability of rejecting the lot is .07. The probability distribution over 
X1, X2, u1, u2, and u is given in Table 6.16.

Hence, the expected utility associated with alternative A3 is given by
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Alternative A3, the use of an acceptance sampling plan with n = 10 and 
a = 2, is the one that maximizes expected utility.

Example 6.4: Assessing a Multiattribute Utility 
Function for a Medical Diagnosis Decision

In order to illustrate the computation of the scaling constants for an 
MAU function with more than two attributes, consider a situation in 
which the manager of a county health department has funds available 
to administer tests to detect lead poisoning in the children, numbering 
approximately 100000, of the county. There are two types of tests:

 1. A urine test with a sensitivity of .9, a specificity of .85, and a cost 
of $10

 2. A blood test with both a sensitivity and a specificity of 1, but a 
cost of $100

Recall from Chapter 2, that the sensitivity of a medical test is the condi-
tional probability that the test will be positive given that the disease is 
present, and the specificity of a medical test is the conditional probabil-
ity that the test is negative given that the disease is not present. Hence, 
the closer the values of sensitivity and specificity are to 1, the better is 
the test.

A prior estimate is that 10% of the children have lead poisoning.
One of the two strategies is being considered:

 1. Administer blood tests only.
 2. Administer the urine test to a number of children, and for those 

children who test positive on the urine test, administer blood tests.

TABLE 6.16

Probability Distribution Over X1, X2, u1, u2, and u Associated 
with the Sampling Plan n = 10 and a = 2

X1 Value X2 Value u1(x1) u2(x2) u(x1, x2) Probability 

$30. 0.1 0.969 0.525 0.70175 0.33
$45. 0.09 0.953 0.5875 0.732325 0.4
$60. 0.08 0.9375 0.65 0.763 0.2
$450. 0. 0.21875 1. 0.6484 0.07
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Note that these two strategies do not completely define the alternatives; 
the main thing missing is the number of each type of test to administer 
for each strategy. So, let’s at least define some variables for each strategy 
in order to more completely define them:

A1: Administer a1 blood tests only.
A2: Administer a2 urine tests, followed by a blood test for each 

child who tests positive on the urine test.

Now, upon giving the problem some thought, one might develop the fol-
lowing attributes for this situation:

X1: The cost for administering the tests for lead poisoning in thou-
sands of dollars

X2: The number of children definitely identified as having lead 
poisoning

X3: The number of children incorrectly identified as having lead 
poisoning through the urine test (but later correctly identified 
as not having lead poisoning through the blood test)

X4: The number of children who are incorrectly identified as not 
having lead poisoning through the urine test (but actually do 
have lead poisoning)

Note that the children who are counted in the “X4 category” depart the 
process under the assumption that they do not have lead poisoning even 
though they do.

Let’s place approximate bounds on the amount of money to be spent; a 
minimum of $50000 can be spent and a maximum of $100000 can be spent.

Now, if the first strategy of administering only the “perfect” blood test 
to a randomly selected children set of a1 children from the population was 
chosen, then since the test is perfect, the number of children incorrectly 
identified as having lead poisoning when they do not, or as not having 
lead poisoning when they do will both be 0 (i.e., X3 = 0 and X4 = 0). The 
number of children correctly identified as having lead poisoning would 
be a hypergeometric random variable, with the exact distribution depen-
dent on the value for a1. In summary therefore, given a specific number 
of blood tests to administer, a1, this strategy would result in the values 
for X1 = 100a1/1000, X3 = 0, X4 = 0, and X2 being a hypergeometric random 
variable. See the summary of results for this strategy in Table 6.17.

TABLE 6.17

Summary of Results for the Attribute Values If Strategy 
A1 (a1 Blood Tests Administered)

Attribute Characteristics of Values 

X1 100a1/1000
X2 Hypergeometric random variable with parameter 

values of N = 100000, K = 10000, and n = a1

X3 0
X4 0
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The parameter values associated with the hypergeometric distribu-
tion in Table 6.17 refer to the total population (N = 100000), the num-
ber of “success states” in the population (K = 10000), and the number of 
“draws” from the population (n = a1). Note that a “success” for a hyper-
geometric random variable can be defined in any way; in this case, suc-
cess is defined as a positive test.

Because of the large numbers involved, we could approximate the 
hypergeometric random variable for X2 with a binomial random variable 
with parameter values of n = a1 (number of “draws”) and p = .1 (prob-
ability of “success”).

Now, the second strategy of administering the urine test to a random 
sample of a2 children followed by the administration of the blood test to 
those who test positive on the imperfect urine test involves some more 
difficult calculations. In particular, the number of children who are 
given the urine test fall into four separate, mutually exclusive, categories:

 1. Number of children who have lead poisoning who test positive 
on the urine test

 2. Number of children who have lead poisoning who test negative 
on the urine test

 3. Number of children who do not have lead poisoning who test 
positive on the urine test

 4. Number of children who do not have lead poisoning who test 
negative on the urine test

These numbers in each category will all be random variables. The chil-
dren in categories 1 and 3 will all be correctly identified through the use of 
the blood test; but since these numbers are uncertain, the cost associated 
with the blood tests given will also be a random variable. Hence, in sum-
mary, all four of the attribute values will be random variables if this strat-
egy is followed. See the summary of results for this strategy in Table 6.18.

Let’s place some bounds on the attribute values as a prelude to dis-
cussing how to determine the scaling constants for an MAU function of 
these attributes. These bounds will be determined through what might 
be called “back of the envelope” calculations.

Suppose we consider only the first type of alternative, administer 
blood tests only. If we decide to spend $50000, we will be able to give 
500 blood tests; about 50 of the children tested will have lead poisoning; 
since the blood test is “perfect,” we can expect a value for X2 (number 

TABLE 6.18

Summary of Results for the Attribute Values If Strategy A2 (a2 Urine Tests 
Followed by Blood Tests, for Those Who Test Positive on the Urine Test)

Attribute Characteristics of Values 

X1 (10a2 + 100 ∗ rv)/1000
X2 rv
X3 rv
X4 rv
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of children correctly identified as having lead poisoning) of about 50. If 
we decide to spend $100000, by the same reasoning, we can expect X2 to 
have a value of about 100. Both X3 and X4 will have values of 0 whether 
we spend $50000 or $100000 on only the blood tests.

Now, suppose we decide to follow the second policy: urine tests, fol-
lowed by blood tests for those who test positive on the urine test. If we 
decide to spend about $50000 total, then we should give about 1500 urine 
tests at a cost of $15000. Of the 1500 children given urine tests, about 150 
children will have lead poisoning, and about 1350 children will not have 
lead poisoning. Of the 150 children that do have lead poisoning, about 
135 will test positive on the urine test (and thereby be positively identified 
on the follow-up blood test) and about 15 will test negative; therefore, X4 
will have a value of about 15. Of the 1350 children who do not have lead 
poisoning, about (1 − .85) ∗ 1350 ≈ 202 will test positive for the urine test, so 
the value for X3 under this policy will be about 202. So, about 135 + 202 = 
337 children will be given the follow-up blood test; of these, about 135 will 
test positive and about 202 will test negative. Hence, under the policy of 
urine tests followed by blood tests for those who test positive on the urine 
test, we will have approximately the following values for the attributes:
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If we decide to spend about $100000 under this policy, we will achieve 
the following approximate values for the attributes:

 

X 97 5 thousand dollars ($97500) X  27 X 4 5

and X 3

1 2 3

4

= = =

=

. , , ,

.

0 0

0

The results for these “back of the envelope” calculations are shown in 
Table 6.19. Note that the values for X1 indicate that we are spending a 

TABLE 6.19

Approximate Attribute Values Associated with Various Testing Policies

Policy 
Approximate 

X1 Value 
Approximate 

X2 Value 
Approximate 

X3 Value 
Approximate 

X4 Value 

1.  Blood tests only, 
50 K to spend

50. 50 0 0

2.  Blood tests only, 
100 K to spend

100. 100 0 0

3.  Urine tests with 
follow-up blood 
tests, 50 K to spend

48.7 135 202 15

4.  Urine tests with 
follow-up blood 
tests, 100 K to spend

97.5 270 405 30
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little less than what we have available from our budget, but since these 
values are uncertain, this expected underspending is desirable.

The first thing that the reader might notice from Table 6.19 is the effec-
tiveness of a screening test (the urine test) followed by a better test (the 
blood test). For example, we would expect to spend about half as much 
money with the third policy as we would with the second policy ($48700 
versus $100000), while still identifying more children with lead poison-
ing (135 versus 100). However, this would be at the expense of increased 
uncertainty with respect to the attribute values, as well as nonzero posi-
tive values for X3 and X4.

The values given in Table 6.19 suggest bounds on the attribute values, 
as shown in Table 6.20. Note that we are setting the bounds a little out-
side of the values suggested in Table 6.19 in order to account for both the 
uncertainty associated with the attribute values and the investigation of 
other policies.

Now, let’s suppose that we have assessed points on the single attribute 
value functions for X1, X2, X3, and X4, as shown in Table 6.21.

Also, suppose that (X1,X2,X3,X4) are MUI so that the utility function has 
the multiplicative form and can therefore be written as

TABLE 6.20

Best and Worst Values for Attributes in the Medical Testing 
Problem, where X1 is given in thousands of dollars

Attribute xi
b, Best Value for Attribute xi

w, Worst Value for Attribute 

X1 40 120
X2 300 40
X3 0 500
X4 0 50

TABLE 6.21

Assessed Values for Individual Attribute Utility Functions , where 
X1 is given in thousands of dollars

x1 u1(x1) x2 u2(x2) x3 u3(x3) x4 u4(x4) 

120 0 40 0 500 0 50 0
117 0.125 62 0.125 464 0.125 48 0.125
112 0.25 86 0.25 420 0.25 45 0.25
106 0.375 111 0.375 372 0.375 41 0.375
98 0.5 138 0.5 308 0.5 36 0.5
88 0.625 166 0.625 242 0.625 29 0.625
75 0.75 197 0.75 175 0.75 21 0.75
60 0.875 241 0.875 95 0.875 12 0.875
40 1 300 1 0 1 0 1
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Now, the only task left in the assessment is the determination of values 
for w1, w2, w3, w4, and w. First, we would determine the order of w1, w2, 
w3, and w4, from the largest to the smallest by asking the manager to 
rank the following outcomes in order of preference:

(40, 40, 500, 50), (120, 300, 500, 50), (120, 40, 0, 50), and (120, 40, 500, 0).

Each of the outcomes listed above corresponds to having one attribute at 
its best value and the other attributes at their worst values. Suppose that 
the manager ranks these outcomes as first, second, fourth, and third, 
respectively, which means that we would have w1 > w2 > w4 > w3.

Now, suppose that the manager indicates indifference between the fol-
lowing sets of two outcomes each, corresponding to answers associated 
with the first type of question listed earlier to determine scaling constants:

 1. O1: Probability of .6 of achieving the best possible outcome (40, 
300, 0, 0) and probability of .4 of achieving the worst possible 
outcome (120, 40, 500, 50)

  O2: The outcome of attributes X2, X3, and X4 at their worst possible 
values and attribute X1 at its best possible level (40, 40, 500, 50)

 2. O1: Probability of .25 of achieving the best possible outcome (40, 
300, 0, 0) and probability of .75 of achieving the worst possible 
outcome (120, 40, 500, 50)

  O2: The outcome of attributes X1, X3, and X4 at their worst pos-
sible values and attribute X2 at its best possible level (120, 300, 
500, 50)

 3. O1: Probability of .21 of achieving the best possible outcome (40, 
300, 0, 0) and probability of .79 of achieving the worst possible 
outcome (120, 40, 500, 50)

  O2: The outcome of attributes X1, X2, and X3 at their worst pos-
sible values and attribute X4 at its best possible level (120, 40, 
500, 0)

 4. O1: Probability of .15 of achieving the best possible outcome (40, 
300, 0, 0) and probability of .85 of achieving the worst possible 
outcome (120, 40, 500, 50)

  O2: The outcome of attributes X1, X2, and X4 at their worst possible 
values and attribute X3 at its best possible level (120, 40, 0, 50)

These four sets of indifferences lead to the following values for the scal-
ing constants:

 w 6 w 25 w 15 w 21.1 2 3 4= = = =. , . , . , .



263Modeling Preferences over Risky/Uncertain Outcomes

The value for w can be determined by solving equation (6.15) using the 
iterative method presented earlier. For this case, the equation is given by

 w (1 6w 1 25w 1 15w 1 21w 1.= + + + + -. )( . )( . )( . )

Since w 1i
i 1

4

=å > , we know that −1 < w < 0. Starting the iterations with 

w = −.7, we obtain w ≈ −.467, which gives us the final utility function.
Applying this utility function to the policies shown in Table 6.19 and 

treating the outcomes associated with these policies as deterministic (an 
admitted, but reasonable approximation), we would attain the evalua-
tion shown in Table 6.22. As indicated by the results in the table, Policy 
3 is preferred in this case.

Material Review Questions

6.1 Provide at least two examples of decision situations where it would be 
important to model the uncertainties in the outcomes associated with 
the decision.

6.2 Describe the various ways in which the uncertainty in the outcome 
associated with a decision can be described.

6.3 What is the difference between “decision making under uncertainty” 
and “decision making under risk”?

6.4 Define what is meant by a “state of nature.”
6.5 Which word is sometimes used in place of “state of nature?”
6.6 Name the three approaches discussed in the chapter for decision mak-

ing under uncertainty.
6.7 The rule, maximization of the minimum gain, is associated with what 

type of a criterion?
6.8 The rule, maximization of the maximum gain, is associated with what 

type of criterion?
6.9 Why is the term, expected value, considered to be a misnomer?

TABLE 6.22

Utility Function Evaluation for Lead Poison Testing Policies

Policy u1(x1) u2(x2) u3(x3) u4(x4) u(x) 

1. Blood tests only, 50 K to spend 0.9375 0.0568 1. 1. 0.826
2. Blood tests only, 100 K to spend 0.46875 0.32 1. 1. 0.639
3.  Urine tests with follow-up blood tests, 50 K 

to spend
0.946 0.486 0.7 0.833 0.845

4.  Urine tests with follow-up blood tests, 100 K 
to spend

0.506 0.935 0.292 0.622 0.636
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6.10 What are two of the drawbacks associated with using the expected 
value of an attribute as a criterion in a situation involving decision 
making under risk?

6.11 Provide two examples of alternatives that would never be chosen if one 
used the criterion of optimizing the expected value of a performance 
measure.

6.12 Briefly define “mean–variance optimization.”
6.13 Two different rational DMs could typically be expected to have differ-

ent utility functions for the same situation (true or false).
6.14 When a single attribute utility function has a value of 0 for the worst 

value of the relevant attribute and a value of 1 for the best value of the 
attribute, what type of utility function is this?

6.15 What is a “certainty equivalent” for a lottery?
6.16 What is a “risk premium” for a lottery?
6.17 Provide definitions for a

 a. Risk-averse DM
 b. Risk-neutral DM
 c. Risk-prone DM

6.18 What type of utility function would correspond to a, b, and c, respec-
tively, in material review exercise 6.17?

6.19 Utility theory is (normative, descriptive) in nature (choose one).
6.20 Utility should be thought of as an (ordinal, interval) measure (choose 

one).
6.21 What are the four response modes associated with the assessment of a 

utility function.
6.22 For an “exponential utility function”: u(x) = c1 − c2exp(− c3(x − c4)), a 

smaller value for c3 represents what type of DM?
6.23 How would one transform a utility function, which is increasing with 

increasing attribute value, to a corresponding utility function, which is 
decreasing in increasing attribute value?

6.24 What does the Allais Paradox indicate about the behavior of DMs?
6.25 Suppose that you have two attributes, X1 and X2, for a decision situa-

tion. More of each attribute is desired. The attribute X1 ranges from 0 to 
50 in value, and the attribute X2 ranges from 0 to 100 in value. Give an 
example of the type of question you would ask of a DM to show that X1 
is utility independent of X2.

6.26 If an attribute X1 is utility independent of X2 for a DM, this necessarily 
means that X2 is utility independent of X1 for the DM (true or false).

6.27 Write down a multilinear utility function for a situation involving four 
attributes. Do not use any summation signs in writing the function.

6.28 For a situation involving four attributes, how many different individ-
ual utility independence conditions would need to hold in order for 
the corresponding utility function to be multilinear? What are these 
individual utility independence conditions?
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6.29 All multiplicative MAU functions are also multilinear, but not all mul-
tilinear MAU functions are multiplicative (This is the same thing as 
saying that a multiplicative utility function is a special case of a multi-
linear utility function.) (true or false).

6.30 How many scaling constants need to be assessed for a multilinear util-
ity function with four attributes?

6.31 How many scaling constants need to be assessed for a multiplicative 
utility function with four attributes?

6.32 Suppose that you had a decision situation involving two attributes: X1 
and X2, where more of each attribute is preferred to less. Suppose also 
that both attributes ranged in value from 0 to 10. Give an example of the 
type of question and corresponding answer that would indicate that 
the utility function for this situation would be additive.

Exercises

6.1 Steve has decided to accept a lottery with a 40% chance of winning $1000 
and a 60% chance of winning $400 rather than winning $600 for certain.

 a. What can we infer about Steve’s utility function for income over the 
range of $400–$1000?

 b. Suppose Steve is indifferent between receiving $620 and receiving 
the results of the lottery. What is his RP for the lottery?

6.2 If the attributes for a problem are mutually utility independent, then 
what form will the utility function have?

6.3 Which condition would you expect to be met less frequently in terms of 
appropriately describing a DM’s preference structure:

 a. Mutual utility independence
 b. AI

6.4 Suppose that you are in charge of airport security at Chicago O’Hare 
Airport. You must make a decision on which of three different types of 
machines to install at the airport for detecting guns/weapons/bombs 
in the passenger baggage. The machines vary in cost and reliability 
(e.g., ability to detect guns/weapons/bombs). Explain, in general, 
how you would use the techniques presented in this book (and other 
appropriate techniques) to make your decision. (Keep in mind that the 
machines can make both false-positive and false-negative diagnoses.)

6.5 Describe the main characteristic of the situation where one would use 
an MAU function instead of a multiattribute value function.

6.6 Suppose that a DM is risk seeking (i.e., risk prone) over a particular 
attribute: X1, which ranges from 0 to 100. (More of the attribute is 
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preferred to less.) What does this information indicate about the utility 
function value at X1 = 50, given that the utility function is scaled from 
0 to 1, with u(0) = 0 and u(100) = 1.

6.7 Suppose that you have a situation involving a multiplicative utility 
function over two attributes. You have assessed the value for two scal-
ing constants: w1 = .2, w2 = .4. What is the value for w?

6.8 A DM’s preference structure is such that the condition of AI is met. Given 
a situation involving two attributes and the following two outcomes, 
which of the following statement will be true for the DM (choose one):

 A: .5 probability of (10, 40) and a .5 probability of (60, 30)
 B: .5 probability of (60, 40) and a .5 probability of (10, 30)

 a. The DM prefers A to B.
 b. The DM is indifferent between A and B.
 c. The DM prefers B to A.

6.9 Suppose that you want to show that a DM’s utility function will be 
multiplicative in a situation involving four attributes. Given that 
you want to prove only one utility independence condition, how 
many preferential independence conditions would you have to 
demonstrate?

6.10 Suppose that you have assessed the following information concerning 
a scaled, additive utility function over two attributes:

x 0 20 60 100
ux(x) 0 0.3 0.7 1
y 0 4 7 10
uy(y) 0 0.5 0.8 1

 The DM is indifferent between the following outcomes:

 A: (0, 7) with probability .5 and (20, 0) with probability .5
 B: (60, 0) for certain

 What are the correct values for the scaling constants: w1 and w2?
6.11 Suppose that you want to show that an attribute, X1, is utility indepen-

dent of another attribute, X2, for a particular DM, in a problem situation 
involving two attributes. Give an example of the types of questions you 
would ask to show this.

6.12 Application of utility function: NCAA Final Four Problem.
 Suppose that you have an opportunity to bet on the team that will win 

the NCAA Division I Basketball Championship. The four teams in the 
Final Four are Louisville, Purdue, Kentucky, and Indiana. You can 
make one of four bets:

 1. Bet $100 on Louisville to win $400.
 2. Bet $100 on Purdue to win $450.
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 3. Bet $100 on Kentucky to win $500.
 4. Bet $100 on Indiana to win $600.

  (Note that, for example, if you bet the $100 on Indiana and Indiana 
wins, you will have a net income of 600 – 100 = $500.)

Suppose also that you have assessed the probabilities associated 
with one team beating another as follows:

Would Beat

Louisville Purdue Kentucky Indiana

Probability 
that

Louisville .55 .6 .7

Purdue .52 .72
Kentucky .58
Indiana

 Suppose that the initial pairings have Louisville playing Purdue and 
Kentucky playing Indiana.

 a. Compute the probability associated with each team winning the 
tournament. Based on this only, rank the four bets.

 b. Now assess your utility function over the appropriate range of 
income. Based on the criterion of maximizing expected utility, rank 
the four bets. Are there any changes from your initial ranking?

6.13 A trucking company is evaluating two alternative designs for its trans-
portation network (which implies locations for its hubs and terminals). 
The company is mainly concerned with two attributes:

 X1: Expected number of deadhead miles driven in a typical year 
(in thousands)

 X2: Expected percentage of deliveries made on time during a typical year
 There are other attributes for which the company is concerned (e.g., 

construction costs, workforce availability, desirability of locations cho-
sen), but each design gives the same values for these other attributes, 
under each scenario evaluated.

A simulation model has been developed to evaluate each design 
under each of three scenarios (high demand [HD], medium demand 
[MD], and low demand [LD]). The following payoff table has been 
developed through the use of the simulation model. In this table the 
first number represents the value for X1 and the second number repre-
sents the value for X2.

HD MD LD 
Design 1 (25, 75) (22, 85) (15, 98)
Design 2 (30, 82) (27, 90) (25, 99)
Probability .1 .6 .3
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 The utility function of the company’s president has been assessed. The 
function has been shown to be multiplicative, with scaling constants of 
w1 = .1, w2 = .5. The individual attribute utility function values for the 
scaled utility functions are given as follows:

x1 15 22 25 27 30
u1(x1) 1 0.8 0.6 0.4 0
x2 75 82 85 90 98 99
u2(x2) 0 0.4 0.5 0.7 0.9 1

 Compute the value for the scaling constant, w, the expected utilities 
for each design, and rank the two designs according to their expected 
utilities.

6.14 A simulation model has been developed to aid in the lunchtime 
(11 a.m.–1 p.m.) staffing decisions at a fast-food restaurant. Since the 
restaurant is located in a tourist area, one of the difficulties associated 
with the staffing decision is the uncertainty associated with the num-
ber of tour buses that will arrive during lunch. These bus arrivals are 
in addition to pedestrian and car arrivals, which are relatively stable. 
Historical data have indicated that the following probability distribu-
tion represents the uncertainty in the number of buses arriving.

Number of Buses 
Probability Associated 

with This Number 

0 0.1
1 0.42
2 0.3
3 0.18

 Three different staffing policies are available for implementation, 
denoted as: low, moderate, and high. The staffing costs associated with 
these three levels can be easily computed. The simulation model is used 
to estimate the fraction of customers who wait more than 8 minutes, as 
a function of the number of buses arriving and the staffing level. These 
results from the simulation model, along with the cost associated with 
the three staffing policies, are shown in the following.

Staffing 
Policy 

Fraction Waiting 
Longer Than 

8 Minutes with 
0 Buses Arriving 

Fraction Waiting 
Longer Than 

8 Minutes with 
1 Bus Arriving 

Fraction Waiting 
Longer Than 

8 Minutes with 
2 Buses Arriving 

Fraction Waiting 
Longer Than 

8 Minutes with 
3 Buses Arriving 

Low .07 .12 .19 .28
Medium .05 .08 .16 .21
High .02 .05 .11 .14
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Staffing Policy Daily Cost 

Low $400
Medium $600
High $800

 A multiplicative utility function has been assessed for the restaurant 
manager over two attributes:

 X1: Fraction of customers waiting longer than 8 minutes
 X2: Staffing cost

 The scaling constants for this function are w1 = .6 and w2 = .3. Assessed 
values for the individual attribute utility functions are given by the 
following:

x1 u1(x1) 

0.3 0
0.27 0.25
0.21 0.5
0.12 0.75
0 1

x2 u2(x2) 

800 0
730 0.25
650 0.5
540 0.75
400 1

 Evaluate and rank the three staffing policies using expected utility as 
a criterion. Use linear interpolation for any points not directly assessed 
for the attribute values.
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7
Modeling Methodologies for Generating 
Probabilistic Outcomes: Decision 
Trees and Influence Diagrams

7.1 Introduction

In this chapter, we present methodologies, namely, decision trees and influ-
ence diagrams, which allow one to map from decisions/alternatives to a 
probability distribution over an outcome space. The decisions involved can 
be, and often are, sequential in nature. One reason why these methodologies 
are usually presented together is that a decision tree has a corresponding 
influence diagram and vice versa. In fact, the software packages decision 
programming language (DPL™) and Precision Tree™ will create a decision 
tree that is equivalent to the influence diagram constructed by the user.

As noted by Gass and Assad (2005, pp. 131–132), Magee (1964) introduced 
decision trees and Raiffa described concepts associated with decision trees 
in some detail in his book (Raiffa, 1968). Influence diagrams originated from 
work performed at the Stanford Research Institute (Miller et al., 1976) during 
the 1970s. In effect, influence diagrams represent a decision situation in a 
more compact form than decision trees, which tend to become unwieldy for 
many real decision situations. Also, as noted by Shachter (1986), an influence 
diagram represents a more natural way to represent a decision situation to a 
decision maker.

Decision trees and influence diagrams have been applied to decision mak-
ing in such diverse areas as portfolio management (Skaf, 1999), commercial-
ization of a new drug (Stonebraker, 2002), and scheduling of the refueling for 
a nuclear power plant (Dunning et al., 2001). Table 7.1 provides a listing of 
some of the applications involving decision trees/influence diagrams from 
the literature.

Section 7.2 provides a discussion of decision trees, including basic con-
cepts, evaluation, calculation of probabilities using Bayes’ theorem, quali-
ties and values associated with perfect and imperfect predictors, strategies 
and risk profiles, and cumulative risk profiles and dominance. Section 7.3 
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provides a discussion of influence diagrams, including basic concepts and 
their correspondence to decision trees.

Section 7.4 presents sensitivity analyses of decision trees and influence 
diagrams, while Section 7.5 discusses the use of expected utility as a perfor-
mance measure within decision trees and influence diagrams. Section 7.6 
discusses procedures for analyzing decision trees and influence diagrams 
involving outcome nodes/chance event nodes, which represent continuous 
random variables or at least random variables, with a large number of out-
comes. Finally, an example of a bidding decision situation for a construc-
tion firm is presented at the end of the chapter.

7.2 Decision Trees

7.2.1 Basic Concepts

A decision tree represents a timed sequence of decisions and outcomes. It is 
composed of nodes and branches, with no “cycles” (i.e., one cannot trace a 
path that starts from any node and returns to that same node by following 
the branches in the diagram).

There are two types of nodes in a decision tree:

 1. Decision nodes
 2. Outcome nodes

Branches that emanate from a decision node represent a set of comprehen-
sively exhaustive, mutually exclusive decisions at a point in time. Branches 

TABLE 7.1

Selected Applications from the Literature Involving Decision 
Trees/Influence Diagrams

Application References

Strategic planning for a video game software company Matheson and Matheson (1999)
Strategic insights for pharmaceutical companies Bodily and Allen (1999)
Soccer player performance rating McHale et al. (2012)
Portfolio management in the oil and gas industry Skaf (1999)
Evaluation of the commercial process for a new blood clot 
busting drug

Stonebraker (2002)

Allocation of risks within an RFP for the Department of 
Energy

Keisler et al. (2004)

Choosing an alternative for hazardous waste remediation 
for the Department of Energy

Toland et al. (1998)

Scheduling the refueling for a nuclear power plant Dunning et al. (2001)
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that emanate from an outcome node represent a set of comprehensively 
exhaustive, mutually exclusive outcomes; the outcomes from any outcome 
node represent a partition of the sample space.

Associated with each outcome emanating from an outcome node is a prob-
ability. This probability may be conditional in nature; that is, the probability 
can be dependent upon the alternative decisions and outcomes that occurred 
previously, as represented by the branches leading to that outcome node in 
the decision tree.

A cost or income can be associated with each branch (decision or out-
come) in the tree; thus, a complete sequence of branches from the tree will 
correspond to an overall cost or income associated with the corresponding 
sequence of decisions and outcomes.

The basic objective associated with the analysis of a decision tree is 
the selection of the initial decision that optimizes expected monetary 
value (EMV) for the entire time frame represented by the decision tree. 
In determining this initial optimal decision, one needs to determine 
the optimal sequence of decisions that follow, given current information. 
Once an initial decision is made, outcomes may turn out to be differ-
ent than expected. In selecting this initial decision, one must also select 
an optimal sequence of decisions that would follow this initial decision, 
but these following decisions may not (and probably will not) be imple-
mented at the outset (i.e., one might wait and see which of the uncertain 
outcomes actually occurs).

7.2.2 Evaluation of a Decision Tree

As an example, suppose that an organization must decide whether or not to 
develop, produce, market, and sell a new product. Prior to this initial deci-
sion, the organization can hire a firm to survey the market to determine 
whether or not the product will be a success. Hence, there is a sequence of 
two decisions to make:

 1. Hire the firm or not
 2. Develop, produce, market, and sell the product or not (as a single 

decision)

There are two, mutually exclusive, outcomes associated with each decision—the 
market survey will indicate that the market will be good or bad, and the 
market for the product will be either good or bad.

The following costs and incomes are associated with this problem:

 1. Income from product if market is good = $500,000, if market is 
bad = −$100,000

 2. Cost of Market Survey = $60,000
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The decision tree for this simple, hypothetical, example is shown in Figure 7.1. 
Note that the decision nodes are denoted by squares while the outcome 
nodes are denoted by circles.

Note that in the decision tree of Figure 7.1, there is only one branch entering 
each node, although typically multiple branches will exit a node. Note also 
that outcome nodes preceding a decision node represent uncertainties that 
will be determined immediately before the decision is made.

Decision trees are somewhat arbitrary for any particular situation since 
typically a decision situation may be represented by one or multiple deci-
sions. In the simple hypothetical example, one might decide to develop a 
prototype product prior to developing the product for sale; but to keep our 
example simple, we are not considering this prototype product decision. 
Often, just the process of developing the decision tree is useful—that is, one 
can gain value without actually analyzing the tree.

The numbers following the outcomes are probabilities—for example, the 
probability that the survey will predict a good market is given as .72. These 
probabilities are either marginal probabilities or conditional probabilities—for 
example, the outcome branch “good market,” following Node 7, has a prob-
ability of .875, conditioned on the event that the market survey predicts a 
good market. This is denoted as P(Good Market|Market Survey Predicts 
Good Market) = .875. In decision analysis terminology, the market survey 

1

2

4

3

5

6

7

8

Do not hire firm

Hire firm

Predict
good market (.72)

Predict
bad market (.28)

Develop
product

Do not develop
product

Develop
product

Do not develop
product

Develop
product

Do not develop
product

Good
market (.7)

Bad
market (.3)

Good
market (.875)

Good
market (.25)

Bad
market (.125)

Bad
market (.75)

500,000

–100,000

0

440,000

–160,000

–60,000

440,000

–160,000

–60,000

FIGURE 7.1
Decision tree for the example problem.
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is called an imperfect predictor (or imperfect information). The computation of 
the conditional probabilities in the tree often requires the application of 
Bayes’ theorem.

The numbers at the end of each “path” of branches are the values (e.g., 
costs or incomes) associated with all of the decisions and outcomes associ-
ated with that path/sequence of branches; for example, the value associated 
with the path of 1-3-5-7-good market is the income associated with develop-
ing the product for a good market minus the cost associated with the market 
survey = $500,000 − $60,000 = $440,000. Typically, with decision tree soft-
ware, the user will specify a cost or income associated with each branch of a 
tree; the software will then compute a net value for any sequence of branches 
in the tree. For example, the user would specify the cost of the survey as 
$60,000 and the profit associated with having a “good market” as $500,000, 
and then the software would compute the $440,000 value associated with the 
sequence of 1-3-5-7-good market.

Remember that evaluation of a decision tree is used to determine the initial 
decision to make. The basic idea in evaluation of a decision tree is to work 
from right to left (i.e., work backward in time) with the decision tree, replac-
ing each outcome node by its “certainty equivalent” (CE), and then at each 
decision node, choose the decision that optimizes (in this case, maximizes) 
the CE, thereby “blocking off” the dominated decisions. In many cases, the 
EMV is treated as the CE.

Starting at Node 4 of the decision tree of Figure 7.1, we compute the EMV 
for this node by computing the expected value associated with the probabil-
ity distribution for that node:

 EMV (Node 4 7(5 , 3( 1 , 32 ,) . ) . )= + - =00 000 00 000 0 000.

Node 4 and the branches that emanate from it can now be replaced with the 
EMV for that node, as shown in Figure 7.2.

Now, at Node 2, the EMV of develop product is 320,000, while the EMV of 
do not develop product is 0. Hence, the optimal decision at Node 2 is develop 
product with an EMV of 320,000.

As with Node 4, the EMVs for Nodes 7 and 8 are given by computing the 
respective expected values associated with the probability distributions for 
these nodes:

 

EMV (Node 7 875(44 , 125( 16 , 365,

EMV (Node 8

) . ) . ) ,

)

= + - =0 000 0 000 000

== + - = -. ) . ) .25(44 , 75( 16 , 1 ,0 000 0 000 0 000

Now, Nodes 7 and 8, along with their emanating branches, can be replaced 
with their EMVs, as shown in Figure 7.3.
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1
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3
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6

Do not hire firm

Hire firm

Predict
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Do not develop
product
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product

365,000

–60,000

–10,000

Do not develop
product
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product

Do not develop
product

0

–60,000

FIGURE 7.3
Decision tree for the example problem, after computation of EMVs for Nodes 4, 7, and 8.
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FIGURE 7.2
Decision tree for the example problem, after computation of EMV for Node 4.
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At Decision Node 2 in Figure 7.3, the EMV of develop product is 320,000, 
while the EMV of do not develop product is 0. Hence, the optimal decision at 
Node 2 is develop product with an EMV of 320,000.

Similarly, at Node 5, the EMV of develop product is 365,000, while the EMV 
of do not develop product is −60,000. Hence, the optimal decision at Node 5 
is develop product with an EMV of 365,000. At Node 6, the EMV of develop 
product is −10,000, while the EMV of do not develop product is −60,000. Hence, 
the optimal decision at Node 6 is develop product with an EMV of −10,000.

Now, the EMV for Outcome Node 3 is given as follows:

 EMV (Node 3 72(365, 28( 1 , 26 ,) . ) . )= + - =000 0 000 0 000.

Finally, at Decision Node 1, the EMV of do not hire firm is 320,000 while the 
EMV of hire firm is 260,000. Hence, the optimal decision at Node 1 is do not 
hire firm with an EMV of 320,000.

In summary, the main output of the analysis then is the initial optimal 
decision that is

Do not hire the firm (which will result in an EMV of $320,000 if optimal decisions 
are made following this decision).

7.2.3  Calculation of Probabilities in Decision 
Trees Using Bayes’ Theorem

Typically, one needs to derive several of the probabilities associated with 
the outcomes in a decision tree from probabilities associated with events. 
The events associated with the decision tree in the simple example could be 
denoted as follows:

GM, good market; BM, bad market; PGM, predict a good market; PBM, 
predict a bad market

Suppose that initial probabilities given for the simple example were

 P(GM 7 P(BM 3 P(PGM|GM 9 and P(PBM|BM 7) . , ) . , ) . , ) .= = = = .

These input probabilities could have been obtained in a subjective fashion 
from experts associated with the situation. From these initial probabilities, 
the following probabilities can be easily derived:

 

P(PBM|GM 1 P(PGM|GM 1 9 1

and

P(PGM|BM 1 P(PBM|BM 1 7

) ) . .

) ) .

= - = - =

= - = - == .3.
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Now, we need to derive P(GM|PGM) and P(BM|PBM) using Bayes’ theorem:

 

P(GM|PGM P(GM PGM / P(GM PGM P(BM PGM

P(PGM GM / P(PG

) , ) ( , ) , ))

, ) (

= +

= MM GM P(PGM BM

P(PGM|GM P(GM / P(PGM|GM P(GM

P(PGM|BM

, ) , ))

) ) ( ) )

)

+

=

+ PP(BM

9( 7 / 9( 7 3( 3 63/ 63 9 63/ 72

))

. . ) (. . ) . . )) . (. . ) . . .= + = + = =0 875.

From this, one can compute that

 P(BM|PGM 1 P(GM|PGM 1 875) ) . .= - = - = 125.

Similarly, one can derive using Bayes’ theorem, P(BM|PBM) = .75, and there-
fore that

 P(GM|PBM 1 P(BM|PBM 1 75) ) . .= - = - = 25.

Finally, one can also obtain the marginal probabilities, P(PGM) and P(PBM), 
as follows:

 

P(PGM) P(GM PGM /P(GM|PGM

P(PGM GM /P(GM PGM

P(PGM|GM

, ) )

, ) | )

=

=

= )) )

. . ) . . .

.

)

P(GM /P(GM|PGM)

9( 7 / 875 63/ 875

and

P(PBM 1 P(PG

= =

=

= -

72

MM 1 72) . . .= - = 28

7.2.4 Quality and Value of a Predictor in a Decision Tree

As mentioned earlier, the market survey in our simple example is, in the gen-
eral terminology for a decision tree, called a predictor. One almost always has 
the opportunity to gather information to improve a prediction associated 
with a decision tree. In addition to a market survey, such things as medi-
cal tests, samples, weather forecasts, expert assessments, and polls represent 
predictors for a decision situation. Sometimes, the value associated with 
obtaining additional information from a predictor must be traded off against 
the cost associated with obtaining the information and delaying a decision.
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Within the context of a decision tree model, the quality of a predictor 
(sometimes called the quality of information) is indicated by the conditional 
probabilities associated with a predictor—the closer the conditional proba-
bilities are to 1, the better the quality of a predictor. In our example, the closer 
that the conditional probabilities, P(PGM|GM) and P(PBM|BM), are to 1, the 
better the predictor (the market survey) is. In fact, a market survey for which

 P(PGM|GM P(PBM|BM 1) )= =

would be called a perfect predictor. A market survey for which either or both 
of the conditional probabilities are less than 1 would be called an imperfect 
predictor. Of course, in the real world, there is no such thing as a perfect pre-
dictor; however, the concept is useful as seen by the following.

In many situations, one would want to know the value of a perfect predic-
tor. One would never pay as much, or more for a predictor than this value 
for a perfect predictor. This is where the expected value of a perfect predictor 
(EVOPP) comes into play. (Sometimes, this is called the expected value of per-
fect information [EVPI].) The EVOPP is computed as follows:

 EVOPP EVWPP EVWAI= - ,

where 
EVOPP is the expected value of a perfect predictor
EVWPP is the expected value with a perfect predictor
EVWAI is the expected value with available information 

Let's consider the situation for the simple example discussed earlier, where 
the decisions are only to develop the product or do not develop the product. The 
decision tree for this situation (i.e., the situation with available information 
only) is shown in Figure 7.4.

Develop
product

2 0

4

500,000

–100,000

Do not develop
product

Bad
market (.3)

Good
market (.7)

FIGURE 7.4
The decision tree for the example with available information.
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For this decision tree, the optimal decision is Develop Product, with an 
EMV of $320,000 (since the EMV of “Develop Product” = .7 ∗ 500,000 + 
.3 ∗ (−100,000) = $320,000). Therefore, we say that

 Expected value with available information = $320,000

or

 EVWAI 32 ,= $ .0 000

Now, suppose that we have a perfect predictor available (e.g., a market sur-
vey that will indicate with certainty whether the market will be good or bad). 
In this situation, the decision tree will appear as in Figure 7.5.

Note that in the decision tree of Figure 7.5, the probabilities associated with 
a good market and a bad market, respectively, are the same as earlier; but 
this time, because we have a perfect predictor, we assume that we know this 
prior to making the decision of whether or not to develop the product.

In solving the decision tree of Figure 7.5, we have that at Decision Node 3, 
the optimal decision is develop product, with an EMV = $500,000, and at 
Decision Node 4, the optimal decision is do not develop product, with an 
EMV = 0. The EMV at Outcome Node 2 is .7(500,000) + .3(0) = $350,000.

At Node 1, the EMV of accept perfect predictor is $350,000, while the EMV 
of reject perfect predictor and develop product is $320,000. Hence, the opti-
mal decision at Node 1 is accept perfect predictor with an EMV of $350,000. 
Hence, the EVWPP is $350,000, and

 EVOPP EVWPP EVWAI 35 , 32 , 3 ,= - = - =0 000 0 000 0 000$ .

Note that EVOPP is an upper bound on the amount that you would pay for the 
use of a predictor. Of course, the better the predictor, the more you would 
pay for it, but you would never pay more than the EVOPP.

Reject perfect
predictor (and develop

product)

320,0001

2

4

3

Accept
perfect predictor

Good
market (.7)

Bad
market (.3)

Do not
develop product

Do not
develop product

Develop
product

Develop
product

500,000

0

0

–100,000

FIGURE 7.5
The decision tree for the example with perfect information.
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Of course, all predictors are imperfect. So the question is how much should 
you pay for an imperfect predictor:

 EVOIP EVWIP EVWAI= - ,

where
EVOIP is the expected value of an imperfect predictor 
EVWIP is the expected value with an imperfect predictor
EVWAI is the expected value with available information

We saw earlier how to compute the value for EVWAI. EVWIP would also be 
evaluated with a decision tree, provided that the appropriate probabilities 
are known.

Let’s consider the situation presented earlier with the simple hypothetical 
example and suppose that we consider the firm’s survey as an imperfect pre-
dictor. In other words, we want to determine the EVOIP, where the predictor 
is the firm’s survey. Note that in the calculation, we do not consider the cost of 
the firm’s survey, since we just want to determine its value. Then this informa-
tion could be used in negotiations with the firm.

Consider the decision tree shown in Figure 7.6. It is the same tree as shown 
in Figure 7.1 for the simple hypothetical example, except now, we do not 
consider the cost for the imperfect predictor (i.e., we just let the cost be 0). 

1

Use imperfect predictor
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Predict
good market (.72)
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bad market (.28)
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–100,000
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5
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0

8

Do not develop
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product

Develop
product

Develop
product

Do not develop
product

0

4

0

7

FIGURE 7.6
The decision tree for the example with an imperfect predictor.
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In addition, we will replace the phrases “hire firm” and “do not hire firm” 
with the phrases “use imperfect predictor” and “do not use imperfect predic-
tor” in order to consider a more general situation. Note also that the $60,000 
cost for “hiring the firm” has been reset to 0.

Now, performing the evaluation of this tree, we obtain

 

EMV (Node 7 875(5 , 125( 1 , 425,

EMV (Node 8

) . ) . ) $ ,= + - =00 000 00 000 000

)) . ) . ) $ .= + - =25(5 , 75( 1 , 5 ,00 000 00 000 0 000

At Decision Node 5, we compare the decision of “develop product” with an 
EMV = 425,000 to the decision of “do not develop product” with an EMV 
of 0. So the optimal decision at Node 5 is develop product, with an EMV of 
425,000. At Decision Node 6, we compare the decision of “develop product” 
with an EMV = 50,000 to the decision of “do not develop product” with an 
EMV of 0. So the optimal decision at Node 6 is develop product, with an 
EMV of 50,000.

Performing the appropriate evaluation for Node 3, we obtain

 EMV (Node 3 72(425 28(5 32) . , ) . , ) $ ,= + =000 0 000 0 000.

So, at Node 1, either decision is optimal, with an EMV of $320,000.
Therefore, the EVWIP is $320,000, and we obtain for this imperfect 

predictor:

 

EVOIP EVWIP EVWAI

32 , 32 ,

= -

= -

=

0 000 0 000

0$ .

Hence, this imperfect predictor is of no value, at least as far as the EMV 
is concerned. Let’s consider a better imperfect predictor, one with the fol-
lowing conditional probabilities P(PGM|GM) = .95 and P(PBM|BM) = .95. 
Then, P(PBM|GM) = .05 and P(PGM|BM) = .05. Using Bayes’ theorem, one 
would obtain P(GM|PGM) = .978, P(BM|PGM) = .022, P(BM|PBM) = .8906, 
P(GM|PBM) = .1094, P(PGM) = .68, and P(PBM) = .32. This would give us the 
decision tree shown in Figure 7.7.

Now, performing the evaluation of the tree in Figure 7.7, except with the 
new probabilities, we obtain

 

EMV (Node 7 978(5 , 22( 1 , 486,8

EMV (Node 8

) . ) . ) $ ,= + - =00 000 0 00 000 00

)) . ) . ) $ .= + - = -1 94(5 , 89 6( 1 , 34,360 00 000 0 00 000 0
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At Node 5, we compare the decision of “develop product” with an 
EMV = 486,800 to the decision of “do not develop product” with an EMV of 0. 
So the optimal decision at node 5 is “develop product,” with an EMV of $486,800.

At Node 6, we compare the decision of “develop product” with an 
EMV = −34,360 to the decision of “do not develop product” with an EMV of 0. 
So, the optimal decision at Node 6 is develop product, with an EMV of 0.

Now, EMV (Node 3) = .68(486,800) + .32(0) = 331,024.
So, at Node 1, the optimal decision is hire firm, with an EMV of $331,024.
Therefore, the EVWIP = is $331,024, and

 

EVOIP EVWIP EVWAI

331, 24 32 ,

,

= -

= -

=

0 0 000

$11 024.

Note that this is a strictly positive number, but still less than $30,000 that is 
the value of a perfect predictor.

A summary of the values associated for the various predictors for this 
example is given in Table 7.2. One thing to keep in mind with these various 
values is that if the cost for a particular predictor is less than its value, then 
it is worthwhile to use that predictor. For example, if the cost for the second 
imperfect predictor were $5,000, then it would be worthwhile to use that 
predictor since $5,000 < $11,024.

1

Use imperfect predictor

Do not use imperfect
predictor

2

3

Predict
good market (.68)

Predict
bad market (.32)

Bad
market (.8906)

Good
market (.1094)

Good
market (.978)

500,000

500,000

–100,000

–100,000

–100,000

500,000

Bad
market (.022)

Bad
market (.3)

Good
market (.7)

6

5

Do not develop
product

0

8

Do not develop
product

Develop
product

Develop
product

Develop
product

Do not develop
product

0

4

0

7

FIGURE 7.7
The decision tree for the example with the second imperfect predictor.
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7.2.5 Strategies and Associated Risk Profiles for Decision Trees

A strategy is a sequence of decisions, either defined explicitly (e.g., hire the 
firm to do the survey but do not develop the project) or implicitly (hire the 
firm, but follow “optimal” decisions after that with respect to maximizing 
expected monetary value). A strategy should be well defined in the sense that 
it is clear as to which decision should be chosen for any outcome that might 
be encountered through the use of the strategy. So, in order to have a well-
defined strategy, decisions must sometimes be stated in a conditional fash-
ion, that is, dependent upon which outcome occurs.

For example, the strategy given by

Hire firm–develop product (if the survey predicts a good market),

is not a well-defined strategy since it does not indicate what should be done 
if the survey predicts a bad market. However, the strategy given by

Hire firm–develop product (if the survey predicts a good market),
Do not develop product (if the survey predicts a bad market), is a well-

defined strategy since it prescribes what should be done under any 
outcome that occurs for any decision defined within the strategy.

A risk profile associated with a strategy is the probability distribution over 
the payoff associated with that strategy. A risk profile for a strategy gives 
you more information than the expected monetary value, since it gives the 
decision maker the various possible payoffs and associated probabilities for 
those payoffs for the strategy.

The risk profile associated with the strategy do not hire firm–develop product 
for the hypothetical example is shown in Table 7.3.

Note that the strategy do not hire firm–develop product is equivalent to the strategy 
do not hire firm–follow optimal decisions after with respect to maximization of EMV, since, 
as shown earlier, the optimal decision at Node 2 for Figure 7.1 is develop product.

In developing the risk profile for a particular strategy, we sum the prob-
abilities associated with the various ways that a payoff can be achieved in 

TABLE 7.2

Values of Various Predictors

Predictor Value

Perfect Predictor
P(PGM|GM) = 1., P(PBM|BM) = 1. $30,000

First Imperfect Predictor
P(PGM|GM) = .9, P(PBM|BM) = .7 $0

Second Imperfect Predictor
P(PGM|GM) = .95, P(PBM|BM) = .95 $11,024
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order to obtain the probability of that payoff. In addition, we choose a specific 
branch for each decision node associated with the strategy, and then multiply 
the probabilities associated with sequential outcome nodes in the strategy.

For example, let’s compute the risk profile for the strategy of hire firm–follow 
optimal decisions after with respect to maximization of EMV. Consider the prob-
ability of achieving a net income of $440,000 with this strategy. This $440,000 
could be achieved through either of two sequences of outcomes and deci-
sions from Node 3 in Figure 7.1:

 1. Predict good market–develop product–good market

 2. Predict bad market–develop product–good market

Note that from both Node 5 and Node 6 in Figure 7.1, the decision chosen 
was develop product, since this was the decision in each case that was dic-
tated by the strategy. Now the probability of achieving the payoff of $440,000 
through the first sequence is given by the probability that the firm’s survey 
predicts a good market, multiplied by the probability that a good market 
results (given that the firm predicts a good market):

 

P

P

( )

(

Predict Good Market Develop Product Good Market

Predict Go

- -

= ood Market Good Market given Predict Good Market)

. . .

)*

= * =

P(

72 875 633.

Similarly,

 

P

P

( )Predict Bad Market Develop Product Good Market

Predict Bad

- -

= ( MMarket Good Market given Predict Bad Market)*

= * =

P

.28 .25 .07.

( )

Hence, for this strategy,

 

P $440,000 P( ) ( )= Predict Good Market Develop Product Good Market- -

++

= + =

P

.63 .07 .7

( )Predict Bad Market Develop Product Good Market- -

00.

TABLE 7.3

Risk Profile for the Strategy Do Not Hire Firm–Develop 
Product for the Hypothetical Example

Net Income (Payoff), $ Probability 

500,000 0.7
−100,000 0.3
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Similarly, a payoff of −$160,000 could be achieved through either of two 
sequences of outcomes and decisions from Node 3:

 1. Predict good market–develop product–bad market

 2. predict bad market–develop product–bad market

Therefore,

 

P , P( ) ( )$- =160 000 Predict Good Market Develop Product Bad Market- -

++

= * +

P( )

. . .

Predict Bad Market Develop Product Bad Market- -

72 125 288 75 09 21 30* = + =. . . . .

Note that the probability of receiving a net income of −$60,000 from this strat-
egy is 0, since the strategy does not dictate the decision of do not develop prod-
uct at either of Node 5 or 6, and the only way that this outcome of −$60,000 
can be achieved from Node 5 or 6 is by taking the decision of do not develop 
product.

In summary, the risk profile associated with the strategy for hire firm–follow 
optimal decisions after with respect to maximization of EMV is shown in Table 7.4.

In all, there are six possible strategies associated with the decision tree of 
Figure 7.1. These strategies (denoted as strategies S1 through S6), associated 
risk profiles, and EMVs are shown in Table 7.5. Note that in Table 7.5, the risk 
profile for each strategy is shown directly below that strategy. Also, note that 
even though there are only six possible strategies for this particular hypo-
thetical situation, for decision trees associated with many actual situations, 
the number of potential strategies may well be too many to enumerate. For 
example, if for this situation we modeled four possible outcomes for the mar-
ket (very good market, good market, bad market, and very bad market) rather 
than two, and the survey could reflect a prediction of any of these four, then 
there would be 10 possible strategies rather than only six. This proliferation 
of strategies is the reason why in many situations, the strategies analyzed in 
detail are typically specified in terms of just the initial decisions, followed by 
“the decisions that maximize EMV following the initial decisions.”

TABLE 7.4

Risk Profile for the Strategy Hire Firm–Follow Optimal 
Decisions after with Respect to Maximization of EMV for 
the Hypothetical Example

Net Income (Payoff), $ Probability

440,000 0.7
−160,000 0.3
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Obviously, just on the face of the situation, some of the strategies would 
never be chosen; for example, you would not hire the firm if you were not 
going to develop the product no matter what the survey predicted. But with 
respect to choosing a particular strategy, there are many possible criteria that 
a decision maker might employ, depending on the amount of risk he or she 
is willing to take and the value he or she places on various payoffs. (This is 
where utility functions can be very useful.) However, if one did not want to 
use a utility function and wanted to use the criterion of “maximize the prob-
ability of receiving a payoff of at least $440,000,” then there would be two 
“best strategies”:

 1. Do not hire firm–develop product

 2. Hire firm–develop product (if predict good market) and develop product 
(if predict bad market)

(This would obviously not be a good criterion to employ unless any income 
over $440,000 is worthless to the decision maker.)

TABLE 7.5

All Strategies and Associated Risk Profiles for the Decision Tree of Figure 7.1

S1: Do not hire firm–develop product
Net income (payoff) 500,000 −100,000
Probability 0.7 0.3

S2: Do not hire firm–do not develop product
Net income (payoff) 0
Probability 1

S3: Hire firm–develop product (if predict good market) and develop product (if predict 
bad market)

Net income (payoff) 440,000 −160,000
Probability 0.7 0.3

S4: Hire firm–develop product (if predict good market) and do not develop product (if 
predict bad market)

Net income (payoff) 440,000 −60,000 −160,000
Probability 0.63 0.28 0.09

S5: Hire firm–do not develop product (if predict good market) and develop product 
(if predict bad market)

Net income (payoff) 440,000 −60,000 −160,000
Probability 0.07 0.72 0.21

S6: Hire firm–do not develop product (if predict good market) and do not develop product 
(if predict bad market)

Net income (payoff) −60,000
Probability 1
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7.2.6 Cumulative Risk Profiles and Dominance

The cumulative risk profile for a strategy is just the cumulative probability dis-
tribution over the payoff associated with that strategy, that is, F(x) = PR(X ≤ x), 
where X is the payoff for the relevant strategy. Often, it is helpful to view the 
cumulative risk profile for a strategy as the graph associated with the cumu-
lative probability distribution of the strategy.

Consider the cumulative risk profile for strategy S4 of Table 7.5: hire firm–
develop product (if predict good market) and do not develop product (if predict bad 
market).

The cumulative risk profile associated with this strategy is shown in 
Table 7.6.

The graph associated with the cumulative risk profile of Table 7.6 is shown 
in Figure 7.8.

The cumulative risk profiles for each of the strategies shown in Table 7.5 
are shown in Table 7.7.

–200,000 –100,000 100,000 200,000 300,000 400,000 500,000 600,000
Payoff

0
0

0.2

0.4

0.6

0.8

1.2

1

FIGURE 7.8
Graph associated with cumulative risk profile of strategy S4: Hire firm–develop product (if predict 
good market) and do not develop product (if predict bad market).

TABLE 7.6

Cumulative Risk Profile for Strategy S4: Hire Firm–Develop Product (If 
Predict Good Market) and Do Not Develop Product (If Predict Bad Market)

Net Income (Payoff), $ Cumulative Probability 

−160,000 0.09
−60,000 0.37
440,000 1
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Strategy A stochastically dominates strategy B if the cumulative risk profile 
graph for B lies on or above the cumulative risk profile graph for A, that is, 
if FB(x) ≥ FA(x) for any value of x. Moreover, if as one is moving from left to 
right on the x-axis, the cumulative risk profile graph for B reaches a value of 
1 while the cumulative risk profile graph for A is still at a value of 0, then 
strategy A deterministically dominates strategy B; that is, there is some value 
of x, say x′ such that FB(x′) = 1 and FA(x′) = 0. No rational decision maker 
will choose a strategy B over a strategy A if A stochastically dominates B. 
Note that if a strategy deterministically dominates another strategy, then, 
by necessity, the first strategy will stochastically dominate the second strat-
egy; however, the reverse does not hold—that is, just because one strategy 
stochastically dominates another, this does not mean that the first strategy 
deterministically dominates the second.

Note also that just because A stochastically dominates B, this does not 
necessarily mean that the probability of A receiving a better payoff than B 
is 1, but this is the case if A deterministically dominates B. A summary of 
the effects associated with both stochastic and deterministic dominance is 
shown in Table 7.8.

Consider strategies S2 and S6 from Table 7.7. The cumulative risk profile 
graphs for these two strategies are shown in Figure 7.9. It is clear from 

TABLE 7.7

Cumulative Risk Profiles for Each of the Strategies of Table 7.5

S1
x x < −100,000 −100,000 ≤ x < 500,000 x ≥ 500,000
F(x) 0 0.3 1

S2
x x < 0 x ≥ 0
F(x) 0 1

S3
x x < −160,000 −160,000 ≤ x < 440,000 x ≥ 440,000
F(x) 0 0.3 1

S4
x x < −160,000 −160,000 ≤ x < −60,000 −60,000 ≤ x < 440,000 x ≥ 440,000
F(x) 0 0.09 0.37 1

S5
x x < −160,000 −160,000 ≤ x < −60,000 −60,000 ≤ x < 440,000 x ≥ 440,000
F(x) 0 0.21 0.93 1

S6
x x < −60,000 x ≥ −60,000
F(x) 0 1
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viewing these graphs that strategy S2 deterministically dominates strat-
egy S6.

Conclusions that can be made from viewing Table 7.7 include the following:

S1 stochastically dominates S3
S4 stochastically dominates S5
S2 deterministically dominates S6

The key point is that any strategy that is dominated by another (either stochas-
tically or deterministically) can be automatically eliminated from any further 
analysis. One must keep in mind, however, that if one strategy dominates a 
second strategy stochastically (but not deterministically), it is still possible to 
achieve a better payoff from the second strategy; it is not possible however to 
achieve a better payoff from a strategy that is deterministically dominated.

TABLE 7.8

Stochastic Dominance versus Deterministic Dominance

Type of Dominance Definition Effects Comments 

Stochastic dominance 
(A stochastically 
dominates B)

FB(x) ≥ FA(x) B may achieve a better 
payoff than A, but for 
any particular payoff, 
the probability of 
achieving less than or 
equal to that payoff is 
larger for B than for A.

The probability of a 
better payoff from 
A than from B is 
not necessarily 1.

Deterministic 
dominance (A 
deterministically 
dominates B)

There exists at least 
one value of x 
such that FB(x) = 1 
and FA(x) = 0

The worst possible 
payoff for A is better 
than the best possible 
payoff for B.

The probability of a 
better payoff from 
A than from B is 1.
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Strategy S2 graph 

Strategy S6 graph 
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FIGURE 7.9
Cumulative risk profile graphs for strategies S2 and S6.
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7.3 Influence Diagrams

7.3.1 Basic Concepts

An influence diagram is a model of a dynamic decision situation and can 
be thought of as being analogous to a decision tree; therefore, an influence 
diagram can be thought of as an evaluation or criterion model and a commu-
nication tool. In fact, because of its “higher level” perspective, an influence 
diagram typically works better as a communication tool (between an analyst 
and a group of decision makers) than a decision tree.

An influence diagram is a directed network, consisting of nodes and arcs. 
(Note that we use the term branch to indicate an arrow that is used in a deci-
sion tree and the term arc to indicate an arrow that is used in an influence 
diagram.) In its most basic form, an influence diagram has three types of 
nodes:

 1. Decision nodes (represented as rectangles)
 2. Chance event nodes (represented as ovals)
 3. Outcome/consequence nodes (represented as rounded rectangles)

A decision node represents a set of mutually exclusive, collectively exhaus-
tive alternatives just as with a decision tree. A chance event node typically 
represents a random variable—some quantity about which there is uncer-
tainty such as a survey result, a medical test, or a sampling about something; 
in this sense, a chance event node is analogous to an outcome node in a 
decision tree. An outcome/consequence node is deterministic in nature and 
can represent a constant value or a function of values associated with other 
nodes in the diagram.

There are two types of arcs associated with influence diagrams:

 1. Relevance arcs (arcs that enter a Chance Event Node or an Outcome/
Consequence Node)

 2. Sequence arcs (arcs that enter a decision node)

A sequence arc entering a decision node from another node indicates that the 
information associated with the previous node is known prior to the decision 
that is to be made for the decision node. In the case of the preceding node to 
a decision node also being a decision node, the prior decision is made first; in 
the case of the preceding node being a chance event node, the outcome of the 
chance event node is known prior to the decision having to be made.

Where most people seem to have trouble with influence diagrams is with 
the concept of relevance arcs joining two chance event nodes. A relevance 
arc entering a chance event node from another chance event node does not 
mean that the first chance event’s outcome occurs prior to the second chance 
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event’s outcome, but only that the outcome of the first chance event has rel-
evance for the outcome of the second chance event. For example, consider two 
chance events to be modeled as part of an influence diagram: weather (sim-
ply modeled with the possible outcomes of sunshine and rain) and forecast of 
weather (simply modeled with the possible outcomes of forecast sunshine and 
forecast rain). The portion of the influence diagram corresponding to these 
two chance event nodes would appear as in Figure 7.10.

The input to the portion of the influence diagram corresponding to 
Figure 7.10 would be the conditional probabilities of

 1. P(weather forecast of rain|weather of rain)
 2. P(weather forecast of sun|weather of sun)

The complementary probabilities of P (weather forecast of sun|weather of 
rain) and P (weather forecast of rain|weather of sun) would just be computed 
as 1 –P (weather forecast of rain|weather of rain) and 1 –P (weather forecast 
of sun|weather of sun), respectively. Bayes theorem would then be used to 
compute the conditional probabilities of P (weather of rain|weather forecast 
of rain) and P (weather of sun|weather forecast of sun), as well as their com-
plementary probabilities and the unconditional probabilities of P (weather 
forecast of sun) and P (weather forecast of rain).

Consider the hypothetical example problem illustrated with the decision 
tree of Figure 7.1. The corresponding influence diagram associated with this 
problem is shown in Figure 7.11.

In the influence diagram of Figure 7.11, there are two decision nodes: “hire 
firm?” and “develop product?” There are two chance event nodes: “market” and 
“survey prediction.” Finally, there is one outcome/consequence node: “payoff.”

The arc leading from “survey prediction” to “develop product?” in 
Figure 7.11 is a sequence arc since the survey prediction will be known (given 
that the firm is hired) prior to the decision of whether or not to develop 
the product. The arc from “market” to “survey prediction” is a relevance 
arc. The information needed for input to the influence diagram related to 
the relationship between “market” and “survey prediction” would be the 
conditional probabilities of P(PGM|GM), P(PBM|GM), P(PGM|BM), and 
P(PBM|BM), where, as discussed earlier, PGM, PBM, GM, and BM repre-
sent the events of “predict good market,” “predict bad market,” “good mar-
ket,” and “bad market,” respectively. In addition, the user (of the software 

Weather Forecast of weather

FIGURE 7.10
Portion of an influence diagram for two chance event nodes: weather and forecast of weather.
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package employed to “solve” the influence diagram) would need to input the 
marginal probabilities associated with the events of “good market” and “bad 
market”: P(GM) and P(BM). The software program would then compute 
the “reversed probabilities” of P(GM|PGM), P(GM|PBM), P(BM|PGM), and 
P(BM|PBM), along with the marginal probabilities of P(PGM) and P(PBM) 
using Bayes’ theorem, in order to proceed with the computations required 
for the influence diagram.

The reader should note that different software packages for constructing 
and solving decision trees and influence diagrams employ different sets of 
terminology. For example, Precision Tree, marketed by Palisades Corporation 
(www.palisade.com), calls the nodes in their influence diagrams chance 
nodes, decision nodes, calculation nodes, and payoff nodes. Each influence 
diagram in Precision Tree can have only one payoff node. In our terminology, 
we have used an outcome/consequence node to represent either a calculation 
node or a payoff node.

Also in Precision Tree, the arcs in the influence diagrams can be one or 
more of three types: timing, value, and structure. A timing type of arc is 
what we earlier called a precedence arc. Value arcs and structure arcs are in 
some sense related to relevance arcs. More specifically, a value arc pointing 
from one node to another just means that the value associated with the first 
node affects the value of the second. An example would be the arc point-
ing from the “market” node to the “payoff” node in Figure 7.11; the value 
of “market” affects the value of “payoff.” A structure arc is used to indicate 
that the decision associated with a decision node can affect whether or not 

Hire firm?

Market

Develop product?

Survey predictionPayoff

FIGURE 7.11
Influence diagram for the example problem.

http://www.palisade.com
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an outcome can even occur with another node. For example, in Figure 7.11 if 
the firm is not hired to perform the market survey, then there will not be any 
result from the survey; hence, the arc from “hire firm?” to “survey predic-
tion” is both a structure and a timing arc.

7.3.2  Conversion of an Influence Diagram to a 
Decision Tree and Vice Versa

Any well-constructed influence diagram can be converted to an equivalent 
decision tree and by the same token, any well-constructed decision tree can 
be converted to an equivalent influence diagram. A reason why one might 
want to convert an influence diagram to a decision tree is the model detail 
that can be seen with the decision tree (at the expense of a “messier repre-
sentation”). In addition, the calculations are somewhat more straightforward 
with a decision tree.

Both Goodwin and Wright (2009) and Clemen and Reilly (2001) discuss 
the procedure for converting an influence diagram to a decision tree. The 
diagram presented in Figure 7.12 corresponds to the procedure suggested by 
Goodwin and Wright (2009, p. 172) for converting an influence diagram to an 
equivalent decision tree.

Applying the procedure of Figure 7.12 to the influence diagram of Figure 
7.11, we note that there are two nodes with no arrows pointing to it: “market” 
and “hire firm?” From these two, we would choose “hire firm?” since it is 
a decision node and place it at the beginning (i.e., on the left-hand side) of 
the decision tree, with the two appropriate decisions of “yes” and “no”; we 
would also remove the “hire firm?” node from the influence diagram.

The actual process is a little more complicated than what is depicted in 
Figure 7.12 since one may have to place multiple copies of a node in the deci-
sion tree; such would be the case with the decision node “develop product?” 
in Figure 7.11, which appears three times in the decision tree of Figure 7.1. For 
a more detailed description of the conversion process, the reader is directed 
to Clemen and Reilly (2001).

7.4  Sensitivity Analysis for Decision Trees 
and Influence Diagrams

Sensitivity analysis involves studying the sensitivity of a model’s output 
(e.g., optimal performance measure value or optimal solution/policy) to 
changes to a model’s input. For decision trees and influence diagrams, the 
sensitivity analysis process is relatively straightforward, as compared to 
sensitivity analysis for linear programs. Specifically, for decision trees and 
influence diagrams, one just varies the value(s) for the input parameter(s) 



295Modeling Methodologies for Generating Probabilistic Outcomes

and determines any changes in the optimal performance measure values 
and optimal policy.

There are several categories of sensitivity analysis for decision trees and 
influence diagrams. These categories include one-way sensitivity analy-
sis, two-way sensitivity analysis, and so on. The number in the category 

Start

NoAny nodes
with no arrows

pointing
to it?

Yes

Identify a node with
no arrow pointing

to it. If there is
more than one such
node, and one is a

decision node,
choose a decision

node.

Place the node
chosen at the

previous step at the
beginning of the

diagram and remove
it from the in�uence

diagram.

End

FIGURE 7.12
Flowchart of a procedure for converting an influence diagram to an equivalent decision tree. 
(Derived from Goodwin, P. and Wright, G., Decision Analysis for Management Judgment, 4th ed., 
John Wiley & Sons, Chichester, UK, 2009, p. 172.)
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term refers to the number of parameters that are varied simultaneously in 
the analysis. For example, in one-way sensitivity analysis, only one of the 
parameters is varied at a time in studying the output of the model analysis; 
the other parameters are kept at what are called baseline values.

In order to illustrate the one-way sensitivity analysis, let’s consider the 
decision tree associated with the second imperfect predictor discussed in 
Section 7.2.4. Let’s assume that this second imperfect predictor has a cost of 
$60,000. This would lead to the decision tree shown in Figure 7.13. Note that 
this tree is the same as shown in Figure 7.7, except that now the imperfect 
predictor has a cost of $60,000, instead of $0.

For the decision situation and tree of Figure 7.13 the parameters are:

 1. Payoff associated with the “good market” (baseline value of 
$500,000).

 2. Payoff associated with the “bad market” (baseline value of −$100,000).
 3. Cost of the “imperfect predictor” (baseline value of $60,000).
 4. Probability associated with a “good market” (P(GM)—baseline value 

of .7).
 5. Probability associated with a “bad market” (P(BM)—baseline value 

of .3).

1

Use imperfect predictor

Do not use imperfect
predictor

2

3

Predict
good market (.68)

Predict
bad market (.32)

Bad
market (.8906)

Good
market (.1094)

Good
market (.978)

440,000

500,000

–160,000

–100,000

–160,000

440,000

Bad
market (.022)

Bad
market (.3)

Good
market (.7)

6

5

Do not develop
product

–60,000

–60,000

8

Do not develop
product

Develop
product

Develop
product

Develop
product

Do not develop
product

0

4

7

FIGURE 7.13
Decision tree associated with the second imperfect predictor with a cost of $60,000.
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 6. Conditional probabilities associated with the “predictor,” with the 
associated baseline values of P(PGM|GM) = .95, P(PBM|BM) = .95. 
Then, P(PBM|GM) = .05, and P(PGM|BM) = .05.

Note that, as discussed earlier, in order to obtain the values for many of the 
probabilities shown in the decision tree of Figure 7.13, we needed to apply 
Bayes’ theorem to the input conditional probabilities.

Performing a one-way sensitivity analysis for any of the parameters involv-
ing one or more of the probabilities listed earlier would be more difficult 
than such an analysis not involving one of these probabilities. The reason for 
this is that the values for these probabilities are dependent on each other. For 
example, changing the probability of a good market, P(GM), also requires 
simultaneous changes to P(BM), P(PGM), and P(PBM).

Let’s perform a one-way sensitivity analysis for each of the first three input 
parameters: payoff associated with a good market, payoff associated with a 
bad market, and cost of the imperfect predictor. As input for the sensitivity 
analysis, we need to provide baseline values, minimum values, and maxi-
mum values for each of these input parameters. These values are shown in 
Table 7.9.

Note that in Table 7.9 we are allowing payoffs associated with good and 
bad markets, respectively, to vary by 25% from their baseline values; how-
ever, we are allowing the cost of the imperfect predictor to vary by 100% 
from its baseline value of $60,000.

Now, probably the most well-known vehicle for portraying information 
about a one-way sensitivity analysis is the tornado diagram, sometimes called 
a tornado graph. This diagram has two axes: x and y. The x-axis portrays the 
expected value (or EMV) associated with an optimal sequence of decisions 
for the tree. The y-axis varies according to the input parameter analyzed; 
there is one bar for each input parameter, ranging from the worst expected 
value to the best expected value as the parameter is varied over its range. 
The tornado diagram associated with the parameters and associated values 
of Table 7.9 is shown in Figure 7.14.

TABLE 7.9

Baseline, Minimum, and Maximum Values for the Input Parameters for 
Sensitivity Analysis

Input Parameter Minimum Value, $ Baseline Value, $ Maximum Value, $ 

Payoff associated with 
“good market”

375,000 500,000 625,000

Payoff associated with 
“bad market”

−125,000 −100,000 −75,000

Cost of imperfect predictor 0 60,000 120,000
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The tornado diagram shown in Figure 7.14 corresponds to the numbers 
shown in Table 7.10.

Note that the parameters in the tornado diagram are arranged from top 
to bottom in order of decreasing effect on the expected value (or EMV)—
hence the term tornado diagram. In this way, the DM can quickly see which 
parameter variation has the largest effect on the payoff. But in considering 
this variation, the DM should remember the upper and lower bounds used 
for each parameter. For example, in Table 7.10, the payoffs associated with 
both the good and bad markets were allowed to vary by 25% in each direction 
from their respective baselines; however, the cost of the imperfect predictor 
was allowed to vary 100% in each direction from its baseline value of $60,000.
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FIGURE 7.14
Tornado diagram for parameters shown in Table 7.9. (Output from Precision Tree.)

TABLE 7.10

Data Associated with the Tornado Diagram of Figure 7.14

Parameter

Minimum Value, $ 
(Associated Expected 

Value, $) 

Maximum Value, $ 
(Associated Expected 

Value, $) 

Payoff associated with “good 
market”

375,500 (232,500) 625,000 (407,500)

Payoff associated with 
“bad market”

−125,000 (312,000) −75,000 (327,500)

Cost of imperfect predictor 0 (331,024) 120,000 (320,000)
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Also, note that the expected (payoff) value varies as one would expect for 
each parameter. For example, as the payoff associated with a good market or 
with a bad market increases, the expected value increases; but as the cost of 
the imperfect predictor increases, the expected value decreases.

Since the tornado diagram contains information about several parameters, 
it is sometimes easy to forget that the diagram portrays only a one-way sen-
sitivity analysis. That is, in looking at any bar on the graph, the DM needs 
to remember that the values for the parameters not associated with the rel-
evant bar are kept constant at their respective baseline values throughout the 
variation of the relevant parameter.

The EMV associated with an optimal policy is not necessarily a linear 
function of a parameter value within the limits established for the tornado 
diagram. For example, consider the cost for the imperfect predictor; since the 
baseline optimal policy does not involve the use of the imperfect predictor, 
changing its value only slightly will not result in a change in the EMV. The 
relationship between the change in a parameter value and the optimal EMV 
value is seen in another important tool for one-way sensitivity analysis: the 
sensitivity graph. There is one sensitivity graph for each bar in the tornado 
diagram. For example, the sensitivity graph associated with the cost of the 
imperfect predictor is shown in Figure 7.15.

The reader will note that the expected value (the y-axis) in Figure 7.15 
decreases in value from $331,024 to $320,000 as the cost for the imperfect 
predictor increases from 0$ to $11,024; once the cost increases past $11,024, 
the expected value remains at $320,000. Note from Table 7.2 that the expected 
value for this imperfect predictor was computed as $11,024.
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The sensitivity graphs for payoffs associated with a “bad market” and a 
“good market” are shown in Figures 7.16 and 7.17, respectively. The reader 
will note that these sensitivity graphs display a linear relationship between 
the relevant parameters and EMV.

Another useful display for one-way sensitivity analysis is the spider graph. 
This graph is similar to the tornado diagram in that information is displayed 
for all of the relevant parameters on one graph. The x-axis of the spider graph 
displays the percent change from the baseline value for the parameter, while 
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the y-axis gives the expected value as a function of this change. The spider 
graph corresponding to the tornado graph of Figure 7.14 is shown in Figure 7.18.

The reader will note that the slope of the plot in the spider graph for any 
parameter corresponds to the width of the corresponding bar in the tornado 
diagram—the wider the bar, the steeper the slope.

Each of the aforementioned constructs associated with a one-way sen-
sitivity analysis of a decision tree/influence diagram was developed with 
the Precision Tree software, referred to earlier. The computational approach 
involved setting the values for all of the relevant parameters to their baseline 
values and then varying the studied parameter value in a stepwise fashion 
(e.g., 11 different values equally spaced from its minimum to its maximum 
value).

In using an Excel-based software package like Precision Tree, the user often 
has the choice of (1) placing the value for a cost or payoff directly at the node 
associated with the value, or (2) in a separate cell and then using a cell refer-
ence within a formula to refer to the parameter value. In general, it is better to 
use the second approach since a parameter value is typically employed in sev-
eral places in a decision tree; for example, the payoff associated with a “good 
market” is employed at Nodes 4, 7, and 8 in the decision tree of Figure 7.1. This 
approach of using a cell reference within a formula for different places in the 
decision tree greatly simplifies the sensitivity analysis process.

A two-way sensitivity analysis involves changing two of the parame-
ters simultaneously and determining how an optimal value and optimal 
solution changes. Let’s apply a two-way sensitivity analysis to the input 
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FIGURE 7.18
Spider graph corresponding to the tornado graph of Figure 7.14. (Output from Precision Tree.)
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parameters: “payoff from bad market” and “cost of imperfect predictor.” More 
specifically, let’s allow the payoff from a bad market to vary from −$150,000 
to −$50,000 in increments of $10,000 (11 different values in total) and cost of 
an imperfect predictor to vary from $0 to $120,000 in increments of $12,000 (11 
different values in total). The various combinations lead to 11∗11 = 121 differ-
ent decision tree analyses.

As mentioned earlier, the two types of outputs which one can examine 
in a sensitivity analysis are an optimal decision and the optimal value. 
These can be viewed either in a tabular form or in a graphical form. For 
example, a 3D graph can be displayed in which the x- and y-axes represent 
the two inputs (in this case, the payoff from the bad market and the cost 
of the imperfect predictor) and the z-axis displays the expected value. The 
strategy region plot is another type of display that is useful for portraying 
an optimal decision; this plot is 2D (for the two-way sensitivity analysis) 
and has an x-axis that represents the varying values for one of the inputs 
and a y-axis that represents the varying values for the other input. The 
plot values themselves contain “dots” of different colors corresponding 
to an optimal decision to make at a decision node in the decision tree or 
influence diagram. A strategy region plot for our example, developed with 
the Precision Tree software, is shown in Figure 7.19.

The points in the strategy region plot of Figure 7.19 represent the opti-
mal decision to make for hiring of the firm (and therefore use the imperfect 
predictor) for the various values of payoff from a bad market and cost of 
the imperfect predictor. The plot indicates that (1) if the payoff from the bad 
market is −$150,000 (i.e., $150,000 is lost) and the cost of the imperfect predic-
tor is $24,000 or less, then the firm should be hired, and (2) if the payoff from 
the bad market is −$110,000 or less, and the cost of the imperfect predictor is 
$12,000 or less, then the firm should be hired.

Sensitivity analysis of decision trees and influence diagrams is usually 
conducted using a “brute force” procedure. That is, the standard “rollback 
procedure” for a decision tree is conducted for each set of input values used 
in the sensitivity analysis. Certainly, if one were doing the analysis manu-
ally, this would be impossible for most decision trees. However, with a soft-
ware package, given the relatively minor computational requirements for a 
decision tree analysis, such a brute force approach is not difficult.

A more sophisticated approach for sensitivity analysis could involve treat-
ing the input parameters as an algebraic variables and finding the variable 
values that satisfy an equation or inequality.

For example, let’s consider the decision tree of Figure 7.13, but with the 
cost of the imperfect predictor being denoted as CIP, instead of being set at 
$60,000. Hence, for example, the payoffs at Node 7 for good market and bad 
market, respectively, would be 500,000 − CIP and −100,000 − CIP instead of 
440,000 and −160,000. Then the EMV for Node 7 is given by

 . ) .978(5 , CIP 22( 1 , CIP) 486,8 CIP00 000 0 00 000 00- + - - = - .
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The EMV for Node 8 is given by

 . ) . )1 94(5 , CIP 89 6( 1 , CIP 34,360 CIP0 00 000 0 00 000- + - - = - - .

At Node 5, we would choose the decision of “develop product” since 
486,800 – CIP > –CIP and this decision would have an EMV of 486,800 – CIP. 
At Node 6, we would choose the decision of “do not develop product” 
since –CIP > −34,360 – CIP, with an EMV of –CIP.

Now, the EMV for Node 3 is given by

 . ) . )68(486,8 CIP 32( CIP 331, 24 CIP00 0- + - = - .

At Node 2, we had already computed an EMV of 320,000. Therefore, in view-
ing the decision from Node 1, we would use the imperfect predictor (i.e., hire 
the firm) if

 331, 24 CIP 32 , or if CIP 11, 240 0 000 0- > <, $ .
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Of course, we already knew this since the value of this imperfect predictor was 
computed as $11,024. The purpose of this exercise was just to illustrate this alge-
braic approach to sensitivity analysis, or breakeven analysis with decision trees.

7.5  Using Expected Utility as the Performance Measure 
for a Decision Tree or Influence Diagram

Thus far in this chapter, we have employed “EMV/payoff” as our performance 
measure in evaluating a decision within a decision tree or influence diagram. 
Of course, as we saw in Chapter 6, such a criterion may not provide a valid 
ranking of the alternative decisions if the DM is not risk neutral. In situations 
where the DM is not risk neutral, expected utility can be employed in the 
decision tree or influence diagram analysis in the same fashion as EMV. As 
an example, let's suppose that we want to analyze the decision tree of Figure 
7.13 and that the DM’s preferences over payoffs can be represented by the util-
ity function represented by the points given in Table 7.11 and in Figure 7.20.

The utility function represented by Table 7.11 and Figure 7.20 is concave 
for positive payoffs (representing a risk-averse DM for positive payoffs) and 
convex for negative payoffs (representing a risk-prone DM for these payoffs).

In replacing the “payoffs” of the decision tree of Figure 7.13, we obtain 
Figure 7.21.

Performing the rollback procedure, we obtain expected utilities at Nodes 
4, 7, and 8 of

Expected utility at Node 4 = .7(1) + .3(.06) = .718
Expected utility at Node 7 = .978(.96) + .022(0) = .9388
Expected utility at Node 8 = .1094(.96) + .8906(0) = .105

TABLE 7.11

Points on Decision Maker’s Utility Function for 
the Evaluation of the Decision Tree of Figure 7.13

x in Dollars u(x) 

−160,000 0
−100,000 0.06
−60,000 0.13

0 0.3
80,000 0.47

200,000 0.66
300,000 0.8
440,000 0.96
500,000 1
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Then the optimal decisions at Nodes 2, 5, and 6 are “develop product,” 
“develop product,” and “do not develop product,” respectively. These opti-
mal decisions have expected utilities of .718, .9388, and .13, respectively.

The expected utility associated with Node 3 is given by .68(.9388) + 
.32(.13) ≈ .68. Hence, in viewing the two decisions from Node 1, “do not use 
imperfect predictor” has an expected utility of .718, while “use imperfect 
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Utility function corresponding to the points of Table 7.11.
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predictor” has an expected utility of .68. Therefore, in this case, the optimal 
initial decision remains the same: “do not use imperfect predictor,” as was 
the case when we used EMV as our criterion.

7.6  Decision Trees/Influence Diagrams with Outcome 
Nodes/Chance Event Nodes That Represent 
a Large Number of Possible Outcomes

Thus far, we have only considered outcome nodes and chance event nodes 
representing discrete random variables with a few (usually 2) outcomes. 
Often, we may want to consider situations involving many (e.g., 10 or more) 
or even an infinite number of outcomes. For example, instead of “good mar-
ket” or “bad market” outcomes, we may want to represent “market” as a con-
tinuous random variable with a corresponding continuous range of payoffs.

As another example, consider the testing for lead poisoning example from 
Chapter 6. In this case, suppose we gave the (perfect) blood test to 100 ran-
domly selected children out of the population of 100,000 (of which 10,000 
have lead poisoning). Using the binomial approximation to the hypergeomet-
ric distribution, the number of children testing positive for lead poisoning 
could be any number between 0 and 100, with the approximate probabilities 
associated with having 7, 8, 9, 10, 11, 12, or 13 children testing positive being 
given in Table 7.12. (Note that the probabilities for the numbers listed add up 
to less than .8.)

In terms of computing an expected value of an outcome, these types of 
outcome/chance event nodes present no particular problem, other than 
increased computational requirements. Hence, the usual rollback procedure 
for determining the best initial solution for a decision tree does not result in 
any difficulty.

TABLE 7.12

Approximate Probabilities Associated with the Number of Children 
(Out of a Sample of 100) Testing Positive for Lead Poisoning

Number of Children Testing Positive Approximate Probability 

7 0.089
8 0.115
9 0.130

10 0.132
11 0.120
12 0.099
13 0.074
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However, computation of risk profiles for the various strategies becomes 
problematic. In these situations, one may want to employ a Monte Carlo sim-
ulation approach, which will be discussed in Chapter 9.

With respect to representation of the distribution function, one has the 
option of approximating the function with a simpler distribution. In particu-
lar, Keefer and Bodily (1983) have suggested the use of the extended Pearson–
Tukey approximation for a wide range of continuous distribution functions, 
especially for those continuous distributions with one peak that are “close” 
to symmetric in nature.

Example 7.1: Bidding for Construction of a University Dormitory

The A1 Construction Company is considering placing a bid for the con-
struction of a new dormitory at State University. The cost of preparing 
the bid would be $5000. A1 estimates the lowest competing bid as a ran-
dom variable with a triangular distribution with a minimum value of 
$10 million, a most likely value of $14 million, and a maximum value of 
$20 million. A1 estimates their costs for constructing the building as an 
uncertain quantity, represented as a discrete random variable with the 
following distribution:

Cost for Construction Probability

Low ($12 million) .2
Medium ($12.8 million) .6
High ($13.6 million) .2

If they decide to place a bid, A1 is considering one of three bid amounts: 
$13 million, $15 million, or $17 million. So, for example, if A1 places a 
bid for $15 million and wins the contract, they will receive a net profit 
of their bid, minus the cost of preparing the bid, minus their costs for 
the project; their project costs will be either $12 million, $12.8 million, or 
$13.6 million, according to the table mentioned earlier.

In order to present their problem in the format of a decision tree with a 
relatively small number of outcomes for each outcome node, A1 needs to 
compute the probability of their bid being the lowest given that their bid 
is either $13 million, $15 million, or $17 million. If X represents a random 
variable corresponding to the lowest competing bid, given that there is a 
competing bid, then we need to compute

 P( 13 m on X P( 15 million X and P( 17 million X$ ), $ ), $ )illi < < < ,

given that X is a triangularly distributed random variable with param-
eters of $10, $14, and $20 million. These probabilities are given by the 

following integrals: f(x)dx
13

¥

ò , f(x)dx
15

¥

ò , and f(x)dx
17

¥

ò , where f(x) repre-

sents the distribution function for the triangular distribution with the 
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specified parameter values in millions of dollars. Computing the values 
for the integrals, we determine that

P( 13 million X 775 P( 15 million X 2 8

P( 17 million

$ ) . , $ ) . ,

and $

< = < =

<

0

XX 15.) .=

This gives us the decision tree shown in Figure 7.22.
In rolling back the decision tree of Figure 7.22, the EMVs of Bid 

Amount 1 (bid $13 million), Bid Amount 2 (bid $15 million), and Bid 
Amount 3 (bid $17 million) are $104,750, $407,600, and $580,000, respec-
tively. Hence, the optimal decision (if a bid is made) is to bid $17 million, 
with an EMV of $580,000. Comparing this to the decision of not to bid at 
all, the optimal decision is to bid, with a bid of $17 million.

A one-way sensitivity analysis was performed with four parame-
ters: the probability of winning the contract at Bid 1 (baseline of .775), 
the probability of winning the contract at Bid 2 (baseline of .208), the 
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probability of winning the contract at Bid 3 (baseline of .15), and high 
cost for construction (baseline of $13.6 million). The parameters were 
each allowed to vary from their baseline values by ± 25%. (Note that 
when “high cost for construction” became less than $12.8 million, it actu-
ally became “low” or “medium” cost.)

The tornado diagram associated with this one-way sensitivity analysis 
is shown in Figure 7.23. The reader will note that two of the parameters, 
the probability of winning the contract at Bid 1 and the probability of 
winning the contract at Bid 2, do not even appear on the tornado dia-
gram. This indicates that even when set at values of 25% over their base-
line values, these probabilities do not affect the EMV; more specifically, 
even at their larger probability values, placing a bid at the Bid 1 or Bid 2 
levels is suboptimal.

A two-way sensitivity analysis was performed using two parameters: 
the probability of winning the contract at Bid 2 and the probability of 
winning the contract at Bid 3. For this analysis, the probabilities were 
allowed to vary ±50% from their baseline values. In particular, A1 was 
interested in studying whether to place a bid at the Bid 2 or the Bid 3 
levels according to their respective probabilities of winning the con-
tract at these levels. The strategy region graph for this analysis is shown 
in Figure 7.24. This graph shows, for example, that if the probability 
of winning the contract at Bid 2 is .2912 or higher and the probability 
of winning the contract at Bid 3 is .15 or lower, then the optimal decision 
is to place a bid at Bid 2.

The risk profiles associated with the decisions of not bidding, bidding 
$13 million, bidding $15 million, and bidding $17 million are shown in 
Tables 7.13 through 7.16, respectively.
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TABLE 7.14

Risk Profile for Decision of Bidding $13 Million

Profit, $ Probability 

−65,000 0.155
−50,000 0.225
150,000 0.465
950,000 0.155

TABLE 7.13

Risk Profile for Decision of Not Bidding

Profit Probability 

$0 1.
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A1 notes that there is a high probability of losing money if they bid 
on the project; in particular, if they implement the alternative that maxi-
mizes EMV (i.e., bid $17 million), there is a .85 probability of losing 
$50,000. Of course, this is offset by a .15 probability of making $3.35 mil-
lion or more.

One important fact to remember with respect to this decision by A1 
is that, as was pointed out in Chapter 1 for most decisions, it does not 
exist in a vacuum. Specifically, A1 bids on a number of contracts. For 
example, suppose that A1 bids the high amount ($17 million) on five 
identical contract situations; the number of successful bids (assuming 
each bid situation is independent) would be a binomial random variable 
with parameters n = 5 (the number of bids) and P = .15 (the probability 
of success with the bid). The probabilities associated with the number of 
successful bids are shown in Table 7.17.

TABLE 7.17

Number of Successful Bids out of Five Independent 
Identical Bid Situations Given That the Probability 
of a Successful Individual Bid Is .15

Number of Successful Bids
Approximate 
Probability

0 0.44
1 0.39
2 0.14
3 0.03
4 0.002
5 0

TABLE 7.16

Risk Profile for Decision of Bidding $17 Million

Profit, $ Probability

−50,000 0.85
3,350,000 0.03
4,150,000 0.09
4,950,000 0.03

TABLE 7.15

Risk Profile for Decision of Bidding $15 Million

Profit, $ Probability

−50,000 0.792
1,350,000 0.0416
2,150,000 0.1248
2,950,000 0.0416
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Hence, the probability of having at least one successful bid would be 
greater than .5 since 1 − .44 = .56.

In Chapter 9, we will consider a generalization of this bidding decision 
situation in which the amount to be bid will be defined as a continuous 
decision variable and some of the outcomes will be defined as continu-
ous random variables. Such a decision situation will be modeled as a 
Monte Carlo simulation.

Material Review Questions

7.1 Influence diagrams represent decision situations in a (more, less) com-
pact form than a decision tree (choose one).

7.2 Which is the more natural way to represent a decision situation to a 
decision maker: an influence diagram or a decision tree?

7.3 In general terms, what does a decision tree represent?
7.4 A decision tree can contain “cycles” (true or false).
7.5 What are the two types of nodes in a decision tree?
7.6 What would be the error associated with having two separate out-

comes emanating from an outcome node as (a) demand for product 
will be greater than 1000 items and (b) demand for product will be 
greater than 1200 items?

7.7 The typical basic objective associated with an initial analysis of a deci-
sion tree is the determination of the best (initial decision or all deci-
sions) in the decision tree (choose one).

7.8 In a decision tree, one can have multiple branches entering a node (true 
or false).

7.9 The probabilities associated with the branches in a decision tree are 
either marginal or conditional probabilities (true or false).

7.10 The certainty equivalent (CE) for an outcome node in a decision tree is 
often represented by an expected monetary value (EMV) for that node 
(true or false).

7.11 In the “evaluation” of a decision tree, one will usually perform the cal-
culations working from (choose one):

 a. Right to left
 b. Left to right

7.12 What important theorem is often used to determine the conditional 
probabilities employed in a decision tree?

7.13 The quality of a predictor is typically indicated by what type of a 
probability?

7.14 What are the two types of conflicting measures that need to be consid-
ered in deciding whether or not to obtain and use the information from 
a predictor?



313Modeling Methodologies for Generating Probabilistic Outcomes

7.15 Give several examples of things that can be employed as predictors.
7.16 What is another name for “expected value of a perfect predictor?”
7.17 What are the values for the relevant conditional probabilities for a 

“perfect predictor?”
7.18 Both the “expected value of a perfect predictor” and the “expected 

value of an imperfect predictor” can be computed with decision trees 
(true or false).

7.19 The “expected value of a perfect predictor” will always be greater than 
or equal to the “expected value of an imperfect predictor” for a given 
decision situation (true or false).

7.20 Give the functional relationship between the following set of variables: 
EVOPP, EVWPP, and EVWAI.

7.21 Give the functional relationship between the following set of variables: 
EVOIP, EVWIP, and EVWAI.

7.22 What is a strategy associated with a decision tree?
7.23 Give an example of a strategy that is not “well defined.”
7.24 What is a risk profile associated with a strategy?
7.25 Why is it that strategies analyzed in detail are typically specified in 

terms of just the initial decisions, followed by “the decisions that maxi-
mize EMV following the initial decisions?”

Exercises

7.1 Consider the following risk profiles for two decision strategies: A and B.
The payoffs are given in tens of thousands of dollars.

A

Payoff 4 11 14 18
Probability .2 .3 .2 .3

B

Payoff 4 11 14 18
Probability .2 .2 .3 .3

Circle each of the following true statements:

 a. A stochastically dominates B.
 b. B stochastically dominates A.
 c. A deterministically dominates B.
 d. B deterministically dominates A.
 e. Neither A nor B stochastically dominates the other.
 f. Neither A nor B deterministically dominates the other.
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7.2 The payoffs associated with the decision tree as follows are given in 
thousands of dollars. Give the risk profile (in the form of a table) associ-
ated with strategy A–A1.

A

B

A1

A2.6

.7

.3

.4

.2

.8

–5

+10

+15

+15

–2

+20

7.3 A particular test for a certain type of disease gives a false-positive 
reading with a probability of .03 and a false-negative reading with a 
probability of .02. (A false-positive reading means that the test says a 
person does have the disease when he or she does not. A false-negative 
reading means that the test says a person does not have the disease 
when he or she does, i.e., the sensitivity of the test is 1 − .02 = .98 and the 
specificity of the test is 1 − .03 = .97.) In Louisville, it is estimated that 1 
person in 10,000 has the disease.
Sally, a person randomly selected from Louisville, has tested positive 
according to the test. What is the probability that she has the disease?

7.4 What are the two types of arcs that are used in an influence diagram 
and what are they used for? (Be as brief as possible in your answers)

7.5 What are the three types of nodes used in an influence diagram?
7.6 If strategy A deterministically dominates strategy B, then A also sto-

chastically dominates B (true or false).
7.7 The executives of a particular company are considering the national 

launch of a new product. The launch will be either a “success” (resulting 
in a payoff of $8 million) or a “failure” (resulting in a loss of $2 million).
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The initial estimates of the probabilities of success and failure are .8 
and .2, respectively. The company has the opportunity to contract with 
a marketing firm in order to conduct a study to determine whether 
or not the product will be a success. What would be the maximum 
amount that the company should pay this marketing firm for the study, 
assuming that the study would be a perfect indicator of the success of 
the product?

7.8 For the company in Exercise 7.7, data have been gathered as to the accu-
racy of studies made by the marketing firm. These data indicate the 
following conditional probabilities: P(study forecasts success|product 
is a success) = .95, P(study forecasts failure|product is a failure) = .9. 
What is the maximum amount that should be paid for this (imperfect) 
marketing study?

7.9 Consider the decision situation as described in Exercise 7.8. Enumerate 
all of the explicit strategies associated with this situation and give the 
risk profile associated with each strategy. Assume that the cost associ-
ated with using the firm for its imperfect predictor is $20,000.

7.10 Consider the decision tree of Figure 7.22 for the bidding decision exam-
ple. Develop an equivalent simplified decision tree with fewer nodes 
by “collapsing” the tree where appropriate.

7.11 Use the algebraic approach discussed in the chapter to perform a two-
way sensitivity analysis on the parameters—(a) probability of winning 
at Bid 2 and (b) probability of winning at Bid 3 for the bidding decision 
example—thus conveying the same information as in Figure 7.24. More 
specifically, determine an inequality with two variables (the respective 
probabilities of winning at Bid 2 and winning at Bid 3), for which one 
can supply values for these variables and thus determine whether to 
place a bid at the Bid 2 value or the Bid 3 value.
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8
Determining Probabilistic Inputs 
for Decision Models

8.1 Introduction

As the reader probably realizes from reading Chapter 7, random inputs are 
important for decision models. These inputs, usually represented by prob-
ability distribution functions, are used to represent system randomness 
or uncertainty. These functions, which can be obtained through analysis 
of data, through expert opinion, or through a combination of both, can be 
either discrete or continuous in nature. When the decision model is executed 
(or “run”), the values generated from these input distributions are called 
“random variates.”

The set of distribution functions used for a decision model, in terms of 
both the form of the function (e.g., normal, triangular, binomial, and empir-
ical) and the parameters (e.g., mean and standard deviation) of that func-
tion, can affect the ranking of the set of alternatives being considered. For 
example, the first-ranked alternative for staffing schedule for nurses in an 
emergency department at a hospital will obviously vary depending on the 
probability distribution used to represent patient arrivals. This is one of the 
main reasons for performing sensitivity analysis with a model—by deter-
mining which input distributions cause the greatest variations in the rank-
ings of alternatives, one can spend additional time and effort in analysis to 
specify these distributions.

In decision trees and influence diagrams, the input distributions corre-
spond to the outcome nodes (decision trees) and chance event nodes (influ-
ence diagrams). In particular, these could be distributions representing sales, 
percentage of population having a disease, and so on.

In more general simulation models used to aid in decision making, the 
input distributions can correspond to such things as the arrival pattern of 
customers/patients to a service system, the distribution associated with cat-
egorization of customers/clients/patients to a service system (e.g., percent-
ages of callers to a 911 call center who require service from police, EMS, or 
fire department or some combination of these services), the time required 
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to perform some activity (e.g., in a project simulation, the time required to 
perform each activity might be represented as a beta-distributed random 
variable), and so on.

The remainder of this chapter is separated into two main sections. The first 
section addresses methodologies to be used when data are available or can 
be obtained. The second section addresses the situation when data are not 
available and subjective estimates must be made.

8.2 Situation of Data Availability

In most cases, data will be available, or can be obtained, to aid in the estima-
tion of random inputs for a decision model. In many situations, organizations 
will automatically collect the relevant data. For example, manufacturing 
organizations will collect data on machine failures (time between failures 
and time to repair) and call centers collect data on patterns of incoming calls 
(rates by day and time of day and type of caller).

If data are available, as noted by Law (2007, p. 279), they can be used to form 
probabilistic inputs for models in any of three different ways:

 1. The data can be used directly as input to the model.
 2. The data can be used to form an empirical probability distribution to 

input to the model.
 3. A “theoretical” distribution, such as a triangular, normal, and bino-

mial, can be fit to the data.

As an example of the first approach, if a simulation model is being built to 
determine staffing levels at a fast-food restaurant, data could be collected 
on the arrival times, size of groups, and menu items ordered by groups of 
customers arriving at the restaurant from 6 to 9 a.m. The exact data associ-
ated with these groups would then be input for the simulation model. This 
approach of using the exact data as input might be appropriate for model 
validation/accreditation purposes, but rarely for experimentation in deter-
mining policies and decisions since the data may not represent a typical 
morning in the operation of the restaurant.

An empirical distribution, to be discussed in Section 8.2.5.1, is constructed 
in such a way that it will most closely represent the data collected; as such, 
an empirical distribution will also represent irregularities in the data more 
accurately than a theoretical distribution. However, a theoretical distribution 
(1) allows the generation of values outside the bounds of the data collected, 
(2) is typically more compact to represent within the simulation model than 
an empirical distribution, and (3) (because of the second point) will typically 
be easier to change than an empirical distribution. In addition, there may 
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well be a reason associated with the process itself to use a theoretical distri-
bution. For example, as noted in Chapter 5, the number of defective items in 
a sample taken from a group of items will correspond to a hypergeometric 
distribution, and the sample mean of a random variable, which is the sum 
of a number of independent, identically distributed random variables, will 
approximate a normally distributed random variable; the larger the number 
in the sample, the more closely the sample mean will be distributed approxi-
mately as a normal distribution.

At least a few researchers, however, have suggested that more emphasis 
should be placed on the use of empirical distributions than there is cur-
rently for the modeling of real systems. The reason for this is that irregulari-
ties do exist in real systems and they should be modeled as such and not 
“smoothed out.”

The bottom line is that the approach used out of the three mentioned ear-
lier should correspond to the purpose of the study. For purposes of valida-
tion/accreditation of the model, the actual data could be used as input. But 
for analysis and experimentation, one should use either an empirical distri-
bution or a theoretical distribution that is “fit” to the data.

8.2.1 Steps in Fitting a Distribution to the Data

If there are data available for analysis, the steps to be followed for determin-
ing the distribution function to represent those data for a decision model 
should be as follows:

 1. Determine which data to collect and how to collect them.
 2. Collect the data.
 3. Examine the data for any anomalies and/or outliers and take appro-

priate action with respect to these anomalies and/or outliers (e.g., 
removing data points collected in error, taking action with respect 
to correcting a bad situation, or treating data as if from different 
processes).

 4. Determine either an empirical or a theoretical distribution function 
to represent the data in the decision model.

8.2.2  Step 1: Determine Which Data to Collect 
and How to Collect Them

There are two types of input to a decision model: input that is qualitative 
in nature and input that is quantitative in nature. Typically, the qualitative 
input is determined first; examples of this type of input would be things like 
the alternative decisions under consideration, the performance measures, 
the potential outcomes associated with decisions, the number and types of 
scenarios under consideration, the steps associated with any processes being 
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modeled, and the resources required to perform the activities of a process. 
The quantitative input would include things like the probability distribu-
tions over various economic/demand scenarios, process times, time between 
failures, time to repair, categories of entities, and arrival rates by the type 
of customer/patient/client. Through interaction with experts/stakeholders 
involved with the system, the analyst gradually builds a conceptual decision 
model; as part of this development, the analyst should be able to determine 
the data to gather in order to form the probabilistic inputs required for the 
decision model. In many cases, this determination is straightforward, while 
in other cases, this determination is not straightforward.

Assume that the data collected for a particular process associated with the 
system are represented as X1,X2,…,Xn. These numbers could be such quanti-
ties as (1) times between arrivals of customers to a restaurant or of arrivals of 
patients to an emergency department of a hospital, (2) processing times asso-
ciated with an activity, (3) “indicators” of whether a forecast of some discrete 
variable is correct or not (where a 0 would represent an incorrect forecast 
and a 1 would represent a correct forecast), (4) the number of customers in a 
group entering a fast-food restaurant, (5) times required to repair a machine, 
or (6) the number of defective items in lots of part received from a vendor.

8.2.2.1 Independent Samples

When deciding which data to collect, the analyst should remember that 
the sample data collected should represent “independent samples” of the 
underlying distribution. One important reason for this requirement is that 
many of the statistical techniques (such as chi-square goodness of fit tests 
and maximum likelihood estimation) used to analyze the data assume this 
independence. Even when the samples are not independent though, the use 
of histograms is still valid.

Examples of situations involving dependent samples would include collec-
tion of sequential data on (1) times to perform an activity from a person who 
at the end of the day is getting more tired, (2) times between arrivals for 
patrons of a restaurant when some of those patrons arrive by bus and others 
arrive by car (see Example 8.2), and (3) processing times on a machine that is 
slowly deteriorating.

One way to check that the samples are independent is to examine the sam-
ple correlations between the pairs of numbers that are one, two, three, and 
so on, apart in the sequence of numbers. This can be accomplished through 
the use of a “scatter diagram” (to examine independence for samples that are 
one apart in the sequence) or a “correlation plot” (to examine independence 
for samples that are 1, 2, 3, etc., apart in the sequence).

A scatter diagram is just a plot of the data points: (Xi,Xi + 1) for i = 1,…,n−1, 
where Xi is the x-coordinate value and Xi + 1 is the y-coordinate. If the data 
values are all positive and are uncorrelated, then the points should appear 
to be “well dispersed” through the first quadrant. For example, Figure 8.1 
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shows a scatter diagram for 99 points derived from a series of 100 values: 
X1,X2,…,X100 representing independent samples for a uniform (0, 10) distribu-
tion. The points on the diagram are given by (X1,X2),(X2,X3),…,(X99,X100).

The points do appear to be dispersed appropriately through the first quad-
rant. Note that in order for the scatter plot to be correctly interpreted, its two 
axes should have the same scales.

If a positive correlation exists between sequential data points, then 
the points should appear along a line with a positive slope. For example, 
Figure 8.2 shows a scatter diagram for samples generated from 100 points for 
a uniform (a, b) distribution with a trend, as defined by an increment given 
to a and b for each sequential point sampled. In particular, a = 0 + .1i and b = 
10 + .1i to generate the Xi data point for i = 1,…,100.

A correlation plot shows the values for the sample correlations, denoted 
as r̂ j for j = 1,2,…,l (l is a positive integer) where r̂ j is an estimate of the true 
correlation ρj between two observations that are j observations apart in time, 
j is the x-axis coordinate, and r̂ j is the y-axis coordinate. Note that the sample 
correlation values for samples X1,X2,…,Xn are given by
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A scatter diagram for independent samples generated from a uniform (0, 10) distribution.
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where
S2(n) is the sample variance for the data
Ĉj is the sample covariance between two observations that are j apart

Ĉj is given by
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Note that the r̂ j’s will attain a value of between −1 and +1. The ideal values, 
to indicate independence, would be 0. However, since these are just esti-
mates of the actual correlations between two observations that are j observa-
tions apart, one should only expect their values to be “close to” 0 to indicate 
independence.

Example 8.1: Sample Covariances for Data 
from a Changeover Operation

Suppose that the following samples for changeover times (in minutes) 
have been collected for a coating operation.

 30.6, 24.5, 31.8, 44.3, 34.1, 25.4, 28.1, 35.5, 23.7, 28.6, 39.1, 33.4, 26.8, 27.2,
  31.1, 35.3, 25.6, 29.8, 33.9, 37.6, 26.5, 28.2, 22.1, 29.8, 39.3.
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FIGURE 8.2
A scatter diagram for samples generated from a uniform (a, b) distribution with a trend, where 
a = 0 + .1i and b = 10 + .1i for Xi.
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Hence, we have 25 samples (n = 25) and

 X 25 3 892 S 25 3 4366.2( ) . , ( ) .= =0 0

The values for the sample covariances are given in Table 8.1.
A correlation plot, corresponding to the r̂ j values shown in Table 8.1, is 

shown in Figure 8.3.

Except possibly for the value associated with r̂ j for j = 2, these correlations 
would be acceptable for the independence assumption.

In addition to being independent, the observations collected should repre-
sent the process correctly. These considerations (independence and correct 

–1
j

–0.8

–0.6

–0.4

–0.2
1 2 3 4 5 6 7

0ρ̂ j

0.2

0.4

0.6

0.8

1

0

FIGURE 8.3
Correlation plot for data of Example 8.1.

TABLE 8.1

Sample Covariances and 
Correlations for Data of Example 8.1

j Ĉj r̂rj 

1 1.333 0.043812
2 −17.347 −0.56995
3 −4.902 −0.16109
4 6.361 0.209007
5 −2.487 −0.08171
6 −4.924 −0.16177
7 6.636 0.218011
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representation) can often be related to such modeling aspects as categoriza-
tion of entities and identification of time periods. Examples 8.2 and 8.3 illus-
trate these considerations.

Example 8.2: Collecting Data on Interarrival Times 
for Customers of a Fast-Food Restaurant

An analyst has been asked to construct a simulation model of a fast-food 
restaurant in order to aid in determining workforce staffing policies for 
the restaurant. In the construction of the model, the analyst needs to col-
lect data on the interarrival times of the restaurant’s customers. Initially, 
the analyst collected data over specific time periods with respect to 
the interarrival times of individual customers. However, upon further 
reflection, the analyst determined that the customers arrived in groups, 
as determined by buses, automobiles, or groups of walk-in customers. 
Hence, data collected on the individual customer arrivals would not rep-
resent independent samples. Subsequently, the analyst collected data on 
interarrival times of buses, automobiles, and walk-in customers, as well 
as data on the sizes of each group.

Note that if we are concerned about interarrival times of customers to the 
restaurant in Example 8.2 (without regard to whether they arrived by walk-
ing, automobile, or bus), then the interarrival times of customers walking in 
from a bus will not be independent of walk-in customers.

Example 8.3: Collecting Data on Incoming 
Calls to an Emergency Call Center

In this example, a simulation model of a 911 call center for a metropolitan 
area is to be developed. The model is to be used as an aid in determin-
ing a schedule for the call takers and dispatchers in the call center. More 
specifically, the center’s management would like to know the number of 
call takers and dispatchers to assign to each of several predetermined 
shifts in order to minimize the number of staff hours while satisfying a 
constraint on the fraction of callers who wait longer than 12 seconds to 
have their call answered.

The calls received by the call center are initially answered by the 
call takers. The call taker then determines whether or not a response 
is required by emergency services (either police, fire, ambulance, or 
some combination of these). If a response is required, the call taker then 
gathers some basic information from the caller, such as the location and 
nature of the emergency. This information is then relayed to a dispatcher 
(or dispatchers if more than one type of emergency service is required) 
who communicates with the emergency responders.

A major input to the simulation model to be developed is the pattern 
of calls coming into the system. Typically, this pattern is represented as 
a nonstationary Poisson arrival process, but the analyst must still deter-
mine how to collect the data in terms of (1) categories of calls and (2) the 
time periods to be used in terms of unique arrival rates.
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For example, should the analyst collect arrival rate data for each sepa-
rate category of call (police, fire, ambulance, and every combination of 
these three) by time period? This approach would require much effort, 
especially when one considers that there would be seven different sets of 
arrival rates for which to gather data, since there are seven categories of 
calls corresponding to the combinations of responder types.

An alternative approach would be to assume that the fraction of calls 
associated with each combination of service required remains constant 
over time, and then the data could be gathered over the arrival rate “of 
all calls” by time period. This approach could represent an approxima-
tion to the actual system since, for example, the fraction of callers of any 
particular type might vary depending on when “rush hour” occurs; 
that is, the fraction of calls corresponding to traffic accidents could be 
expected to increase during rush hour.

As mentioned earlier, another consideration would be how the plan-
ning horizon is divided into time periods, for example, should the rate 
of incoming calls be allowed to vary by 30-minute periods, by 1-hour 
periods, or even by larger time periods? If, for example, the analyst 
builds a model that assumes that incoming calls arrive at a constant rate 
between 7 and 8 a.m. and therefore collects data during this time period 
over several days to estimate this rate, then the model may not accurately 
represent the system (for its purpose) if the rate varies greatly from the 
(7–7:30 a.m.) time frame to the (7:30–8 a.m.) time frame.

Certainly, information obtained from the system, decision makers, and 
stakeholders would be helpful to the analyst in making these decisions 
related to independence and correct representation. In Example 8.3, the sys-
tem management of the emergency call center might specify that the fraction 
of calls that require only police as compared to those that require police and 
fire department varies greatly between 7 and 8 a.m. on a Monday morning 
as compared to 10–11 p.m. on a Friday night, and the typical amounts of time 
required of the call taker to handle these two different call types are very 
different.

Obviously, the larger the number of states and entity categories used in 
a model, the more accurate that model will be. The question that the ana-
lyst needs to consider is whether that additional accuracy is worth the time 
and effort in terms of data collection and model building. This is where the 
experience of the analyst comes into play, not to mention sensitivity analysis 
performed after the initial model is constructed.

8.2.3 Step 2: Collect the Data

The data themselves could be collected from any of several different formats/
procedures. The examples would be from reports, observation, surveys, or 
interviews. In the case of observation, the analyst needs to be aware of the 
observational effect on the data themselves; for example, people may work 
faster if they know that they are being observed. In the case of surveys 
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or interviews, the analyst should be aware of any inherent biases on the part 
of those participating in the survey/interview. And, of course, the comments 
regarding independence and representative nature made previously should 
also be considered.

Reports may not be initially understandable to the analyst and hence may 
require interpretation from the management of the system.

8.2.4  Step 3: Examine the Data for Any Anomalies 
or Outliers and Take the Appropriate Action

Prior to the use of any “sophisticated” procedures for fitting a distribution 
to the data, the analyst should spend some time “looking at” the data in its 
more or less raw form. This would imply such things as considering “outli-
ers” in the data and viewing histograms of the data to determine any other 
anomalies in addition to the outliers found.

An outlier is loosely defined as a data point that is distant from other 
observations (Grubbs, 1969). The analyst should determine first if the outlier 
is a true data point or if it resulted in an error in the data collection process. 
For example, in Example 8.3 involving the emergency call center, the data 
for the processing time by the call taker were automatically collected by the 
system. For a data point, which corresponded to a call that began just prior to 
midnight and lasted past midnight, the program designed for computing the 
process time initially computed a time that was much longer than the actual 
time for this call (several hours for a call that came in a few minutes prior to 
midnight and finished a few minutes after midnight), an obvious error.

A second consideration with outliers is whether or not the outlying data 
point in question is representative of what actually happens in the system, 
even if the data point is a true data point. Consider a situation in which an 
analyst is collecting data on the arrival rates for the diners of a restaurant 
between 12 noon and 1 p.m. On a particular afternoon during which data 
are being collected, two busloads of diners arrive and the buses are operated 
by a particular tour operator. Instead of using these data without additional 
thought, the analyst should probably consult with the manager of the res-
taurant to determine how often this situation would occur. If the situation 
of two busloads of customers arriving almost simultaneously almost never 
occurs, the analyst (and restaurant management) might decide to delete the 
relevant data from analysis. On the other hand, a separate model might be 
developed just for this situation where two buses arrive simultaneously and 
contingency plans developed based on experimentation with this separate 
model.

In addition to discovering outliers, a rudimentary analysis of the data might 
reveal some opportunities for system improvement that would not require 
the development of a sophisticated decision model. Consider Example 8.4, 
involving data collected for the lead time on the refurbishment for a major 
component of the space shuttle.
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Example 8.4: Collecting Data on Time to Refurbish 
a Major Component of the Space Shuttle

The Space Shuttle (with the official name of the Space Transportation 
System) was one of the most complex pieces of machinery ever devel-
oped. The various individual ships flew 135 missions from 1981 until its 
retirement in 2011. The maintenance and refurbishment of an individual 
shuttle between flights required thousands of individual tasks, thus 
resulting in a complex problem in project management.

An industrial engineer was developing a simulation model to aid in 
the design of an inventory control policy for major components of the 
space shuttle. The data collected for the lead time (in days) for one of 
these components are shown in the following: 222, 171, 924, 210, 188, 902, 
218, 183, 882, 865, 215, 167, 205, 245, 915, 885, 226, 198, 216, and 891.

Ordering these data from the smallest to largest value gave the follow-
ing data points: 167, 171, 183, 188, 198, 205, 210, 215, 216, 218, 222, 226, 245, 
865, 882, 885, 891, 902, 915, and 924.

Arranging the data into intervals of 20-day width, as shown in Table 8.2 
and Figure 8.4, the engineer noted that that there were two groupings of 
the data: those data points within the 161–260-day range and those within 
the 861–940-day range. Rather than just trying to fit a theoretical distri-
bution function to the raw data, she decided to spend additional time by 
interviewing the relevant personnel involved to determine if the instances 
involving refurbishment within the 861–940-day range could be eliminated. 
When it was discovered that these instances could not be eliminated, she 
decided to fit two separate distribution functions to the data, one function 
for the days in the 161–260-day range and one function for the 861–940-day 
range, with 65% of the points generated within the first range and 35% of 
the points generated for the second range, as suggested by the data.

Example 8.4 illustrates the value of a “stand-alone” simple analysis of the raw 
data, prior to any sophisticated analysis.

As seen from Example 8.4, part of a rudimentary analysis of the data would 
involve forming histograms corresponding to that data. A histogram allows 

TABLE 8.2

Lead Time to Refurbish a Major Component of the Space Shuttle

Lead Time Interval (Days) (Inclusive Endpoints) Number of Occurrences 

161–180 2
181–200 3
201–220 5
221–240 2
241–260 1
861–880 1
881–900 3
901–920 2
921–940 1
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the decision maker to view the data in a more coherent way than just view-
ing the raw data as numbers. Once a histogram is formed, anomalies can be 
more easily identified; in addition, the histogram can be easily compared to 
graphs of theoretical density functions.

A histogram can be described as a plot of the number of data points that 
fall into each of a series of equal-width cells. Therefore, in forming a histo-
gram, the decision maker must make decisions with respect to the number 
and width of the histogram’s cells. Sturges’s rule (see Law, 2007, p. 319) for 
specifying the number of cells, k, to use in a histogram for continuous data 
collected is as follows:

 k 1 log n rounded to the nearest integer,2= +[ ],  (8.1)

where n is the number of data points collected. The specific values for k as a 
function of n for Sturges’s rule are shown in Table 8.3. Note that the values 
for k in Table 8.3 are rounded to the nearest integer.

In using Sturges’s formula given in Equation 8.1, the assumption is that any 
data points associated with anomalies and outliers have been removed. For 
example, in applying Sturges’s formula to the data given in Example 8.4, the 
formula would be applied first to the set of data corresponding to the lead 
times within the interval of 167–245 days and then the lead times within the 
interval of 865–924 days. Since there are 13 data points with values within the 
[167, 245], the number of cells in the histogram for these data points accord-
ing to Sturges’s rule should be

 k 1 log 13 4 7 5.2= + = »[ ( )] .
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FIGURE 8.4
Lead times (in days) for time to refurbish a major component of the space shuttle.
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Dividing the width of the entire interval by the number of cells gives the 
width of the cells in the histogram:

 

( )
.

245 167
15 6.

- =
5

Therefore, the cells for the histogram for the first set of data points in 
Example 8.4 would be [167, 182.6), [182.6, 198.2), [198.2, 213.8), [213.8, 229.4), and 
[229.4, 245].

Note that the cells are set up so that they cover the entire interval in which 
the data points are contained and that the intersection of any two cells is the 
null set, thereby not allowing for the possibility of any data point falling in 
more than one cell.

With the cells given earlier, the number of data points in each of these cells 
are given as 2, 3, 2, 5, and 1, respectively; the resulting histogram appears in 
Figure 8.5.

TABLE 8.3

Suggested Values for the Number of Cells (k) 
for a Histogram as a Function of the Number of 
Data Points (n) from Sturges’s Rule

n k 

10 4
50 7

100 8
1000 11
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FIGURE 8.5
Histogram formed using Sturges’s rule for the first set of data in Example 8.4.
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8.2.5  Step 4: Determine Either an Empirical Distribution 
or a Theoretical Distribution Function to 
Represent the Data in the Decision Model

Suppose that steps 1 through 3 have been completed and therefore any out-
liers have been removed; in addition, the data collected are “independent” 
and represent a single process, as opposed to multiple processes as we had 
in Example 8.4. The data collected from a process, denoted as X1,X2,…,Xn, are 
now to be “fit” with a probability distribution that represents the process 
that generated the data in the first place. As suggested earlier, there are two 
possibilities to consider at this point: an empirical distribution or a theoreti-
cal distribution.

8.2.5.1 Fitting an Empirical Distribution to the Data

Let’s consider the use of an empirical distribution first. If the process repre-
sents a discrete random variable, the approach is very intuitive—just use the 
proportion of data points with a particular value as the relevant probability. 
Example 8.5 illustrates this approach.

Example 8.5: Fitting an Empirical Distribution Function for the 
Number of Customers in a Group Entering a Fast-Food Restaurant

Suppose that an analyst wants to estimate the distribution function for 
the number of customers in a group that enters a fast-food restaurant 
from 7 to 8 a.m. on a typical weekday morning. The analyst has collected 
the following observations from several representative weekdays over 
the 7 to 8 a.m. time period for the number of customers in a group enter-
ing the restaurant: 1, 3, 2, 2, 1, 1, 1, 4, 3, 2, 2, 3, 6, 4, 2, 1, 3, 2, 2, 3, 5, 3, 2, 1, 1, 
1, 2, 2, 2, 4, 2, 2, 3, 2, and 4.

The number of data points corresponding to the various values are 
given by the following:

• Number of 1’s: 8
• Number of 2’s: 14
• Number of 3’s: 7
• Number of 4’s: 4
• Number of 5’s: 1
• Number of 6’s: 1

Hence, an empirical density function used for this case would be given as 
Table 8.4 (where, since the probabilities are given to two decimal places, 
some are rounded off so that the sum of the probabilities will be 1). 
The corresponding distribution function is given in Table 8.5.

If the data represent a continuous random variable, there are several approaches 
that one might use to form the continuous empirical distribution function to 
represent these data. Intuitively, the distribution function, F(x), should be one 
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that increases most rapidly in the regions where there are many data points. 
Also, in order to be a valid distribution function, F should be monotonically 
increasing, with a minimum value of 0 and a maximum value of 1.

Suppose that the data X1,X2,…,Xn are reordered from smallest to largest 
value so that X(i) represents the ith smallest value for i = 1,…,n. Law (2007) 
suggests three different functions that can be used as an empirical distri-
bution function, as shown below. Note that (8.2) through (8.4) is the first 
approach, while (8.5) and (8.6) represent the second and third approaches, 
respectively.

 F x for x X 1( ) , ,( )= <0  (8.2)
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 = >, ,( )1 x X n  (8.4)

TABLE 8.5

Empirical Discrete Distribution Function for the Number 
of Customers in a Group Entering a Fast-Food Restaurant 
between 7 and 8 a.m. on a Typical Weekday Morning

x F(x) = Pr(X ≤ x) 

1 0.23
2 0.63
3 0.83
4 0.94
5 0.97
6 1

TABLE 8.4

Empirical Discrete Density Function for the Number of 
Customers in a Group Entering a Fast-Food Restaurant 
between 7 and 8 a.m. on a Typical Weekday Morning

x Pr(X = x) 

1 8/35 = 0.23
2 14/35 = 0.4
3 7/35 = 0.2
4 4/35 = 0.11
5 1/35 = 0.03
6 1/35 = 0.03
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Note that each of these three functions behaves in a way that one would intu-
itively expect in order to represent the data—that is, the functions increase 
most rapidly in value in regions where there are many data points.

The functions given in (8.2) through (8.5) provide values for F for any 
value of x, while the function given in (8.6) only provides values for F at the 
data points. In addition, the functions shown in (8.2) through (8.4) and (8.6) 
assume that each of the data points is distinct. This is not a major difficulty 
if the data represent a continuous random variable.

The advantage of the third function, given by (8.6), is that it allows the 
possibility of generating random variate values larger than the largest data 
point; the other two functions do not allow for this.

Finally, the function F given in (8.2) through (8.4) assumes a linear interpo-
lation between the data points, while the function F given in (8.5) provides a 
step function for the relevant distribution.

A numerical example for these functions is shown in Example 8.6.

Example 8.6: Empirical Distribution Functions 
for Representing Changeover Times

Consider the data used for Example 8.1, involving the changeover times 
for a coating operation. In order to have each of the data points unique, 
let’s suppose that the second value of 29.8 minutes was actually 29.9 min-
utes. The modified data set is shown as 30.6, 24.5, 31.8, 44.3, 34.1, 25.4, 28.1, 
35.5, 23.7, 28.6, 39.1, 33.4, 26.8, 27.2, 31.1, 35.3, 25.6, 29.8, 33.9, 37.6, 26.5, 28.2, 
22.1, 29.9, and 39.3.

Since the values are distinct, we can employ any of the three func-
tional representations shown earlier. Reordering the data points from 
smallest to largest value gives us 22.1, 23.7, 24.5, 25.4, 25.6, 26.5, 26.8, 27.2, 
28.1, 28.2, 28.6, 29.8, 29.9, 30.6, 31.1, 31.8, 33.4, 33.9, 34.1, 35.3, 35.5, 37.6, 39.1, 
39.3, and 44.3.

The values for the three different formulations of F for a few of the data 
points are shown in Table 8.6.

A graph for the first representation of F, as given by Equations 8.2 
through 8.4, is shown in Figure 8.6.

Note that the graph rises more rapidly in regions with more data 
points (and conversely less rapidly in regions with fewer data points). 
For example, the slope of the graph from X(24), 39.3, to X(25), 44.3, is very 
small.

Note also that these representations do not necessarily fully specify 
the distribution functions. For example, for the second representation 
given in Table 8.6, the value for x at which F(x) = 0 must be specified, and 
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for the third representation given in Table 8.6, the values for x at which 
F(x) = 0 and F(x) = 1 must both be specified.

The second representation for F allows for the generation of random 
variate values that are less than the smallest data point; in particular, 
Pr(x ≤ 22.1) = .04, so as long as Pr(x = 22.1) ≠ .04, such random variate val-
ues will be possible. By the same token, the third representation allows 
for the generation of random variate values that are smaller than the 
smallest data value or larger than the largest data value.

As the number of data points (n) becomes larger, the three representa-
tions for F will more closely approximate each other.

The representation of the continuous empirical distribution function varies 
according to the simulation software package employed. For example, the Arena 
simulation software package employs the representation given by Equations 8.2 
through 8.4, involving the linear interpolation between data points.

22
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FIGURE 8.6
Empirical distribution function graph resulting from Equations 8.2 through 8.4.

TABLE 8.6

Values for Various Representations of the Empirical Distribution 
Function

Data Point 
F Value from 

Equations 8.2 through 8.4 
F Value from 
Equation 8.5 

F Value from 
Equation 8.6 

X(1), 22.1 0 0.04 0.02
X(5), 25.6 0.166666667 0.2 0.18
X(9), 28.1 0.333333333 0.36 0.34
X(13), 29.9 0.5 0.52 0.5
X(17), 33.4 0.666666667 0.68 0.66
X(21), 35.5 0.833333333 0.84 0.82
X(25), 44.3 1 1 0.98
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8.2.5.2 Fitting a Theoretical Distribution to the Data

As noted earlier in this chapter, it is usually preferred to fit a theoretical 
distribution function as opposed to an empirical distribution function to the 
data. There are two aspects of fitting a particular theoretical distribution to 
the data: (1) choosing a correct family of distributions (e.g., normal, exponen-
tial, uniform) and (2) choosing the best parameter values associated with the 
distribution. We will discuss the choice of a particular family of distribu-
tions first.

In some situations, there may be an underlying reason to employ (or to not 
employ) a particular theoretical distribution function. Examples of situations 
that would call for a particular discrete distribution would include

 1. The number of items in a sample from a population with a particular 
characteristic, when the sampling is done with replacement (bino-
mial distribution)

 2. The number of items in a sample from a population with a particu-
lar characteristic, when the sampling is done without replacement 
but the sample size is “small” relative to the size of the population 
(approximate with a binomial distribution)

 3. The number of items in a sample from a population with a particu-
lar characteristic, when the sampling is done without replacement 
but the sample size is “large” relative to the size of the population 
(hypergeometric distribution)

 4. The number of “events” occurring within each of several consecu-
tive time periods (nonstationary Poisson process)

With respect to the second situation, Burr (1953) notes that if the size of the 
population is at least eight times the size of the sample, the binomial is an 
appropriate approximation to the hypergeometric. One of the main reasons 
for employing a binomial distribution instead of a hypergeometric would be 
its simplicity.

An example of the “events” referred to in the fourth situation would be 
customer arrivals to a service system such as a hospital emergency depart-
ment, a branch bank office, and a restaurant.

For situations involving a continuous random variable, Law (2007, Chapter 6), 
in his book notes several examples in which a particular distribution might 
be used. For example, the uniform distribution can be appropriate for situ-
ations in which little is known about the underlying process, the gamma or 
Weibull distributions often represent the time to complete a task, and the 
normal distribution can be used to represent the sum of a large number of 
independent, identically distributed quantities (by the central limit theorem).

By the same token, there are certain distributions that should not be used 
in particular situations. For example, one should not employ a distribution 
that can result in negative random variate values for nonnegative quantities. 
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For this reason, instead of using an unmodified normal distribution with say 
a mean of 4 and a standard deviation of 10, one might employ a truncated 
normal distribution for representing task duration, which obviously cannot 
be negative.

In addition to the use of prior knowledge, one might employ summary 
statistics of the data to help identify an appropriate distribution function. 
For example, for a symmetric distribution, the mean must equal the median; 
hence, if the sample mean associated with the data is not at least “close” to 
the sample median, a symmetric distribution is probably not appropriate.

Once a theoretical distribution has been identified as being appropriate, 
then one only has to identify the appropriate parameter values. The param-
eters associated with a particular family of distributions depend upon the 
family. For example, for a normal distribution function, the parameters that 
will completely define its density and distribution functions are its mean (μ) 
and standard deviation (σ), while for the uniform distribution, these param-
eters are its minimum (a) and maximum (b) possible values.

As an example, for the distribution associated with the number of defec-
tive items in a sampling (with replacement) of items, the parameters would 
be (1) the probability that a randomly selected item is defective and (2) the 
sample size.

Any of several different methods can be used to select the parameter val-
ues for a specific distribution and data set. One frequently used approach is 
maximum likelihood estimation. (See Myung, 2003, for a tutorial on maxi-
mum likelihood estimation.) This approach relies on the choice of a param-
eter value that maximizes a likelihood function of that parameter given the 
set of data collected. More specifically, the likelihood function represents the 
“likelihood” that a particular parameter value is correct, given a particular 
set of data. For a discrete distribution, this would be just the product of the 
probabilities associated with the individual data values; that is, the likeli-
hood function is given by

 L X X X P X P X P Xn n( | , , , ) ( ) ( ) ( ),q q q q1 2 1 2¼ = ¼

where
θ represents the set of parameters
X1,X2,…,Xn is the set of data points
Pθ(Xi) is the relevant density function value associated with the data 

point Xi

Note that we can express the likelihood as a product of the individual prob-
abilities since the data are independent samples.

If the distribution function under consideration represents a continuous 
random variable, then the likelihood function is just the product of the den-
sity function values for the data collected.



336 Multiple Criteria Decision Analysis for Industrial Engineering

Example 8.7 illustrates the calculation of the likelihood function values for 
a small set of data for a Poisson distribution.

Example 8.7: Computation of Likelihood Function 
Values for a Poisson Distribution

Suppose that three data points have been collected to represent the num-
ber of customers in a group entering a fast-food restaurant, as given by 
X1 = 2, X2 = 3, and X3 = 2. The Poisson distribution function (with param-
eter λ, representing the mean of the random variable) is given by
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Therefore, the likelihood function, for this set of three data points, is 
given by
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And various likelihood function values for respective values of λ are 
shown in Table 8.7.

Note that the value of λ in Table 8.7 that maximizes the likelihood function 
is the one that corresponds to the sample mean for the data. This will always 
be the case—that is, the maximum likelihood estimator for the Poisson dis-
tribution will always be the sample mean value for the data.

As with the Poisson distribution, the maximum likelihood estimates for 
the parameter values will often correspond to the respective values for sam-
ple statistics.

TABLE 8.7

Likelihood Function Values for Various Values of λ 

λ L(λ) 

1 0.002075
2 0.0132
2.3333 0.014307
3 0.011246
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For at least a few density functions, the maximum likelihood estimates 
based on data collected may not be the best parameter values to use. For 
example, the maximum likelihood estimates for the parameters of the uni-
form distribution are the minimum and maximum data values. Yet if one 
chooses these values for the parameters for a fitted uniform distribution to 
be used in a decision model, then that model would not be able to generate 
any values for the relevant variable that are less/greater than the minimum/
maximum data value. Since such extreme values can greatly affect the mod-
el’s behavior, the use of a minimum that is less than the minimum data value 
and a maximum that is greater than the maximum data value makes sense. 
Hence, sometimes, the software package used for fitting a distribution to the 
data will employ a heuristic approach to generate the parameters for specific 
distributions.

In order to test how well a particular distribution fits the data, any of sev-
eral procedures can be applied. For example, the decision maker might just 
visually compare a histogram for the data to a graph of the distribution func-
tion. If this procedure is used, the decision maker should employ several dif-
ferent histograms with varying widths for the cells of the histogram.

A more sophisticated approach would involve the use of the square error 
criterion. The square error is given by
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where
fi is the relative frequency of the data within the ith interval of a histogram 

for the data
f(xi) is the probability that the random variable associated with the hypoth-

esized distribution would fall in the ith interval of the histogram
k represents the number of cells of the histogram

Finally, one could employ a “goodness of fit” procedure such as the chi-
square goodness of fit test, the Kolmogorov–Smirnov (K–S) goodness of fit 
test, or the Anderson–Darling test. These tests rely on an approach called 
“hypothesis testing” from the field of statistics. Basically, one is testing the 
null hypothesis (H0) that the Xi data points are independent, identically dis-
tributed random variables corresponding to the hypothesized distribution 
function. A problem with hypothesis tests of this type is that failure to reject 
the null hypothesis should not be interpreted as accepting it as true, but only 
that there is not enough evidence to reject it. In addition, as noted by Law 
(2007, p. 340), when the amount of data are not very large, these tests are not 
very good at recognizing differences between the data and the hypothesized 
distribution, which means that H0 will not be rejected; on the other hand, if 



338 Multiple Criteria Decision Analysis for Industrial Engineering

there are a lot of data, H0 will almost always be rejected since it will never 
be exactly true. For these reasons, it is usually a good idea to just view the 
hypothesized distribution function superimposed over a histogram of the 
data and to also look at the value of the square error in evaluating various 
hypothesized distributions.

The chi-square test involves computing the number of data points in each 
of several adjacent intervals and comparing these numbers to what they 
would be if hypothesized distribution is correct. More specifically, the steps 
of the procedure are as follows:

 1. Divide the entire range of the fitted distribution into k adjacent inter-
vals, [b0,b1),[b1,b2),…,[bk–1,bk), where b0 could be –∞ and/or bk could 
be +∞.

 2. Compute Nj = number of Xi’s in the jth interval, [bj–1,bj), for j = 1,2,…,k. 
(Note that n Nj

j 1

k
= å =

 is the number of data points.)

 3. Compute pj as the expected probability of having a data point occur 
in the jth interval if the fitted distribution is correct. Note that pj will 
be computed with an integral for continuous data and with a sum-
mation sign for discrete data.

 4. Compute the chi-square test statistic, c2 2

1
= -

=å (( ) )N np npj j j
j

k
/ .

The smaller the value of χ2, the better the fit of the distribution to the data. 
More specifically, the null hypothesis should be rejected at the 1 − α level 
if the test statistic, χ2, is greater than c ak- -1 1

2
, , the critical value from the chi-

square distribution with (k − 1) degrees of freedom. (Note that k is the num-
ber of intervals used in the process.)

A major difficulty with conducting the chi-square test is how to choose 
the intervals. A typical approach involves choosing the intervals so that 
p1 ≈ p2 ≈ p3 ≈ ⋯ ≈ pk (called the equiprobable approach). Example 8.8 illustrates 
this approach.

Example 8.8: Choosing Intervals for the Chi-Square 
Test Using the Equiprobable Approach

Suppose that the fitted distribution is the normal distribution with a 
mean of 10 and a standard deviation of 2. Suppose also that we have n = 
100 data points and that we want to have k = 10 intervals. Now, using 
the equiprobable approach, we would have pj = 1/k = 1/10 = .1 for j = 
1,2,…,10. Set b0 = –∞; then b1 must satisfy that the integral of the hypoth-
esized normal distribution evaluated from –∞ to b1 must have a value 

of .1 or ˆ .f(x)dx
b

-¥ò =
1

0 1, or PR(η (mean = 10, std. dev. = 2) ≤ b1) = .1, or 

PR(Z < = (b1–10)/2) = .1, or (b1–10)/2 = –1.28, or b1 = 7.44.
Similarly, b2 = 8.3. So the first two intervals are [–∞,7.44),[7.44,8.3). And 

then one would follow the same approach for determining the remain-
ing intervals.
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Another general guideline as stated in Law (2007, p. 344) is that in the equi-
probable case, if k (the number of intervals) is greater than or equal to 3 and 
npj (over all intervals) ≥5, then the test will be approximately valid for the 
all parameters known case, as shown through extensive testing by Yarnold 
(1970).

The K–S tests basically compare an empirical distribution function 
(derived directly from the data) to the hypothesized distribution function. 
Its main advantage, as compared to the chi-square tests, is that these tests do 
not require a grouping of the data (into intervals), which therefore eliminates 
the troublesome problem of interval estimation.

The K–S tests tend to be more powerful than chi-square tests for many alter-
native distributions (Stephens, 1974); however, the range of applicability for 
the K–S tests for various distributions is limited, and for discrete data, they 
must use a complicated set of formulas as compared to the chi-square tests.

There are several software packages available for fitting a distribution to a 
set of data, including the EasyFit™ (EasyFit, 2013), Arena Input Analyzer™ 
(Kelton et al., 2015), StatTools™ (Palisade StatTools, 2013), and Stata™ (Stata, 
2013). These software packages typically will allow a user to either specify a 
particular distribution function and then find the set of parameter values for 
that distribution function that will allow a “best fit” to the data; or the soft-
ware will perform a “complete enumeration” of the various possible families 
of distributions, along with a procedure (heuristic or exact) to choose the 
parameter values that best fit the data for that particular family. Various tests 
will be made over each of the distributions fit in order to determine the dis-
tribution that best fits the data.

Example 8.9 illustrates the some of the calculations involved in evaluating 
how well a hypothesized distribution fits a set of data.

Example 8.9: Evaluating the Fit of a Hypothesized 
Distribution to Process Time Data

Suppose that the data on a process time (in minutes) have been collected. 
Twenty-five data points have been collected: 5.43, 4.23, 4.46, 6.18, 7.36, 7.28, 
4.45, 6.14, 4.75, 7.89, 7.55, 7.36, 6.97, 5.84, 4.91, 5.64, 6.63, 7.41, 4.52, 7.18, 5.79, 
4.33, 7.81, 5.21, and 7.60.

The hypothesized distribution is a uniform distribution with a mini-
mum of 4 minutes and a maximum of 8 minutes. (Note that the parameter 
value of 4 is smaller than any of the data points and that the parameter 
value of 8 is larger than any of the data points, as should be the case in 
choosing the best parameter values for a uniform distribution.)

Let’s choose our intervals for the histogram as [4, 5), [5, 6), [6, 7), and [7, 8). 
This choice satisfies the equiprobable condition, with pj = .25 for j = 1,…,4. 
This choice of intervals also satisfies the conditions given by Yarnold 
(1970) since npj = 25(.25) = 6.25 for all j, which is greater than the value of 5.

Now, the number of data points in each of the four respective intervals 
of the histogram is given by 7, 5, 4, and 9. Hence, the square error is given 
by (7/25 – .25)2 + (5/25 – .25)2 + (4/25 – .25)2 + (9/25 – .25)2 = .0236.
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The chi-square test statistic is given by
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Now, we have k = 4 since we have four intervals for our histogram. If we 
let α = .05 (i.e., we are conducting the test at the 1 – α = .95 or 95% level), 
then we have c ca

2
1 1

2
3 95 7 815k- - = =, ,. .  (from a table of values). Since the 

test statistic is not greater than the critical value from the chi-square 
distribution, we fail to reject the null hypothesis. Therefore, we would 
accept the uniform distribution with a minimum value of 4 and a maxi-
mum value of 8 as a good fit for the data.

Example 8.10 illustrates the use of a software package for fitting a distribu-
tion to a set of data.

Example 8.10: Fitting a Distribution to the Number of Calls 
Made to an Emergency Call Center within an Interval of Time

A simulation model was constructed for the 911 call center of a major 
metropolitan area. The purpose of the model was to determine workforce 
staffing levels over a typical weekly period. Out of several types of input 
data for the model, one of the most important was the pattern of incom-
ing calls. Through interaction with the manager of the system, the analyst 
charged with building the model determined that the probability distri-
butions representing the incoming calls could be treated as varying by 
2-hour periods according to the day of week. In particular, there were 48 
different probability distributions that needed to be determined in order 
to represent the incoming calls: 12 midnight–2 a.m., 2–4 a.m.,…, 10 p.m.–
12 midnight for any Monday through Thursday and 12 midnight–2 a.m., 
2–4 a.m.,…, 10 p.m.–12 midnight for each of Friday, Saturday, and Sunday.

The analyst wanted to check to see if the probability distribution for 
the number of calls in a 2-hour period was approximately normally 
distributed. Of course, this would not be exactly true since the num-
ber of calls must be integer, but since the number was large, the normal 
distribution might be good enough through the use of a rounding pro-
cess. In particular, a normal distribution is a good approximation to the 
Poisson distribution if the mean for the Poisson is greater than 10 and 
the variance of the normal is approximately equal to the mean. For the 
data analyzed here, the sample mean was approximately 191, and the 
sample variance was approximately 185. Hence, the normal distribution 
was taken as a good approximation to the Poisson.

Data were collected on the number of calls received from 10 a.m. to 
12 noon on 44 different Fridays. The 44 data points were as follows: 
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174, 198, 182, 205, 213, 202, 168, 172, 176, 162, 190, 197, 194, 181, 196, 201, 198, 
220, 195, 195, 184, 191, 217, 181, 205, 191, 208, 196, 195, 175, 194, 197, 181, 191, 
188, 201, 184, 200, 155, 188, 200, 204, 190, and 185.

A number of different distributions were hypothesized, and estimates 
(using maximum likelihood estimation) were made of the relevant param-
eters. Results for this analysis, which were generated from Arena’s Input 
Analyzer are shown in Table 8. A graph of the hypothesized normal distri-
bution, superimposed over a histogram of the data, is shown in Figure 8.7.

In Table 8.8, the p values for the chi-square and K–S tests are the largest values 
of type I error probability that allows the respective distribution to fit the data; 
specifically, the higher the p value, the better in terms of the distribution’s fit.

The reader will note that the normal distribution provides the best fit in 
terms of square error. However, the rankings of the various distribution 
functions vary according to the evaluation test used. For example, whereas 
the normal distribution performs best under the square error criterion, the 
triangular distribution ranks first according to the chi-square test.

8.3 What to Do If Data Are Not Available

There will be situations where data are not available to form the probability 
distributions needed for a decision model. Examples of these situations include 

FIGURE 8.7
A histogram of the number of calls as compared to a graph of the fitted normal distribution. 
(Output from Arena’s Input Analyzer.)

TABLE 8.8

Fitness Measures for Various Hypothesized Distributions

Distribution (with 
Parameter Values) Square Error Chi-Square p Value K–S Test p Value 

Normal (191, 13.4) 0.018345 0.0849 >0.15
155 + 65∗Beta(2.59,2.04) 0.026387 0.0311 >0.15
Triangular (155,199, 220) 0.020414 0.157 >0.15
155 + Weibull (39.1, 2.15) 0.049815 <0.005 0.0937



342 Multiple Criteria Decision Analysis for Industrial Engineering

cases where either there is not enough time available to collect and analyze the 
data or the decision situation is so novel that data are not available. In these 
situations, expert opinion may be employed to form the required distributions.

There are two cases to consider with respect to obtaining estimates from 
subject matter experts in order to estimate input probability distributions 
for a decision model—the first to be addressed will be the situation involv-
ing discrete random variables and the second situation involves continuous 
random variables.

8.3.1 Fitting a Discrete Distribution When Data Are Not Available

A discrete distribution function for a decision model can be applicable either 
as an approximation for a continuous random variable or as an “exact rep-
resentation” for a discrete random variable. For an example of the first case, 
one might consider an uncertain demand for a product that will range from 
1000 to 2000 in number as a continuous random variable; however, in order 
to simplify a resulting decision model (say, for a decision tree), the demand 
for the product might be represented as the following: high (1950), moder-
ately high (1700), medium (1500), moderately low (1300), or low (1050).

With respect to the second case in which the uncertain quantity to be rep-
resented would be naturally a discrete random variable, examples would 
include (1) the number of customers in a group entering a fast-food restau-
rant (1, 2, 3, 4, 5, 6, or larger), (2) the outcome associated with a medical test 
(positive or negative), (3) the number of defects found in a part (0, 1, 2,…), (4) 
the outcome associated with inspection of a part (good or defective), and (5) 
the number of defective items in a sample of 5 randomly selected items from 
a lot of 10 items (0, 1, 2, 3, 4, 5).

Another way to classify the situation involving the fitting of a discrete distri-
bution to the data involves whether the discrete distribution to be determined is 
empirical or theoretical in nature. Examples of the former would be cases 1, 2, 3, 
or 4 mentioned in the previous paragraph, while an example of the latter would 
be case 5 in the previous paragraph, involving the number of defective items in 
a sample taken from a larger lot. More specifically, as mentioned in Chapter 5, 
the number of defective items randomly sampled from a homogeneous lot of 
items will be a random variable with a hypergeometric distribution.

If the discrete distribution to be determined is empirical in nature, then 
specific probabilities associated with the various outcomes need to be esti-
mated. This occurs, for example, in the case of a discrete chance node for a 
decision tree or influence diagram. Let’s consider the hypothetical example 
of the decision tree in Chapter 7, specifically Figure 7.1 and outcome node 4. 
The outcomes associated with this node are “good market” and “bad mar-
ket.” The probabilities that need to be determined are probability of a good 
market and probability of a bad market.

One very commonly used approach that might be employed would be to 
just ask an expert or a group of experts the probability of the occurrence of 
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a good market. Then, the probability of a bad market would, by default, just 
be (1 - the probability of a good market). If there are more than two branches 
emanating from the relevant outcome node, then the subject matter experts 
would assess the probabilities associated with all of the branches but one, with 
the probability associated with the last branch being implicitly determined.

A second way to assess the probabilities associated with an empirical dis-
crete distribution involves an implicit approach in which hypothetical “bets” 
are placed by the subject matter experts. In this way, the experts provide 
amounts to bet (deterministic quantities) rather than probabilities.

The basic idea would be to first ask the subject matter experts to rank the 
various outcomes in terms of decreasing probabilities of occurrence. Then 
taking the most likely outcome first, the subject matter expert is asked to 
determine the specific amount of money to win or lose such that he or she is 
indifferent as to which side of a hypothetical bet to take. Then, an equation 
can be formulated such that the expected values for each side of the bet are 
equal; the equation has one unknown, the probability being sought. This 
approach assumes that the subject matter expert(s) is (are) risk neutral.

As an example, consider a hypothetical example in which a major defense 
contractor has a contract to refurbish a new weapons system for the U.S. 
Navy. In order to estimate manpower requirements, costs, and so on, a simu-
lation model of the refurbishment process has been developed. One part of 
the model involves the possible repair of a major component of the system. 
Since the system and component are new, there is no directly applicable data 
that can be used to estimate the condition of the major component. However, 
the subject matter experts do have familiarity with similar systems and 
components; this familiarity allows them to make informed estimates with 
respect to the condition of the system component.

The model requires the probabilities associated with the following outcomes:

 1. No repair required
 2. Minor repair required
 3. Major repair required

Suppose that the subject matter expert thinks that of these three outcomes, 
minor repair is most likely, with no repair next, and finally major repair least 
likely. The subject matter expert would be asked to set values for X and Y 
such that he or she would be indifferent between the following two options:

Option 1—Bet $X to win $Y if a randomly selected unit of the compo-
nent requires minor repair; lose the $X if the component does not 
require minor repair.

Option 2—Do not bet.

Now, the subject matter expert would be expected to “hone in” on the 
values for X and Y such that he or she is indifferent to these two options; 
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in addition, the values for X and Y should be set in such a way that, even 
though the situation is hypothetical in nature, the subject matter expert 
would “care” about the two options. Finally, the value for Y may be “set” at 
a particular value, while the value for X would be adjusted until indiffer-
ence is achieved.

Let’s suppose that if Y is set at $1400, the value for X must be $700 in order 
for the subject matter expert to be indifferent between the two options. Then, 
assuming that the subject matter expert is risk neutral over the range of out-
comes, the expected value associated with option 1 must be equal to the 
expected value associated with option 2; or, if Pminor repair denotes the prob-
ability that a randomly selected unit of the component requires minor repair, 
then
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A similar scenario would be set up to determine Pno repair, which must be less 
than .5 but greater than 0.

If the discrete distribution to be determined is theoretical in nature, only 
the parameters for that distribution need to be estimated. For example, for 
the case of a hypergeometric distribution, the parameters required to deter-
mine the distribution function would be the number of items in the lot, the 
number of items in the sample, and the number of defective items in the lot. 
Only the last quantity would have to actually be estimated by the expert, as 
the first two would be determined from the situation. 

8.3.2 Fitting a Continuous Distribution When Data Are Not Available

As mentioned earlier, in some cases, a discrete quantity might be approxi-
mated by a continuous random variable—for example, this might be done 
in cases where a discrete quantity can attain very large values, such as item 
demand in thousands of units or cost in thousands of dollars.

As in the case with determining a discrete distribution in the absence of 
data, two situations are considered for continuous distributions: determina-
tion of an empirical continuous distribution and determination of a theoreti-
cal continuous distribution. We will consider the former situation first.

Determination of an empirical continuous distribution in the absence of 
data involves just the specification of points (x and y values) on the cumu-
lative distribution function graph for the uncertain quantity and then 
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interpolating between these points. The interpolation might be linear in 
nature or nonlinear if a more exact representation is desired.

Consider the example of specifying the probability associated with your 
favorite college basketball team winning x games in the upcoming sea-
son. (Here, we are approximating a discrete quantity, number of games, 
with a continuous variable.) Basically, you want to assess F(x), the distribu-
tion function for this quantity, for different values of x. Suppose that your 
team will win 40 games, if it wins all of the games it plays, including the 
NCAA tournament. Then you could set two initial points for the following 
function:

 F and F 4 1.( ) ( )0 0 0= =

In other words, the probability of your team winning less than or equal 0 games 
is 0, (assume your team will win at least one game) and the probability of your 
team winning less than or equal to 40 games is 1. Then, F would be assessed 
for various values of x through the answers to the following questions:

What is the probability that your team will win less than or equal to 
5 games?

Answer: 0
What is the probability that your team will win less than or equal to 

10 games?
Answer: .05
What is the probability that your team will win less than or equal to 

15 games?
Answer: .3
What is the probability that your team will win less than or equal to 

20 games?
Answer: .5
What is the probability that your team will win less than or equal to 

25 games?
Answer: .6
What is the probability that your team will win less than or equal to 

30 games?
Answer: .8
What is the probability that your team will win less than or equal to 

35 games?
Answer: .95

This would lead to the distribution function graph shown in Figure 8.8.
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Of course, the questions could be easily rephrased to something like: 
“What is the probability that your favorite team will win more than 25 
games?” Then F(25) would be set equal to 1 minus this quantity.

In addition to the “direct approach” for assessing individual probabilities 
on F, one could also set up betting scenarios to determine points on the graph 
for F, as described in Section 8.3.1 for discrete distributions.

8.4 Biases and Heuristics in a Subjective Probability Assessment

Of course, one should always employ the best experts available in assess-
ing probabilities in the absence of data. However, even the best experts can 
give biased estimates, resulting from the use of less than desirable heuristic 
approaches when providing these estimates. Being aware of these biases and 
heuristics can result in more accurate estimates.

Tversky and Kahneman (1974) are the major researchers in this field. One 
of the heuristics they identified is the “availability heuristic.” This heuristic 
involves judging the probability of an event according to how easily these or 
similar events can be recalled. As an example, one of the important inputs 
for a simulation model of an emergency (911) call center was a probability 
distribution over the number of calls made for the same event. A recent event 
involved an outdoor shooting in a well-to-do neighborhood. Thirty-nine calls 
were made to the emergency call center as a result of the gunshots heard 
from the shooting. This salient event would have resulted in an overestima-
tion of the number of calls associated with a single event if the data (relating 
to this and other events) had not been available for these situations.

The representativeness heuristic involves assessing the probability of an event 
or a sample “by the degree by which it is (1) similar in essential properties 
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FIGURE 8.8
Distribution function for the number of games won by your favorite college basketball team.
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to its parent population, and (2) reflects the salient features of the process by 
which it is generated” (Kahneman and Tversky, 1972). A situation illustrating 
this heuristic involved an experiment in which a character named Tom W. was 
described to a group of subjects as a graduate student with the following char-
acteristics: (1) a need for order and clarity, (2) a strong drive for competence, (3) 
mechanical in nature, and (4) self-centeredness, but with a deep moral sense. 
The experimental subjects were then asked to rank the likelihood of Tom W. 
being a grad student in each of the following fields: business administration, 
computer science, engineering, humanities and education, law, library sci-
ence, medicine, physical and life sciences, and social science and social work.

Most people would only consider a stereotypical “representation” of the 
various people in these fields in developing their rankings of likelihood. In 
other words, Tom W. might be considered as “representative” of someone in 
engineering or computer science. However, a better approach would be to 
consider the unconditioned probability of someone being in each of these 
fields and then thinking about the conditional probabilities of someone 
being in each of these fields given that they have Tom W.’s characteristics. 
The bottom line is that most people would overestimate the likelihood of 
Tom W. being a graduate student in engineering or in computer science since 
they do not consider the marginal or unconditioned probabilities.

The anchoring and adjusting heuristic is typically applied when people have 
an initial estimate of some quantity (an anchor) and then make an adjust-
ment to the estimate for a new, but related, situation. Often, the adjustment 
is not large enough because the estimator is anchored to the initial estimate. 
A good example might be in estimating the lead time for a new vendor of 
a product. The estimate of the new lead time might be anchored to the lead 
time of the previous vendor.

Finally, and probably, one of the most obvious things to consider in sub-
jective estimation is “motivational bias.” This occurs when experts provide 
estimates that they know are incorrect but they have a motivation do so. 
A good example of this occurs in the estimation of resource requirements 
and task durations in project management. Upper-level management will 
tend to underestimate these requirements and durations in order to provide 
a winning bid for the project. Lower-level management will tend to overesti-
mate these quantities in order to make sure that they will achieve their goals.

Material Review Questions

8.1 What are the two basic approaches that can be used to obtain input 
probability distributions for decision models?

8.2 Why is it important to have accurate input probability distributions for 
decision models?
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8.3 What types of nodes in a decision tree and an influence diagram, 
respectively, require input probability distributions?

8.4 Give three examples of elements of a simulation model that would 
require input probability distributions.

8.5 When data are available, what are the three basic ways that they can be 
used to represent probabilistic inputs for decision models?

8.6 In what situation would one want to use the actual data as input for a 
simulation model for decision making?

8.7 What is an advantage associated with the use of an empirical distribu-
tion function as opposed to a theoretical distribution function?

8.8 What are the four basic steps associated with fitting a probability dis-
tribution to a set of data?

8.9 What are the two types of input for a decision model?
8.10 Give two examples of qualitative input used for a decision model.
8.11 Why is it important that independent samples be collected in the data 

collection process?
8.12 Give two examples of situations that would result in dependent data 

samples being collected.
8.13 What are the two vehicles that one could use in determining whether 

the sample data collected are independent?
8.14 How would a scatter diagram appear for independent samples?
8.15 Give an example of bias that can result when an analyst collects data 

via observation.
8.16 Define an “outlier” with respect to a set of data that have been 

collected.
8.17 Why would a simple analysis of data collected (without the additional 

development of a sophisticated decision model) be useful in improving 
a system?

8.18 What is Sturges’s rule?
8.19 What is the advantage of the representation given by (8.6) for an empir-

ical distribution function over that given by (8.2) through (8.4)?
8.20 As the number of data points (n) becomes larger, the three representa-

tions for an empirical distribution function, given by (8.2) through (8.6), 
will more closely approximate each other (true or false).

8.21 What are the two aspects associated with fitting a theoretical distribu-
tion to a set of data?

8.22 Give two examples of situations where an analyst might, a priori, 
assume a particular distribution function for a discrete random vari-
able to represent a process?

8.23 Under what condition might one safely assume that the binomial dis-
tribution would be an appropriate approximation to the hypergeomet-
ric distribution in a sampling without replacement process?

8.24 What would be an advantage of approximating a hypergeometric dis-
tribution with a binomial distribution?
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8.25 Give two examples of situations where an analyst might, a priori, 
assume a particular distribution function for a continuous random 
variable to represent a process.

8.26 What is a typical method used to estimate the parameters for a distri-
bution function based on data collected?

8.27 What is the maximum likelihood estimator value for the mean for a 
Poisson distribution for a set of data that have been collected?

8.28 What are three basic approaches that one can use to determine how 
well a hypothesized distribution function fits a set of data?

8.29 When the number of data points is very large, goodness of fit tests such 
as the chi-square or the K–S tests will almost always reject the null 
hypothesis of the data points being independent, identically distrib-
uted data points from the hypothesized distribution (true or false).

8.30 What is the main advantage of the K–S goodness of fit test over the chi-
square test?

8.31 The three criteria, that is, square error, p value for the chi-square test, 
and p value for the K–S test, will always give the same ranking with 
respect to the quality of fit of a collection of density functions to a set of 
data (true or false).

8.32 Name four different software packages that one can employ to fit a 
distribution function to a set of data.

8.33 Subjective probability estimates can often be made through the use of 
a betting scenario (true or false).

8.34 Give at least one example (not in the book) of the application of each of 
the four heuristic approaches for subjective assessments of a probabil-
ity or an unknown value: availability, representativeness, anchoring 
and adjustment, and motivational.

Exercises

8.1 Suppose that you have collected the following data for the interarrival 
times for customers arriving to a service system (in minutes): 3.2, 4.1, 
and 3.8. Suppose that you are assuming exponential interarrival times.

 a. What is the likelihood function for this situation?
 b. Give the likelihood function values for β = 2, β = 3, β = 3.7, β = 4, and 

β = 5, respectively, where the density function for the exponential is 
given by (1/β)e–x/β.

 c. Which value for β gives the largest likelihood function value? Why?

8.2 In groups of one to three students, collect data (independent sam-
ples) on a process that might be used as input to a simulation model. 
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Analyze the data through the use of correlation plots(s) and/or scatter 
diagrams, histograms, empirical distributions, and a software package 
for fitting distributions. In your analysis with the software package, 
try histograms with different numbers of cells and try fitting different 
distributions. Consider how you might handle any anomalous data.
Write a brief report describing your results.

8.3 Suppose that the following sequential interarrival times (given in 
minutes) have been collected for arrivals of walk-in customers to a fast-
food restaurant:

 1.5, 2.1, 1.3, 1.1, 2.3, 2.1, 1.7, 4.2, 3.3, 3.5, 1.9, .6, 5.4, 3.4, 2.5, 6.3, 1.4,
3.4, 3.9, 1.8, 4.7, 2.9, .5, 4.6, 3.5, 4.4, .8, 6.6, 4.9, 2.8

Construct a scatter diagram to help determine whether or not these 
observations are independent in nature.

8.4 Suppose that the following data have been collected on the amounts 
of time (in minutes) spent by the staff of a call center with individ-
ual callers. Arrange the data in an increasing order of values, and 
using Sturges’s rule, construct histogram(s) for these data. Determine 
whether the data represent more than one type of caller. If so, estimate 
the number of different types of callers, the percentage of calls coming 
from each type of caller, and the sample average time taken by each 
type of caller. Determine any “outliers” in these data:

 6.95, 2.83, 9.41, 4.26, 3.68, 6.75, 9.48, 9.36, 6.98, 3.17, 8.89, 4.34,
4.72, 7.79, 3.38, 1.33, 7.22, 7.77, 9.77, 8.06, 8.55, 8.49, 3.33, 8.12, 6.96,
2.14, 6.27, 8.36, 4.04, 9.96, 6.87, 7.09, 7.14, 8.43, 4.86

8.5 Calculate an empirical distribution function of type (8.2) through (8.4) 
for the data given in Exercise 8.4. According to this function, what 
would be the probability associated with generating a random variate 
with a value less than 6.87 minutes?

8.6 Consider the data in Problem 8.4, after the removal of any anoma-
lous data. Using an appropriate software package, fit several differ-
ent probability distributions to the data generated from each of the 
respective underlying processes. Discuss the meaning of the various 
fitness criterion values associated with each hypothesized distribu-
tion function.

8.7 Suppose that you wish to employ the chi-square goodness of fit test in 
order to test the goodness of fit for a particular distribution function for 
a set of data. You have six intervals for the categorization of the data. 
The number of data points in each of the six intervals is in the order 
(ranging from the interval with the smallest left-side endpoint to the 
largest) 75, 87, 68, 85, 57, and 95.
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You have used the equiprobable approach to determine the intervals. 
Determine the value of the chi-square test statistic and, based on this, 
make the decision of whether or not to reject H0 (at the 95% level): the 
data points are IID random variables corresponding to the distribution 
function being tested.

8.8 Consider the Tom W. case discussed in this chapter. Suppose that there 
are about 2.4 million graduate students in the United States and about 
200,000 of these students are enrolled in engineering. Suppose also 
that you estimate that approximately 40% of these engineering grad-
uate students have the characteristics described for Tom W. and that 
only 10% of all graduate students have the characteristics described for 
Tom W. What would be your estimate of the probability that Tom W. is 
an engineering graduate student?

8.9 Discuss a personal situation in which an acquaintance of yours made 
an estimate of (1) a probability (either a number or a verbal estimate 
such as “highly likely”) or (2) a quantity in which you think bias 
affected their estimate. What do you think was the source of the bias? 
What type of heuristic did they use? What could you have suggested to 
improve their estimate?
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9
Use of Simulation for Decision Models

9.1 Introduction

This chapter presents the use of simulation for decision modeling. The basic 
idea is to provide a model that will allow a mapping from the decision space 
to the outcome space. More specifically, we want to allow for a representation 
or a computer program that will “map” a decision and then compute a prob-
ability distribution over the outcome space.

The word simulation means different things to different people. In its broad-
est sense, a simulation is just an imitation or representation of something 
real, usually a system or a process. In this sense, a simulation can involve 
people and hardware as well as software. In this chapter though, we are 
concerned with simulations that are software programs.

In the context presented here, we are interested in representing a decision 
situation and what happens in that situation when a decision is made. Most 
industrial engineers are familiar with the concept of discrete event simulation, in 
which the state of the system (as measured by important system variables such 
as number of entities in respective queues and status of resources) changes 
instantaneously at particular points in time called events; in particular, these 
state variables are discrete in nature. This is as opposed to continuous simula-
tion in which the state variables (which could be such things as flows or veloci-
ties) are continuous in nature. Both of these types of simulation represent a 
system over time and are thus called time-based or dynamic simulation models.

Although certainly many decision situations involve the use of dynamic sim-
ulation models, the emphasis in the field of decision analysis has been in the 
area of static simulation models. In particular, influence diagrams and decision 
trees are usually evaluated through the use of static simulation models, which 
use Monte Carlo simulation. The focus in Monte Carlo simulation is the genera-
tion of random variates, that is, values associated with random variables.

Most introductory books on simulation provide a categorization of simula-
tion models; for example, see Law (2007, Chapter 1), which provides a catego-
rization according to static versus dynamic simulation models, deterministic 
versus stochastic simulation models, and continuous versus discrete simula-
tion models. The focus in this chapter is in studying the probabilistic output 
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associated with stochastic, static simulation models; however, we also pres-
ent a few examples involving dynamic simulation.

The various results can be categorized according to (1) the number of attri-
butes (or objectives) being considered and (2) the number of alternatives 
being considered. In particular, we can consider

 1. One attribute
 2. Multiple attributes

With respect to the number of alternatives, we can consider

 1. One alternative
 2. Two alternatives
 3. A few alternatives (say 3–100)
 4. A “large number” of alternatives

The focus in most books on simulation is on the case involving one attribute. 
In a sense, if we employ a multiattribute utility function as our main output 
measure, we are considering the “single attribute” case, where the attribute 
is “utility”; the real attributes are considered only implicitly. Therefore, all 
of the results on output analysis, except for one category of approaches, can 
be directly applied if expected utility (as computed via a multiattribute util-
ity function) is the performance measure. The one category that requires a 
modification is the category of techniques called ranking and selection.

Another approach that can be used for the multiple attribute case would 
involve optimization of one attribute while constraining the other attributes; 
by varying the right-hand sides of the constraints, we can give the decision 
maker (DM) a variety of outcomes to consider.

With respect to the number of alternatives to consider, understanding the 
output associated with the single alternative case gives us a starting point to 
expand upon. The last category, involving a “large number” of alternatives, 
requires the use of a sophisticated optimization procedure since not all of the 
alternatives can be explicitly evaluated.

As a prelude to this chapter, we presented methodologies associated with 
the determination of probabilistic inputs for simulation models in Chapter 8. 
In this chapter, we briefly mention methodologies for the generation of ran-
dom variates in Section 9.2. In Section 9.3, we discuss the characteristics of 
the output from a simulation model. 

In Section 9.4, we briefly discuss variance reduction techniques, while in 
Sections 9.5 and 9.6, we discuss the comparison of two alternatives and sev-
eral alternatives (more than two), respectively, using simulation. In Section 
9.7, we present the use of optimization methods as interfaced with simula-
tions to allow for the analysis of decision situations with many, or even an 
infinite, number of alternatives. In each of these three sections we present 
the use of multiattribute utility functions to allow for analysis of situations 
involving multiple objectives and risk.
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9.2 The Generation of Random Variates

The key to a Monte Carlo simulation is the generation of random variates. 
A random variate value is an independent sample from a prescribed prob-
ability distribution, such as a normal distribution or a binomial distribu-
tion. These values are required in order to execute a simulation model 
with random aspects, such as a Monte Carlo simulation. For example, in 
the influence diagram for the lead poison testing decision example pre-
sented in Chapter 6, random variates are needed to represent the number 
of children with lead poisoning in the sample tested; these random vari-
ates should correspond to the hypergeometric distribution, as noted in the 
example.

Methods to generate random variates are typically programmed into sim-
ulation software packages. Even so, the user of one of these packages should 
have a general understanding of these methods. In this section, we just pro-
vide a brief discussion of this area. For more details, see any of several differ-
ent books on simulation, such as Law (2007) or Banks et al. (2005).

The most popular method for generating random variates is the inverse 
transform method. Other methods include the acceptance–rejection method, 
the composition method, and the convolution method. The specific method 
used in a particular case is dependent on the distribution function that the 
random variate is supposed to represent. More specifically, the choice of a 
method for a particular distribution is based upon (1) how accurately the 
method represents the distribution function, (2) its efficiency (computing 
time and storage requirements), and (3) its complexity.

With respect to accuracy, the methods can vary depending on the param-
eters for the distribution.

With respect to efficiency, the techniques discussed in Chapter 8 involving 
fitting an input distribution to a set of data are of interest, except in this case 
the process is reversed; that is, we are interested in how well a set of data 
represents a particular distribution function.

9.3  Characterizing and Analyzing Output 
for a Single Alternative

The basic idea in the use of a simulation model for ranking alternatives is 
to execute the model with differing inputs (corresponding to the respective 
alternatives under consideration) and then rank the alternatives based on 
analyses of the outputs from the simulation. The difficulty is that the outputs 
from a simulation are both multidimensional (corresponding to the multiple 
attributes of the decision situation) and random in nature. In particular, an 



356 Multiple Criteria Decision Analysis for Industrial Engineering

output from a simulation model will be an estimate of a particular perfor-
mance measure or attribute value; this estimate is itself a realization of a 
random variable.

Examples of the outputs from a run of a simulation model for a decision 
situation would be the following:

 1. A “discrete outcome,” including successful/unsuccessful project or 
product, a positive/negative medical test, a successful/unsuccessful 
surgery, a project that finishes on schedule or behind schedule, 
and so on. (Note that there can be more than two outcomes, e.g., 
successful, moderately successful, moderately unsuccessful, and 
unsuccessful, depending upon how the model is constructed.)

 2. A singular “continuous outcome” such as a profit or a cost.
 3. A mean value such as mean utilization of a resource, mean time to 

complete a process, or mean waiting time for customers. Note that 
there are two types of mean values that one might have as output—
time persistent means such as mean utilization or mean number in 
a queue or means based on observations from individual entities 
in the model such as mean waiting time over all customers. Monte 
Carlo models would never have time-persistent variables as output; 
hence, these models would never output time-persistent means.

 4. A proportion (or a probability), such as proportion of customers who 
must wait longer than X minutes.

Note that a proportion might result from a model that was formulated in 
such a way that many independent trials were run with one replication of 
the model—in this case, each trial would provide a “discrete outcome,” the 
first type of output listed. The analyst therefore has an option to formulate 
his or her model to represent a single trial or multiple trials within each 
replication. Note that these multiple trial–type models would only be for-
mulated for Monte Carlo simulations, in which each trial simulation would 
“start fresh,” with no entities in the system, often referred to as “empty and 
idle.”

9.3.1  Sample Means, Sample Variances, Sample 
Proportions, and Confidence Intervals

With respect to mean values, which are computed from the outputs of several 
independent replications of a simulation model, each individual output itself 
can represent a sample mean. These sample means could be time persistent 
or based on observation. For example, let x(t) be a time-persistent variable 
from any particular independent replication of the simulation model, run 
from time 0 to time T; that is, x(t) is the value of the variable at time t. Such a 
variable might represent the number of customers in a system, the number 
of busy servers, or the status of a particular server (with a value of 0 for idle 
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and 1 for busy). Then, the sample mean value and the sample variance for 
this variable would be given by XT and sxT

2 , respectively,
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In many cases, computing an integral of a function is a relatively complex 
procedure; however, for a discrete event simulation, this is not so since the 
x(t) function graph over time can be represented as a sequence of horizon-
tal lines, connected by vertical lines. Hence, computing an integral (i.e., the 
area under a curve) just corresponds to summing the areas of rectangles. As 
mentioned earlier, these time-persistent variables would not be relevant for a 
Monte Carlo simulation model.

For the sample mean within a replication for a variable based on obser-
vation, examples would be mean time in the system by customers, mean 
time spent waiting by customers, and so on. One thing to note about this 
computation is that the number of customers considered in the computation 
can vary between replications. This is not a problem as long as the analyst 
identifies the variable properly. For example, the analyst might be interested 
in the mean time spent waiting by customers in a restaurant from 11 a.m. to 
1 p.m.; the number of customers might vary over five replications according 
to 45, 56, 42, 59, and 48. If xi represents the value of the variable for the ith 
observation for any particular replication of the model and I is the number 
of observations, the sample mean would be computed by xI and the sample 
variance would be computed by sX
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A summary of these computations for a “within replication” run for a simu-
lation model is shown in Table 9.1.

Each type of output represents a sample value. In order to obtain multiple, 
independent samples, multiple (and independent) replications of the model 
must be made. These replications are typically run so that an independent 
stream (or substream) of random numbers is used for each replication. This 
is typically handled by the software package used in building the model. For 
example, the Arena simulation software allows the model builder to specify 
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different random number streams to be used for different respective pur-
poses in the model (e.g., different outcome nodes for a decision tree), and 
then sequential substreams within a stream are used for the model replica-
tions. For example, if you specified that stream number 3 was to be used 
to generate the random variates for an outcome node representing market 
demand (as a continuous variable) for a product and that 10 replications were 
to be made for the simulation model representing the decision tree, then the 
ith replication of the model would employ the random variates generated 
from the ith substream of the third stream of the random number generator.

Let’s consider these outputs and their characteristics in more detail. First 
of all, an analyst/decision maker should be very specific about the type of 
output desired from a simulation model and therefore not be confused about 
similar, though different, output measures. For example, if a decision maker 
is concerned about the fraction or proportion of callers to a call center who must 
wait longer than 12 seconds for their call to be answered, then an estimate of 
the mean waiting time for callers is probably not appropriate for this purpose.

Let Xi denote an output from one independent replication of a simula-
tion model, say, replication i. So, if n replications are made, the outputs are 
denoted as X1, X2,…, Xn. As noted earlier, this outcome could be a discrete 
outcome, a mean value, a proportion, or just a number such as payoff or cost. 
In the case of a discrete outcome, the outcomes could be coded in order to 
provide a numerical output such as 0 for failure and 1 for success. These Xi 
are independent and identically distributed (iid) since they arise from inde-
pendent replications of the same model. Denote the population mean and 
variance of Xi as µ and σ2, respectively.

As an example, suppose that you had a simulation model of a project that 
resulted in two possible outcomes when the model is run: success or failure. 

TABLE 9.1

Summary of Computations for a “Within Replication” Run of a Simulation

Notation Description/Definition Expression for Computation 

XT Sample mean of a time-persistent variable, x(t), 
from a single independent run of a simulation

x t dt/T
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Suppose also that success is coded with a value of 1, failure is coded with a 
value of 0, and the underlying probability of project success is 0.7 (which of 
course means that the underlying probability of project failure is 0.3). Then 
the Xi are independent and identically distributed according to a Bernoulli 
distribution corresponding to a 0.7 probability of a value of 1 and a 0.3 prob-
ability of a value of 0; moreover, µ = 0.7 and σ2 = .7(1 − .7) = .21. (Refer to the 
variance associated with a Bernoulli random variable [Law, 2007, p. 302].) 
Of course, we would not know the value of µ but would have to estimate its 
value by experimenting with the model.

An unbiased estimator of µ is given by the sample mean of the Xi’s, denoted 
as X(n) in the following equation:
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X
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An estimator of the variance of the Xi’s is denoted as S2(n) and is computed 
as follows:
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Now, X(n) is itself a random variable. The variance of X(n), denoted as 

Var[X(n)], is given by σ2/n; since we typically do not know the value of σ2, we 

estimate Var X[(n)], denoted as Var X n�[ ( )]:
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Substituting for S2(n) from (9.6) into (9.7), we obtain an expression for Var X n�[ ( )] 
in terms of the outputs from the replications of the model, as shown:
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In considering the values for S2(n) and Var X n�[ ( )] as a function of n, the 
reader should note that the value for S2(n) should stay relatively the same as 
n increases since its expected value remains the same for any value of n ≥ 2. 
However, the value for Var X n�[ ( )] will usually, though not always, decrease 
as n increases. For a small increase in n, Var X n�[ ( )] might actually increase in 
value, though usually not.
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When we compute X n( ), we have no way of knowing how close it is to 
the actual value of µ. On one set of n replications, X n( ) may be close to µ, 
while on another set of replications (i.e., using a different sequence of ran-
dom numbers), there may be quite a large difference. We do know however 
that [X n( )] is an unbiased estimator since its expected value is µ.

Also, via the central limit theorem (Walpole and Myers, 1993, p. 216), we 
can say that as n becomes larger, ( ( ) ) ( )X n - m s/ / n  is distributed according 
to the standard normal distribution as n approaches infinity. This allows 
us to form confidence intervals for µ based on the outputs from the inde-
pendent replications of the simulation model if we know the value of σ. In 
particular, an approximate (1 − α) * 100% confidence interval for µ is given as 
n becomes “large”:

 X n z n( ) ( )/
.± -1 2

2 5
a s /  (9.9)

where z1 − α/2 is the upper (1 − α) critical point for the standard normal random 
variable (the normal random variable with mean equal to 0 and variance 
equal to 1). In other words, z1−α/2 is the value of Y such that PR (Z ≤ 1−α/2) = 
Y, where Z is the standard normal random variable.

In (9.9), the confidence interval is basically given as an interval on the real 
number line with a left-hand side of X n z /n1 2

2 5( ) ( )/
.- -a s , a “center point” of 

X(n), and a right-hand side of X n n( ) ( )/+ -z1 2
2 5

a s / . . The quantity z n1 2
2 5

-a s/
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is called the half-width of the confidence interval.
Typically, one uses a 95% confidence interval, so α is set to a value of .05; 

correspondingly, z1 − α/2 = z1 − .05/2 = z.975 (and z.975 = .196). These “z values” can be 
attained through the use of a “lookup table,” or they are accessible through 
the use of statistical software packages.

A confidence interval will either contain or not contain the actual mean 
value once it has been computed. Hence, the way to think about confidence 
intervals is that if a large number of 95% confidence intervals are computed 
from a simulation model for the same situation (using respective different 
streams of random numbers), then approximately 95% of these confidence 
intervals will contain the true mean.

Typically, one will not know the value of σ2, the actual variance of the 
Xi’s. However, one can replace σ2 with its sample value, S2(n), computed 
from the Xi’s, as computed from (9.6). If the Xi are normally distributed (note 
that this is not the same thing as saying that X (n) is normally distributed), 
then one can use the expression for a confidence interval for µ, as given by 
(9.9). This expression (given by Equation 9.9) is an exact confidence interval 
for any value of n ≥ 2, as opposed to (9.10), which represents an approximate 
100 * (1 – α)% confidence interval for µ:

 X n t S n nn( ) ( ( ) ), /
.± - -1 1 2

2 5
a /  (9.10)
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In (9.10), tn−1,1−α/2 represents the upper 1 − α/2 critical point for the t distribu-
tion with n − 1 degrees of freedom.

Even if the Xi values are not normally distributed, one can still employ 
this equation as a good approximation for a confidence interval for µ as 
long as the distribution of the Xi’s is “bell shaped” (Walpole and Myers, 
1993, p. 248).

Even if a bell-shaped distribution cannot be assumed for the Xi random 
variables, one can substitute S2(n) for σ2 in (9.9) as long as n, the sample size, 
is at least 30, and obtain a reasonable approximation for a confidence inter-
val for µ as shown in (9.11). The argument here is that if n ≥ 30, S2(n) will be 
a good approximation for σ2. The confidence interval shown in (9.11) is often 
referred to as a large-sample confidence interval:

 X n z S n n( ) ( ( ) )/
.± -1 2

2 5
a /  (9.11)

One can also note that as n increases, tn−1,1−α/2 approaches the value of z1−α/2 

so that for n ≥ 30, there is usually almost no difference between these two 
quantities; hence, (9.10) gives approximately the same confidence interval 
as (9.11).

The confidence interval typically computed by simulation software pack-
ages (for the estimate of an expected value as derived from independent rep-
lications of a simulation model) is the one given by (9.10).

Another type of confidence interval of interest, especially for outputs from 
simulation models of decision trees or influence diagrams, is one involving 
a confidence interval for a probability of a particular outcome. (This prob-
ability might also be termed as the proportion of time that a specific outcome 
occurs.) Examples would be the probability of a treatment’s success/failure, 
the probability that a customer must wait longer than 10 minutes, and the 
probability that a project’s duration will be longer than 70 days.

Suppose that we have a simulation model that has as one of its outputs any 
of a number of discrete, mutually exclusive, but exhaustive, outcomes, num-
bered as 1, 2,…, O; for example, the outcomes could be success or failure (in 
which case, O = 2), or the outcomes could be average waiting time for custom-
ers that was (1) less than 2 minutes, (2) between 2 and 4 minutes inclusive, or 
(3) more than 4 minutes. In the second case, the decision maker might be inter-
ested in the respective probabilities that the average customer waiting time is 
less than 2 minutes, between 2 and 4 minutes, and more than 4 minutes.

Now, suppose that n independent replications of the simulation model 
are made and that outcome i occurs ni times for i = 1, 2,…, O, so that 
n = n1 + n2 + … + no. Then a point estimate of the probability of outcome 
i occurring (denoted as pi) is given by p̂i in the following equation:

 p̂ n /ni i=  (9.12)
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If n is “large,” then an approximate 100(1 − α)% confidence interval for pi is 
given by (9.13):

 
ˆ ˆ ˆ( ( ) )/

.p z p p ni i i± --1 2
51a /  (9.13)

The reader will recognize that the relevant random variable in this case 
has a Bernoulli distribution. Since an estimate for the variance in this case 
would be ˆ ( ˆ )p pi i1- , the confidence interval of (9.13) is actually just a special 
case of (9.11).

A summary of the notation and the confidence intervals discussed in this 
section is shown in Table 9.2.

Example 9.1: The Thief of Baghdad Problem

(This example is derived from an exercise given by A. Alan B. Pritsker in 
his textbook on simulation [Pritsker, 1986, problem 2–7, p. 48].)

A thief has been placed in a cell with three doors. One door leads 
immediately to freedom. A second door leads to a short tunnel, which 
takes 2 hours to travel but returns the thief to the jail cell. A third door 
leads to a long tunnel, which takes 6 hours to travel; but this tunnel also 
returns to the cell. The thief has an equal chance of choosing any of the 
three doors; and once back in the cell (assuming the thief chooses one of 
the doors that leads to a tunnel), the thief again has an equal chance (i.e., 
one-third probability) of choosing any of the three doors. (As noted by 
Pritsker, this is a Markov, or forgetful, thief.) Given that the thief continu-
ally keeps choosing a door until he or she gets to freedom, what is the 
expected time until the thief reaches freedom?

Upon first viewing the problem, the reader might think that there is 
no reasonable answer—that is, the thief could just continually choose a 
door that leads to one of the tunnels and therefore never reach freedom. 
However, there is an analytical solution to the problem, which is deter-
mined by solving the following equation:

 E(X 1/3 ( 1/3 (2 E(X 1/3 (6 E(X) ) )) )),= + + + +0

where
X denotes the time to freedom in hours
E(X) is the expected time to freedom

The argument for this equation goes as follows. If the thief chooses 
the door to freedom on the first try (probability of 1/3), then the time 
to reach freedom is just 0. If the thief chooses the door to the short 
tunnel or the long tunnel, respectively, with a probability of 1/3 for 
each, then the time to reach freedom is 2 hours or 6 hours, respec-
tively, plus the expected time to freedom (since the thief starts all 
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TABLE 9.2

Summary of Notation for Simulation Model Outputs Associated with Several 
Independent Replications

Notation 
Description/

Definition 

Expression for 
Computation If 

Applicable 
Comments If 

Applicable 

n Number of 
independent 
replications of the 
simulation

— —

Xi Output from the ith 
replication

— The Xi are 
independent and 
identically 
distributed.

µ Mean of the Xi’s — µ is a constant but is 
usually unknown.

σ2 Variance of the Xi’s — σ2 is a constant but 
is usually 
unknown.

X(n) Sample mean of 
the Xi’s

X

n

i
i

n

=å 1
X(n) is a random 

variable.

S2(n) Sample variance of 
the Xi’s

i

n

iX X n

n
=å -

-
1

2

1

[ ( )] S2(n) is a random 
variable; its 
expected value 
remains constant 
as n increases.

Var X n�[ ( )] Sample 
variance of X(n)

S2(n)/n Var X n�[ ( )] is a 
random variable, 
but its expected 
value will decrease 
as n increases.

z1−α/2 The upper (1 − α) 
critical point for the 
standard normal 
random variable

z1−α/2 is the value 
of Y such that

PR (Z ≤ 1 − α/2) = Y, 
where Z is the 
standard normal 
random variable

z1−α/2 is typically 
obtained from a 
table.

tn−1,1−α/2 The upper 1 − α/2 
critical point for the 
t distribution with 
n − 1 degrees of 
freedom

— tn−1,1−α/2 is typically 
obtained from a 
table.

X n z n( ) ( )/
.± -1 2a s2 5/ Z confidence interval 

for μ, σ2 known
— Approximate 

confidence interval 
for μ with σ 
known.

(Continued)
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TABLE 9.2 (Continued)

Summary of Notation for Simulation Model Outputs Associated with Several 
Independent Replications

Notation 
Description/

Definition 

Expression for 
Computation If 

Applicable 
Comments If 

Applicable 

Results from the 
central limit 
theorem.

Typically not used 
because σ2 is 
usually not 
known.

Only an 
approximate CI; 
becomes more 
accurate as n 
increases.

X n t S n nn( ) ( ( ) )/
.± - -1 1 2

2
, /a

5 t confidence interval 
for μ, σ2 unknown

— Exact confidence 
interval for μ if the 
Xi are normally 
distributed.

Can be used as a 
good 
approximation if 
the distribution of 
the Xi is “bell 
shaped.”

X n z S n n( ) ( ( ) )/
.± -1 2

2
a / 5 Z confidence interval 

for μ, σ2 unknown; 
also called 
“large-sample” 
confidence interval

— Provides a good 
approximation for 
a confidence 
interval for μ even 
if the distribution 
of the Xi is not 
“bell shaped,” as 
long as n ≥ 30.

Approximately the 
same as the t CI as 
long as n ≥ 30.

pi Probability of 
outcome i

—

p̂i An unbiased point 
estimate for pi

ni/n ni is the number of 
times that outcome 
i occurs in the n 
replications

ˆ ˆ ˆ( ( ) )/p z p p ni i i± --1 2
51a / . Confidence interval 

for pi

— An approximate CI.
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over being back in the cell). Now solving this equation, one obtains 
the following:

 E(X) = 2/3 + 1/3 E(X) + 2 + 1/3 E(X)

or

 1/3 E(X) = 8/3

or

 E(X) = 8 hours

Besides the expected time to freedom, additional outputs in which one 
might be interested from an analysis of this situation would include such 
measures as the probability that the time to freedom would be longer 
than Y hours, where Y is some constant. Since this situation can be repre-
sented with an analytic (in particular, a Markov) model, one could derive 
the exact values for these measures analytically (i.e., without the analysis 
of a simulation model). (For a description of how to solve Markov chain 
models of the type to represent this situation, see Hillier and Lieberman, 
2010, Chapter 16.)

In general, given that an analytic model is an accurate representation 
for the purposes of the study, one would want to use such a model. One 
reason for this is that an exact value for the performance measure of 
interest can be attained, as in this case. Another reason is that experi-
mentation with such a model, for example, for sensitivity analysis, is 
much simpler than with a simulation model. However, there are advan-
tages to a simulation model. For example, if complications arise in the 
actual system, these may very well be relatively easy to account for with 
a simulation model. Second, a simulation model may be easier to explain 
to a decision maker than an analytic model.

In order to illustrate the computations presented in this section, a sim-
ulation model of the Thief of Baghdad problem was developed, using 
the Arena simulation software package (Kelton et al., 2015). The model 
was run initially for five replications, using random number stream 3 to 
generate a sequence of random numbers to determine which door was 
chosen for each trip. If the random number was less than 1/3, then the 
door leading to the short tunnel was chosen; if the random number was 
between 1/3 and 2/3, then the long tunnel was chosen; finally, if the ran-
dom number was between 2/3 and 1, then the door to freedom was cho-
sen. The times to freedom for the five replications are shown in Table 9.3.

The sample mean and sample variance of the mean of the time to freedom 
for these five independent replications are given by
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So, since Z.975 = 1.96 (note that Z.975 = Z1–α/2 for α = .05), a 95% confidence 
interval for the mean time to freedom computed from these five replica-
tions would be

 12 1 96 (43 6 or 12 12 942 or  ( 942 24 9425± ± -. . ) , . , . , . )..

Note that since t4,.975 = 2.776, the 95% t confidence interval is given by

 12 2 776 (43 6 or 1 33 or ( 6 33 3 335± ± -. . ) , . , . , . ).. 2 18 0

Obviously, these are not very good confidence intervals. Very rarely 
would one want to use only 5 replications for simulation model experi-
mentation; in general, at least 30 replications are needed for accurate esti-
mates, or, as noted by Walpole and Myers, for large-sample confidence 
intervals (Walpole and Myers, 1993, p. 249). Hence, the model was run for 
5, 20, 50, 100, 500, and 10,000 replications, respectively, using first random 
number stream 3 and second random number stream 6. The results for 
these experiments are shown in Table 9.4.

The reader will note several things from Table 9.4:

 1. Every confidence interval computed contains the true value for 
the mean time to freedom of 8 hours.

 2. Except for the experiments involving only five replications, the 
half-widths for the confidence intervals are approximately the 
same for each of the two different random number streams for 
a given set of replications.

 3. The sample standard deviations for the means decrease as n 
increases, while the sample standard deviations for the Xi’s 
remain relatively constant, as is to be expected. This results in 
a decrease in the half-width of the confidence interval for the 
mean as the number of replications increases.

 4. The sample means do not necessarily become closer to the true 
value for μ as n increases. However, for the cases of 10,000 replica-
tions, the sample values are very close to the true value of 8 hours.

With respect to the third comment earlier, in general one can almost 
always expect the half-width of the confidence interval for the mean to 
decrease with an increase in the number of replications of the model. 

TABLE 9.3

Outputs from the Thief of Baghdad Simulation for Five Replications

Replication Number, i Estimate of Time to Freedom, Xi 

1 0
2 10
3 36
4 0
5 14
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If the increase in n is only slight, however, the confidence interval half-
width might actually increase since the increase in n might actually be 
offset by an increase in the estimate for the variance of the Xi, denoted 
as S2(n).

Consider a different confidence level (90% rather than 95%) for the con-
fidence interval for the experiment with 500 replications using random 
number stream 3. The 95% t confidence interval for µ is given by

 8 1 92 or (7 18 9 2. . , . , . ).± 0

The 90% t confidence interval would use the t value given by t499,.95 = 1.648. 
Hence, one would obtain the confidence interval given by

 8 1 t S n /n  or 8 1 1 648 (1 9/5499 95
2 5 5. ( ( ) ) , . . * ) ,,.

. .± ± 0 00

or

 8 1 77 or (7 34 8 87. . , . , . ),±

which is smaller than the 95% confidence interval. At first thought, this 
seems counterintuitive. However, if one returns to the operational defi-
nition given earlier for a confidence interval, 90% of the 90% confidence 
intervals will contain the true mean, while 95% of the 95% confidence 
intervals generated will contain the true mean, such a smaller width 
confidence interval makes sense. Hence, it will always be the case that 
an X% confidence interval will have a larger half-width than a Y% confi-
dence interval for X greater than Y (e.g., for 95% larger than 90%).

TABLE 9.4

Experimental Results for Time to Freedom from the Thief of Baghdad Simulation

Number of 
Replications, n 

Random 
No. 

Stream 
Sample 
Mean 

Sample 
Standard 
Deviation 

of the Mean 

Sample 
Standard 
Deviation 
of the Xi 

Half-
Width 

for 95% 
Z CI 

Half-
Width 

for 95% 
t CI 

5 3 12. 6.6 14.765 12.94 18.33
20 3 8.8 2.4 10.735 4.91 5.24
50 3 6.72 1.27 8.97 2.49 2.55

100 3 7.6 1.02 10.18 2.00 2.02
500 3 8.1 0.47 10.44 0.915 0.92

10,000 3 8.05 0.01 10.2 0.2 0.2
5 6 8.4 3.6 8.05 7.05 9.99

20 6 10. 2.39 10.7 4.69 5.01
50 6 8.32 1.34 9.46 2.62 2.69

100 6 8.52 1.03 10.33 2.03 2.05
500 6 8.744 0.46 10.22 0.896 0.9

10,000 6 8.12 0.01 10.2 0.2 0.2
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With a slight modification, the Thief of Baghdad simulation can be 
used to estimate the probabilities associated with various outcomes 
related to the amount of time for the thief to reach freedom. In particular, 
one could estimate the probabilities associated with reaching freedom 
in X hours or in ≥Y hours where X and Y are just specific values. As 
before, since this situation can be represented as a Markov process, these 
values could be computed analytically. The purpose here is to compare 
the exact (analytic) results to the results from the simulation and also to 
illustrate the computations required from the simulation output.

Suppose that we wanted to compute the probability associated with 
time to freedom being greater than 2 hours. The exact probability can be 
computed just by using a little common sense. In particular, if we let X 
be a random variable representing time to freedom, then
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Now, the simulation was set up to record the number of outcomes in 
which the time to freedom was more than 2 hours, out of a specific num-
ber of “trials.” This number was divided by the total number of trials 
in order to obtain a point estimate of the time to freedom being greater 
than 2 hours. Random number stream 3 was used to determine which 
door was chosen on each try by the thief. The simulation was run for 
the following number of trials: 20, 50, 100, 1,000, and 10,000. The point 
estimates and corresponding 95% confidence intervals using (9.13) are 
shown in Table 9.5.

TABLE 9.5

Experimental Results for the Probability of Reaching Freedom in More Than 
2 Hours from the Thief of Baghdad Simulation

Number of 
Replications, n 

Sample Value for Probability of 
Time to Freedom >2 Hours, p̂ 

Half-Width for a 95% Confidence 
Interval for Probability 

20 0.50 0.22
50 0.60 0.14

100 0.57 0.097
1,000 0.536 0.031

10,000 0.5593 0.01
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As an example of the calculations in Table 9.5, consider the case of 100 
replications. This run resulted in a point estimate of .57 for the prob-
ability, which in turn led to a half-width for a 95% confidence interval of

 
z p 1 p /1 1 96 57 (1 57 /1 97,975

5 5
.

. .
[ ( ) ] . . . ) .ˆ ˆ- = -[ ] =00 00 0

which gives a 95% confidence interval of .57 ± .097 or (.473, .667).
The reader will note that every confidence interval in Table 9.5 con-

tains the true value for the probability of .555…. However, “good accu-
racy” of a .031 (or less) half-width for a 95% confidence interval required 
at least 1000 independent trials/replications of the simulation.

9.3.2 Achieving a Specified Accuracy with a Confidence Interval

Sometimes, the execution of a simulation model of a decision situation 
requires much computational effort for each replication of the model. Hence, 
the trade-off between computational effort and accuracy (i.e., width of a con-
fidence interval) in the estimation of a performance measure for an alterna-
tive may be an issue. In these cases, an analyst may want to have an idea of 
the relationship between the number of replications of a model and the half-
width of a confidence interval for a performance measure.

In looking at (9.10) for the t confidence interval, one can see that the half-
width for this confidence interval, denoted as HW, is given by (9.14).

 HW t S n nn= - -1 1 2
2 5

, /
.( ( ) ) ,a /  (9.14)

which can be rewritten as

 n t S n HWn= - -
2

1 1 2
2 2

, / ( ( ) ).a /  (9.15)

Now, we can estimate the value for S2(n) for any value of n by making just a 
few replications, say, 5. (Remember that the expected value of S2(n) remains 
constant for any value of n.) Let this approximation be denoted as just S2. 
However, we still have n on both sides of (9.15) since it remains a parameter for 
the t distribution. But we can replace tn−1, 1−α/2 with the critical value from the 
standard normal distribution, z1− α/2, as an approximation. (Remember that as 
n approaches infinity, the value of tn−1, 1−α/2 approaches the value of z1−α/2, and 
for n ≥ 30, these values are almost the same.) So we have

 n z S HW» -
2
1 2

2 2
a/ ( )/  (9.16)

Suppose that we make a few initial replications, say, n0, in order to esti-
mate S2. Let HW0 be the half-width for the confidence interval from these 
initial replications. Then, since we have HW0 = z1−α/2 S n/ 0

.5( ), and therefore 
z S n HW1 2

2 2
- =a/ 0 0

2, we can rewrite (9.16) as a simpler approximation for the 
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number of replications needed to achieve a specified half-width for a confi-
dence interval, as shown in the following equation:

 n n HW /HW2 2( )» 0 0  (9.17)

Let’s consider the results for 5 replications for random number stream 6 for 
the Thief of Baghdad problem, as shown in Table 9.4. For this run, we have 
n0 = 5, HW0 = 9.99 (for the 95% t confidence interval). Let’s suppose that we 
wanted to improve the accuracy of our estimate for the mean time to free-
dom by achieving a half-width of 2 for the confidence interval. How many 
total replications would be needed to achieve this? According to our first 
approximating formula, given by (9.16), we would need

 n z S HW» = = »-
2
1 2

2 2 2 2 21 96 8 05 2 62 2 62a/ ( ) . ( . ) ./ /

total replications or 57 additional replications in order to achieve the desired 
half-width of 2. According to our second, less accurate, formula given in 
(9.17), we would need

 n n (HW /HW 5 (9 99 /2 124 75 1252 2 2 2) . ) .» = = »0 0

total replications, or 120 additional replications in order to achieve the 
desired half-width of 2. Note that from looking at Table 9.4, the actual value 
for the total number of replications required to achieve a half-width of 2 is 
approximately 100.

9.4 Variance Reduction Techniques

Reduction of the variance of estimates associated with simulation output 
is useful in improving the accuracy of the estimates. More specifically, the 
widths of the confidence intervals of the respective estimators can be reduced 
with these variance reduction techniques. This in turn can allow one to more 
easily distinguish between the various alternatives under consideration.

There are many variance reduction techniques available for use in sim-
ulation studies, including common random numbers, antithetic variates, 
control variates, indirect estimation, and conditioning. In this section, we 
will focus briefly on common random numbers, which is probably the 
easiest and most commonly used of the various techniques. The reader 
is referred to any of several books on simulation such as Law (2007, 
Chapter 11) for additional information on common random numbers and 
the other techniques.
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One important fact to remember is that these variance reduction tech-
niques do not always work as intended. In particular, sometimes, a trial 
study (in which a few replications of the simulation model is made) is some-
times employed to see if the method will work.

Common random numbers, which have also been called correlated sam-
pling, differs from some of the other techniques in that it can be applied 
when two or more alternatives are being compared. That is, while some of 
the other techniques can be applied when obtaining a confidence interval 
associated with the output (such as expected utility) for a single alternative, 
common random numbers can be used to reduce the confidence interval 
associated with the difference between the expected utilities of respective 
alternatives—see Section 9.5.1 on paired-t confidence intervals.

The basic procedure for using common random numbers is very simple: 
specific random number streams are dedicated to specific respective purposes 
in the model. For example, stream 1 might be dedicated to the interarrival 
times for customers, stream 2 might be dedicated to the generation of the pro-
cess times for a specific activity, stream 3 might be dedicated to the generation 
of discrete random variates associated with the type of customer entering the 
system, and so on. For the model associated with Example 9.2 (given below) 
involving project management, streams 1, 2, and 3 might be dedicated to gen-
erating the random variates associated with generating the task durations 
for existing data transition, sales master data acquisition, and global master 
data acquisition, respectively. In this way, the random numbers used will be 
“matched up” (also called synchronization) across the different alternatives.

Most simulation software packages are easily set up to handle this type of 
procedure. For example, in the Arena simulation package, the stream number 
is appended at the end of the list of arguments representing the parameters 
of the distribution. Each time a new replication of the model starts execution, 
the random numbers being used will be taken from the start of the next sub-
stream of the relevant stream (see Kelton et al., 2015, pp. 524–525).

9.5 Comparing Two Alternatives

Although one of the emphases in this book is the analysis of decision situ-
ations with multiple performance measures, there are situations where 
one wants to optimize over a single measure, albeit with uncertainty/risk 
involved. As mentioned previously, it could be a situation where the other 
performance measures/attributes are considered through the use of con-
straints or all measures are “consolidated” through the use of a multiat-
tribute utility/value function or some combination of these two approaches, 
where some of the performance measures are constrained while the rest are 
considered through the use of a utility/value function.
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As seen in the previous section, output from a simulation model of a deci-
sion situation will be represented as a random variable through the use of 
multiple replications of the model. If one is considering two alternatives, 
then two separate simulations are used, one for each alternative. Often, these 
simulations will differ only in the values associated with one or more of their 
input/control variables.

9.5.1 Paired-t Confidence Intervals

Consider the output from two alternative simulation models, representing 
two alternatives over n1 independent replications for alternative 1 and n2 
replications for alternative 2. Let X1,j for j = 1,…, n1 be the outputs associated 
with the first alternative and X2,j for j = 1,…, n2 be the outputs associated with 
the second alternative. As noted previously, these outputs could represent 
expected profits, expected utilities, individual discrete outcomes, and so on.

Initially, we will consider an approach called the paired-t confidence interval 
in which the number of replications run for each alternative are the same 
(i.e., n1 = n2). Let n = n1 = n2, and let

 Y X X for j 1  n.j 1 j 2 j= - = ¼, , , ,

Since the individual replications are independent, the Yj are independent 
and identically distributed (so each Yj has the same expected value). Let ε = 
E(Yj) be the expected value of Yj; then

 

Y(n) Y /nj

j =1

n

= å

is an unbiased estimator of ε and

 

Var [Y(n)] = Y Y (n)] /n(n 1)j
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n
� [ - -

=
å 2

1

is an estimate of the variance of Y n( ). Then an approximate (1 – α) * 100% 
confidence interval for ε, the true mean, is given by (9.18).

 Y n t Var Y nn( ) ( [ ( )]) ./
.± - -1 1 2
5

, a
�  (9.18)

If the Yi are normally distributed, then (9.18) is an exact confidence interval. 
Even if the Yi are not normally distributed, then via the central limit theorem, 
(9.18) approaches an exact confidence interval as n approaches infinity. In 
most cases if n ≥ 30, sufficient accuracy will result.

If the paired-t confidence interval does not contain 0, we say that there is a 
statistically significant difference between the two alternatives.
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A second approach for comparing two alternatives is called the two-sample 
t-test. This test, which will not be discussed in detail here, is used less fre-
quently than the paired t-test. It does not have the requirement that the number 
of samples from each alternative be the same. However, it does have the dis-
advantage of not being capable of incorporating the variance reduction tech-
nique (to improve the accuracy of the estimate of the difference between the 
two means) of common random numbers. The two-sample t-test can be useful 
for the validation of a simulation model where one may be able to obtain only a 
few samples from the actual system and many more samples from the model.

Example 9.2: Using a Paired-t Confidence Interval to 
Compare Two Alternatives for Project Management

This example is derived from an unpublished report involving a decision 
problem in project management encountered by a German company. 
The company produces beer trailers. The company used an outdated 
enterprise resource planning (ERP) system that supported only about 
25% of the required deliverables of the process. ERP systems support 
data collection, database management, and management decision mak-
ing in the areas of production planning, inventory control, marketing, 
personnel management, shipping, and others. The company wanted to 
install a new ERP system that would allow for a new, more comprehen-
sive approach for management decision making in these areas.

As with any large project involving many tasks performed by a variety 
of personnel, the techniques associated with project management were 
useful for this ERP installation project. A project management approach 
involves subdividing a project into various separate tasks through the 
use of a project network. Implicit in the project network are the prece-
dence relationships among these tasks—that is, certain tasks cannot be 
started until other tasks are completed. Through proper analysis of the 
project network, one can determine the project schedule and also allo-
cate resources for the project over time.

The tasks, projected task durations, direct costs, and precedence rela-
tionships for the ERP installation project for this German company are 
shown in Table 9.6.

An activity-on-node project network illustrating the precedence rela-
tionships shown in Table 9.6 is shown in Figure 9.1.

Each of the tasks shown in Table 9.6 and in Figure 9.1 can be divided 
into “subtasks.” For example, employee training can be divided into 
training of sales staff, training of purchasing staff, training of manu-
facturing personnel, and so on; preinstallation tasks include current 
data backup, manual data gathering, and server preparation. In order to 
keep this example relatively simple, however, we will keep the number 
of tasks at 12.

Several of the tasks have uncertain durations, which are represented 
by triangular distributions, as noted in Table 9.6.

Because of the uncertainties associated with the task durations, a 
Monte Carlo simulation model was developed for the project. The sim-
ulation was developed using the Arena simulation software package, 
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but any of several different software packages could have been used. A 
simulation model of a project network is relatively easy to build in a pro-
cess-oriented simulation software package such as Arena. In particular, 
for the Arena model that was constructed for this project, the following 
modules are given:

 1. A Create module was used to create a single entity to represent 
the starting point of the project.

 2. Process modules of the delay type were used to represent the 
individual tasks of the project.

 3. For a task that is an immediate predecessor of more than one 
succeeding tasks, one or more Separate modules were used to 

TABLE 9.6

Tasks, Projected Durations, and Precedence Relationships for Enterprise 
Resource Planning Installation Project

Task Number Task Name 
Task Duration 

(Days) 
Task Cost 

(Euros/Day) 
I.P.’s (Task 
Numbers) 

1 Project initialization 2 600 —
2 Quality documentation 8 1000 1
3 Existing data transition TRIA (16, 22, 30) 2000 1
4 Preinstallation tasks 7 1500 1
5 System installation 3 3000 4
6 Sales master data 

acquisition
TRIA (9, 12, 16) 2000 5

7 Global master data 
acquisition

TRIA (10, 14, 20) 1500 5

8 Layout definition 4 1600 5
9 Employee training 4 4000 6, 7

10 Master data acquisition TRIA (38, 45, 58) 1500 9
11 Introduction into 

productive operations
1 1000 2, 3, 8, 10

12 Postproject review 1 1500 11

+

+
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FIGURE 9.1
Activity-on-node project network for an enterprise resource planning installation project. 
(Output from MS Project™.)
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create multiple entities that will arrive at the Process modules 
representing those succeeding tasks. An example in this project 
is the “project initialization” task, which has three succeeding 
tasks: “quality documentation,” “existing data transition,” and 
“preinstallation tasks.”

 4. For a task that has more than one immediate predecessor, a 
Batch module was used to batch multiple entities, one entity from 
each of the immediate predecessor tasks, thereby assuring that 
each immediate predecessor task is finished before the succes-
sor task can begin. An example of this situation is the “employee 
training” task, which has “sales master data acquisition” and 
“global master data acquisition” as immediate predecessors.

 5. A Dispose module was used to represent project termination 
when one entity reaches it.

Variable modules are used to input the cost per week for each of the tasks, 
and record modules are used toward the end of the network to record proj-
ect duration and project cost for each replication of the model. Figure 9.2 
illustrates the Arena simulation model for this project.

The reader should note that this particular model employs only a few 
of the features that simulation as a methodology can use to represent a 
project. In particular, this particular model does not address resource 
allocation or usage, probabilistic dependence of various task durations, 
or multiple project outcomes (e.g., project success and project failure). 
However, these aspects associated with real projects could be easily 
modeled with simulation as a tool.

Running the simulation for 30 replications resulted in the following 
outputs associated with project duration and cost:

Estimated expected project duration = 79.4 days
Maximum project duration (over 30 replications) = 88.6 days
Minimum project duration (over 30 replications) = 71.6 days
Estimated expected project cost = 214,559 euros
Maximum project cost (over 30 replications) = 234,129 euros
Minimum project cost (over 30 replications) = 199,915 euros

Upon viewing these results, the project manager realized that there 
would be a problem with the project as planned. Specifically, orders 
for the beer trailers occurred throughout the year but varied on a sea-
sonal basis; in particular, the order rate was expected to increase sharply 
beginning in 74 days. Although allowing the duration of the ERP instal-
lation project to be greater than 74 days was feasible, such project dura-
tion would be undesirable.

Various alternatives were available for decreasing the project duration. 
Specifically, by contracting with the vendor of the ERP system, both the 
duration of the “existing data transition” task and/or the duration of the 
“master data acquisition” task could be reduced in duration, but at an 
increased cost per day for these tasks. These durations would still be 
modeled as uncertain in nature though through the use of triangular 
probability distributions; the parameters for these distributions would 
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be provided through expert estimates. Consideration of these possibili-
ties led to four mutually exclusive alternatives, as shown in Table 9.7.

Running the simulation model for 30 independent replications for each of 
the four alternatives listed in Table 9.7 led to the results shown in Table 9.8.

In viewing the results from Table 9.8, the project manager was initially 
surprised that alternative 2 performed no better than alternative 1 and 
that alternative 4 performed no better than alternative 3 on the proj-
ect duration measure, even though they each performed worse on the 
cost measure. Upon further reflection, however, he realized that since 
the “existing data transition” task was not on the critical path for the 
network (even when the “master data acquisition” task duration was 
reduced), this was not surprising.

Hence, two alternatives, as listed in Table 9.7, were considered for fur-
ther analysis: alternatives 1 and 3. Alternative 1, the baseline plan, had a 
lower cost than alternative 3, but alternative 1 resulted in longer project 
duration than alternative 3. However, there was uncertainty associated 
with both measures for each alternative. Hence, the project manager’s 

TABLE 9.7

Investigated Alternatives for an Enterprise Resource Planning Installation Project

Alternative 
Number Description

Results in Terms of Changes to Task 
Durations and Costs 

1 Baseline—do not contract with 
software vendor.

—

2 Contract with vendor to reduce 
duration of “existing data 
transition.”

Reduce duration of “existing data 
transition” to TRIA (14, 16, 22), with 
new cost per day of $4000.

3 Contract with vendor to reduce 
duration of “master data 
acquisition.”

Reduce duration of “master data 
acquisition” to TRIA (30, 36, 46), with 
new cost per day of $3500.

4 Alternatives 2 and 3 are combined. Changes to durations and cost 
associated with “existing data 
transition” and “master data 
acquisition” as noted earlier for 
alternatives 2 and 3.

TABLE 9.8

Results from the Simulation of the Alternatives Listed in Table 9.7

Alternative Number 
(as Shown in Table 9.7) 

Estimated Expected Cost 
(Minimum, Maximum, 
over 30 Replications), in 

Thousands of Euros 

Estimated Expected Project 
Duration (Minimum, 

Maximum, over 30 Replications), 
in Days 

1 214.6 (200, 234.1) 79.4 (71.6, 88.6)
2 238.3 (222.7, 257) 79.4 (71.6, 88.6)
3 274.1 (251.9, 300.2) 69.8 (63.1, 77.9)
4 297.8 (274.7, 323.1) 69.8 (63.1, 77.9)
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utility function over two attributes, X1 (cost in thousands of euros) and 
X2 (project duration in days), was constructed.

Using the results from Table 9.8, the “endpoints” for the attribute val-
ues were set as

 x x x and xw b w b
1 1 2 2320 185 95 60= = = =, , , .

In assessing the utility function, the project manager wanted to be par-
ticularly careful in assessing u2 by assessing several values for X2 “close 
to” 72 days because of the critical nature of this project duration.

Suppose that several points for the project manager’s single attribute 
utility function for X1, cost in thousands of euros, have been determined, 
as shown in Table 9.9, with the graph for this function as shown in 
Figure  9.3. The concave function indicates that the project manager is 
risk averse with respect to project cost.

TABLE 9.9

Assessed Values for u1(x1), Utility Function 
for Project Cost in Thousands of Euros

X1, Project Cost in Thousands of Euros u1(x1) 

320 0.
312 0.125
303 0.25
291 0.375
279 0.5
265 0.625
247 0.75
225 0.875
185 1
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FIGURE 9.3
Graph for u1(x1).
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Intuition indicates that the utility function for project duration should 
have a slope that is relatively steep around an x2 value of 72 days. Because 
of the importance associated with this duration of 72 days, a response mode 
involving probability equivalence was employed in determining some of the 
values on the u2 utility function curve, as shown in the following dialogue:

Analyst: Suppose that you have two alternatives: A1, a .5 
probability of a project duration of 60 days and 
a .5 probability of a project duration of 95 days, 
versus A2, a certain project duration of 72 days. 
Which would you prefer?

Project manager: I would prefer A2, the certain project duration of 
72 days.

Analyst: OK, suppose that the probability in A1 for the 
60-day duration was increased to .8 (and there-
fore, the probability for the 95-day duration was 
decreased to .2). Which of the two alternatives 
would you prefer?

Project manager: Then, I would be indifferent between alterna-
tives A1 and A2.

At this point, the analyst knows that since the project manager is indif-
ferent between A1 and A2, their expected utilities must be equal:

 Eu(A Eu(A1 2) )=

or

 . ) . ) ( )8u (6 2u (95 u 722 2 20 + =

or

 . ( )8 u 722=

Continuing with the assessment, the analyst asks the following ques-
tions, remembering that utility function values close to a project dura-
tion of 72 days are critical for the assessment:

Analyst: OK, suppose that you have the following two 
alternatives: A1, a .5 probability of a project dura-
tion of 72 days and a .5 probability of a project 
duration of 95 days, versus A2, a certain project 
duration of 78 days. Which would you prefer?

Project manager: I would prefer A2, the certain project duration of 
78 days.

Analyst: OK, suppose that the probability in A1 for the 
72-day duration was increased to .8 (and there-
fore, the probability for the 95-day duration was 
decreased to .2). Which of the two alternatives 
would you prefer?

Project manager: Then, I would be indifferent between alterna-
tives A1 and A2.
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So, from these responses, the analyst knows that u2(78) = .4. Note that 
using the probability response mode in the assessment process allows 
the analyst to determine the x2 values that he wants to assess. Continuing, 
the various values assessed for the u2 curve are given in Table 9.10, 
with the corresponding graph given in Figure 9.4. Note that, as expected, 
the slope of the graph around the value of 72 days is especially steep.

The assessment of the overall utility function, u(x1, x2), continues with 
the analyst showing that X1 is UI of X2 and X2 UI of X1—that is, (X1, X2) 
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FIGURE 9.4
Graph for u2(x2).

TABLE 9.10

Assessed Values for u2(x2), Utility Function 
for Project Duration in Days

X2, Project Duration in Days u2(x2) 

95 0
88 0.2
78 0.4
74 0.6
72 0.8
70 0.9
65 0.95
60 1
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are MUI. Therefore, the analyst knows that the utility function is multi-
plicative and, upon assessing the values of the scaling constants, arrives 
at the final form for the utility function:

 u(x x 3u (x 5u (x 2u (x u x1 2 1 1 2 2 1 1 2 2, ) . ) . ) . ) ( )= + +

where u1 and u2 are as described previously.
A paired-t confidence interval approach was used to compare alterna-

tives 1 and 3 listed in Table 9.7 using expected utility as the criterion. 
Specifically, the original simulation model was altered slightly to allow 
for the computation of a utility function value for each project simula-
tion. An estimate of expected utility can then be made by averaging over 
multiple, independent replications of the model. Note that this estimate 
for expected utility is obtained not by computing the utility function 
value of expected cost and expected project duration, but by computing 
the utility function value of cost and project duration at each replica-
tion and then averaging these utility values over all replications. In other 
words, we are estimating the expected utility of cost and project duration, not the 
expected utility of expected cost and expected project duration.

The utilities for each of the alternatives and for the difference between 
the alternatives for a few of the 30 replications are shown in Table 9.11. 
Note that there is a large variation in the expected utility estimates from 
one replication to another, as a result of the variation in task duration 
and project cost. Each replication represents only one simulation of the 
project.

Corresponding to our notation for the paired-t confidence interval, in 
Table 9.11 the second column is X1,j, the third column is X2,j and the fourth 
column is Yj. From the Yj values, we compute values for Y( ) .30 103»

 

and, Var Y�[ ( )] .30 000257» . From a table for the t distribution, we find 
tn−1, 1−α/2 = t29, .975 = 2.045 so that the paired-t 95% confidence interval for 

TABLE 9.11

Sample Expected Utilities (and Differences) for Each Alternative for a Subset 
of the Replications

Replication 
Number 

Expected Utility 
for Alternative 3 

Expected Utility for 
Alternative 1 (Baseline) 

Difference in Expected 
Utilities (Alternative 

3 Minus Alternative 1) 

1 0.8358 0.8407 −0.0049
2 0.6675 0.5042 0.1633
3 0.7631 0.5459 0.2172
4 0.3077 0.3690 −0.0613
5 0.5038 0.4513 0.0525

⋮ ⋮ ⋮ ⋮
28 0.6564 0.5005 0.1559
29 0.7426 0.5478 0.1948
30 0.8132 0.8374 −0.0242
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the difference in expected utility values between alternative 3 and the 
baseline alternative is

 Y t Var Y or 1 3 328 or ( 7 2  1363 975( ) ( [ ( )]) , . . , . , .,.
.30 30 0 0 0 00
5± ±� 00).

Since the confidence interval does not contain 0, we say that alternative 3 
performs significantly better (at the 95% level) than the baseline alterna-
tive with respect to the expected utility criterion.

A sensitivity analysis was performed in which the weights for the 
individual attribute utility functions were varied. In particular, w1, the 
weight for the cost function, was varied from .8 to .1 in increments of .1, 
while correspondingly, w2, the weight for project duration, was varied 
from .1 to .8 in increments of .1; the coefficient for the interaction term in 
the multiplicative utility function was left constant at 1 – w1 – w2 (= .1). 
The results are shown in Table 9.12.

The results shown in Table 9.12 are intuitive. That is, as the weight 
associated with the individual attribute utility function for project dura-
tion increases, the attractiveness associated with alternative 3, relative 
to the baseline, increases. Also, as seen in Table 9.12, the utility func-
tion weights for which there is no significant difference between the two 
alternatives (at the 95% level) is w1 = .5, w2 = .4. However, an increase 
in the number of replications of the model from the current value of 30 
could very well lead to a significant difference between the alternatives.

The results shown in Table 9.12 indicate the importance of obtaining 
an accurate utility function in order to rank the alternatives correctly.

TABLE 9.12

Results of Sensitivity Analysis on Weights for Utility Function

Experiment 
Number w1 w2 

95% Paired-t 
Confidence Interval 
for EUAlt3 − EUBaseline Significance Results 

1 .8 .1 (−.28, −.221) Baseline significantly better than 
alternative 3

2 .7 .2 (−.201, −.145) Baseline significantly better than 
alternative 3

3 .6 .3 (−.123, −.0683) Baseline significantly better than 
alternative 3

4 .5 .4 (−.0467, .00994) No significant difference between 
the alternatives

5 .4 .5 (.0283, .0895) Alternative 3 significantly better 
than baseline

6 .3 .6 (.102, .170) Alternative 3 significantly better 
than baseline

7 .2 .7 (.175, .251) Alternative 3 significantly better 
than baseline

8 .1 .8 (.248, .333) Alternative 3 significantly better 
than baseline
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Example 9.3: Comparing NBA Series Patterns

The National Basketball Association championship involves the playing 
of a seven-game (at the maximum) series between the two final teams to 
determine its champion. The first team to win four games is the cham-
pion. The series pattern has shifted between a two–three–two series 
and a two–two–one–one–one series over the years. The two–three–two 
series involves playing the first two games at the home court of the 
higher-seeded team, the next three games at the home court of the lower-
seeded team (if all three are needed), and the last three games (if needed) 
at the home court of the higher-seeded team again. The two–two–one–
one–one series has games one, two, five (if needed), and seven (if needed) 
at the home court of the higher-seeded team.

There are obvious advantages and disadvantages associated with 
each format vis-à-vis the other format. For example, with the two–
three–two format, there will be less travel involved; however, some 
analysts have remarked that the two–three–two format results in an 
unfair advantage to the lower-seeded team since if they can “steal” one 
of the first two games, they will be able to close out the series at their 
home court.

In 2014, the association switched to a two–two–one–one–one series 
from a two–three–two series. At the time, it was said that this change in 
series format was more likely to result in a longer series than in a change 
in outcome (Zillgitt, 2014).

A Monte Carlo simulation model was built to test the difference 
between the two formats. The model assumes that each team has a 
constant probability of winning on their home court and a constant 
probability of winning on the other team’s home court. Of course 
with these assumptions, the differences between the two series could 
be derived analytically, but let’s assume that the NBA commissioner 
would be more comfortable with a simulation in which he can view 
the series play out with respect to the number of games won by each 
team. In addition, with a simulation, one would be able to more easily 
vary the assumptions—for example, if a team won two games in a row, 
their probability of winning the next game might decrease because of 
overconfidence.

The basic input to the models included the probability associated with 
each team winning on their home court, the number of series played per 
replication, and the number of replications made. Note that setting up 
each replication to run multiple series was not difficult since each new 
series in a replication starts out with an “empty and idle” system. The 
outputs from the model included estimates of the probability of each 
team winning and the expected number of games in the series, along 
with 95% confidence intervals for each of these quantities. For example, 
if three replications were made, with each replication involving one 
series, and the outputs for each replication were

 1. Higher-seeded team wins in five games in the first replication
 2. Lower-seeded team wins in six games in the second replication
 3. Higher-seeded team wins in seven games in the third replication
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Then the estimates for expected number of games in a series would be 
six, and the estimate associated with the higher-seeded team winning 
the series would be 2/3.

If three replications were made, with 100 series played in each replica-
tion, and the outputs associated with each replication were

 1. Higher-seeded team wins 57 series, with the average number of 
games per series being 6.24

 2. Higher-seeded team wins 63 series, with the average number of 
games per series being 6.15

 3. Higher-seeded team wins 55 series, with the average number of 
games per series being 6.75

Then the estimates for the expected number of games in a series would 
be (6.24 + 6.15 + 6.75)/3 = 6.38, and the probability of the higher-seeded 
team winning the series would be (.57 +.63 +.55)/3 = .5833….

Four separate models (using the Arena simulation software package) 
were built:

 1. A model for the two–three–two series in which each random 
number in the simulation was generated from stream 10

 2. A model for the two–three–two series in which each random 
number in the simulation was generated from the stream that 
corresponded to the game number of the series

 3. A model for the two–two–one–one–one series in which each 
random number in the simulation was generated from stream 10

 4. A model for the two–two–one–one–one series in which each 
random number in the simulation was generated from the 
stream that corresponded to the game number of the series

The idea was that in addition to comparing the series patterns, we also 
wanted to determine the effect of common random numbers.

The model was set up to run so that the probability of the higher-seeded 
team winning on their home court was .6 and the probability of the lower-
seeded team winning on their home court was .52. (It would be expected 
that the team with the home court advantage, being the better team, 
would have a higher probability of winning on their home court than the 
other team would have of winning on their home court.) One hundred 
replications, each involving 100 series, were made for each of the four 
models. The results for the individual models are shown in Table 9.13.

The results associated with the 95% paired-t confidence intervals are 
shown in Table 9.14.

The first thing to note about the results is that there is very little dif-
ference in the two series, either in terms of the probability of the home 
team winning or in the expected number of games for the series, since 
each of the paired-t confidence intervals contained 0. The use of com-
mon random numbers did have a slight effect on the half-widths of the 
paired-t confidence intervals, as seen in Table 9.14; specifically, the half-
width for the difference in probabilities confidence interval was reduced 
from .0115 to .00966, and the half-width for the number of games confi-
dence interval was reduced from .0292 to .0237. It should be noted that 
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the procedure used for common random numbers in this case (in which 
the stream number used was the same as the game number) probably 
would have been more effective had there just been one series per rep-
lication; this would have allowed for a better matching of the streams.

One of the more interesting aspects of this experiment would be in 
considering the benefit of home court advantage in a series. This aspect 
is addressed in Exercise 9.5.

9.6 Comparing a Few Alternatives

In this section, we discuss methodologies that involve the analysis of a few 
alternatives using simulation as a modeling tool. By a few alternatives, we 
mean anywhere between three and about 100. Of course, the specific number 
of alternatives to consider for any of the methodologies discussed in this sec-
tion depends upon the computational requirements associated with a repli-
cation of the simulation model.

Also, the procedures discussed in this section require the explicit “eval-
uation” of each alternative through at least one replication of the model 

TABLE 9.13

Results from NBA Championship Series Simulation with a Probability 
of Home Court Win by Higher-Seeded Team of .6 and a Probability of 
Home Court Win by Lower-Seeded Team of .52

Model 

95% Confidence Interval for 
Probability of Series Win 
by Higher-Seeded Team 

95% Confidence Interval 
for Expected Number of 

Games in Series 

2–2–1–1–1 No CRN .6071 ± .01 5.8168 ± .02
2–3–2 No CRN .6039 ± .01 5.8068 ± .02
2–2–1–1–1 CRN .6056 ± .01 5.7864 ± .02
2–3–2 CRN .6014 ± .01 5.8003 ± .02

TABLE 9.14

Paired-t 95% Confidence Intervals for the Differences between the 
2–2–1–1–1 Series and the 2–3–2 Series

Models 

Paired-t 95% CI for 
Difference in Probability 

of Series Win by 
Higher-Seeded Team 

Paired-t 95% CI for 
Difference in Expected 

Number of Series 
Games 

2–2–1–1–1 No CRN 
– 2–3–2 No CRN

.0032 ± .0115 .01 ± .0292

2–2–1–1–1 CRN – 2–3–2 
CRN

.0042 ± .00966 –.0139 ± .0237
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representing that alternative—that is, no optimization technique is employed 
to implicitly evaluate alternatives.

The consideration of multiple objectives in this section can be accomplished 
through the use of expected utility as the performance measure of interest.

Several categories of techniques are available for this type of analysis, 
including (1) procedures that involve comparing each alternative to a stan-
dard, (2) procedures that involve comparing each alternative to each other 
alternative in a pairwise fashion, and (3) ranking and selection procedures. 
The first two categories involve a simple extension of the paired-t confidence 
interval approach discussed earlier. The ranking and selection techniques 
represent a different type of approach.

Before discussing these categories of techniques, we will first briefly dis-
cuss the Bonferroni inequality, an important result when considering mul-
tiple confidence intervals.

9.6.1 Bonferroni Inequality

One important result (for a comparison involving multiple systems with pos-
sibly multiple performance measures to consider) is the Bonferroni inequality 
(Banks et al., 2005, p. 449). This result says that if one has n confidence inter-
vals, with each interval at the (1 – α) confidence level, then the probability 
that all n confidence intervals contain their true performance measure val-
ues simultaneously will be at least 1 – nα.

Let’s consider the simulation model for the baseline project of Example 9.2. 
Ten replications (as opposed to the 30 in the example) were made of one sim-
ulation each, and the following 95% (or (1 – .05) * 100%) confidence intervals 
were attained for cost and project duration:

 1. For cost, 216.75 ± 8.79 or (207.96, 225.54) thousands of euros
 2. For project duration, 81.11 ± 3.54 or (77.57, 84.65) days

From the Bonferroni inequality, we could then say that the probability of 
the true values for expected cost and expected project duration being within 
these intervals would be at least ((1 – 2(.05)) × 100)% or 90%.

Note that the Bonferroni inequality only provides a bound on the confi-
dence. Also when using the Bonferroni inequality to make inferences con-
cerning multiple simultaneous confidence intervals, the confidences for 
the respective individual confidence intervals do not have to be equal. For 
example, one could form a 2% confidence interval for cost, an 8% confidence 
interval for project duration, and at least 90% confidence interval (=2% + 8%) 
in the simultaneous result.

One important advantage associated with the Bonferroni inequality is 
that it applies in situations in which the common random number variance 
reduction technique is used for variance reduction.



387Use of Simulation for Decision Models

9.6.2 Comparison to a Standard

In some situations, one has an existing system and also several alternatives 
which are being considered to modify that system. Such a case is called compari-
son to a standard. The standard could be the best system or it could be the existing 
system. If there are n alternatives to compare to the standard, then if the paired-t 
confidence interval approach is used, there will be n paired-t confidence inter-
vals formed. So, for example, if there are five alternatives to be compared to a 
standard, and therefore, five 98% paired-t confidence intervals are formed

Alternative 1 – Standard system
Alternative 2 – Standard system
Alternative 3 – Standard system
Alternative 4 – Standard system
Alternative 5 – Standard system

then the overall confidence will be 100% − 5 * 2% = 90%. That is, the overall 
probability that each of the five confidence intervals will contain the true 
differences of the respective mean values of the performance measure simul-
taneously will be .9. 

9.6.3 All Pairwise Comparisons

If one wants to compare each of n alternatives to every other alterna-
tive, then using the paired-t confidence interval approach, there will be 
(n − 1) + (n − 2) + … + 1 = n(n − 1)/2 individual confidence intervals to form.

For example, if there are five alternatives, there will be 10 confidence 
intervals to form if all pairwise comparisons are made. If each of the 10 
confidence intervals is at the 2% level, then the overall confidence will be 
100% − 10 * 2% = 80%.

Example 9.4: Selecting a Policy for an (s, S) Inventory 
System Using the All Pairwise Comparisons Approach

This problem is a modified form of a problem described in Kelton et al. 
(2015, pp. 257–270).

Consider a simple (s, S) inventory system involving one product. The 
system operates 24 hours per day, 7  days per week. Customers arrive 
to purchase the product with an interarrival time that is exponentially 
distributed with a mean value of .05 day. Each customer purchases a 
number of units that are distributed according to a discrete empirical 
distribution, as shown in Table 9.15. (The distribution represents two 
types of customers—“small demand,” who demand from 1 to 4 units 
of the product, and “large demand,” who demand 9 or 10 units of the 
product.)
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An (s, S) policy is followed to replenish the inventory. Specifically, the 
inventory level is checked at the beginning of each day. If the inventory 
level is less than s, then an order is placed with an order quantity equal 
to S minus the current inventory level. If the inventory level is greater 
than or equal to s, no order is placed. An order placed at the beginning 
of a day will arrive later in the day, with a lead time that is uniformly 
distributed between .25 day and 1 day.

Each time an order is placed to replenish inventory, a cost is incurred. 
This cost has a fixed component of $30 and a variable component of $3. 
Note that this variable component has nothing to do with the cost of the 
product itself; it is just the cost associated with ordering the product. 
So an order for 100 units of the product would have an ordering cost of 
$30 + $3 * 100 = $330. 

There is also an inventory holding cost of $2 per unit of inventory 
per day. So, for example, if the system had carried 50 units of inven-
tory over a 5-day period, followed by 20 units of inventory over the next 
3 days, the holding cost over the entire 8-day period would be 2 * 50 * 5 + 
2 * 20 * 3 = 500 + 120 = $620.

In summary, the parameter values for this problem are shown in 
Table 9.16.

When a customer arrives with a demand for the product, the entire 
demand is met if the inventory level is greater than or equal to the 
demand. If the customer demand is greater than the inventory level, 
the customer receives a number of units equal to the physical inventory 

TABLE 9.16

Parameter Values for the Inventory System

Parameter Parameter Value 

Customer interarrival time EXPO (.05) day
Customer demand See Table 9.15
Fixed cost for ordering inventory $30
Variable cost for ordering inventory $3 per unit
Lead time from supplier UNIF (.25, 1) day
Evaluation time for inventory level Beginning of each day

TABLE 9.15

Units of Demand per Customer

Number of Units of Demand Probability 

1 .1
2 .2
3 .2
4 .1
9 .2

10 .2
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level but must wait for the remainder of the order until a new delivery of 
inventory. So, for example, if two units of inventory are on hand, and a 
customer arrives with a demand for three units of the product, two units 
of demand will be satisfied, while the other unit will be placed on back 
order, until additional units arrive from the supplier.

The organization is interested in two performance measures, one hav-
ing to do with the cost of operating the system and one addressing cus-
tomer service:

X1: Average cost per day associated with ordering and holding 
inventory

X2: Unit-days of shortage per day

Using two different attributes (or categories of attributes), one to repre-
sent the internal system cost and another to represent customer service, 
is often a desired approach, as has been pointed out previously.

As an example of the second performance measure, suppose that a 
customer arrives 10 hours into a day and demands 10 units of inven-
tory, but only two units are available; so, after he or she receives the 
two units available, there is now a shortage of eight units. A second 
customer arrives at 10.4 hours into the day and demands three units of 
the product; of course, none of his or her demand can be supplied, so 
now there is a shortage of 11 units. No other customers arrive between 
10.4 and 11 hours into the day. But at 11 hours, an order of 60 units of 
the product arrives from the supplier, so the two back orders (the first 
of eight units and the second of three units) are satisfied. During this 
period of one hour, between 10 and 11 hours into the day, there was a 
period of .4 hours (between times 10 and 10.4 hour) when there was a 
shortage of eight units and a period of .6 hour (between times 10.4 and 
11 hours) when there was a shortage of 11 units. Therefore, the unit-
days of shortage was

.4 hour * (1 day/24 hours) * 8 units of shortage + .6 hour * 
(1 day/24 hours) * 11 units of shortage = .1333… + .275 = .408 
unit-days of shortage.

A simulation model has been developed to study the system in order 
to determine the best values for s and S. The model has been set up to 
run for 200 days, with an initial inventory level of 50 units. (Given the 
parameter values for the situation, no warm-up period for the model 
is needed in order to allow for a steady-state analysis of the output.) 
The reader will note that this model is not a Monte Carlo simulation 
but instead is a “time-dynamic” simulation model, with time-persistent 
variables such as inventory level.

An “all pairwise comparison” of four policies is to be done:

 1. Policy 1: s = 30, S = 60
 2. Policy 2: s = 30, S = 120
 3. Policy 3: s = 100, S = 250
 4. Policy 4: s = 150, S = 250
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A scaled multiplicative utility function, representing the inventory man-
ager’s preferences, has been developed over X1 and X2:

 u(x  x 18u (x 72u (x 1u (x )u x1 2 1 1 2 2 1 1 2 2, ) . ) . ) . ( )= + +

where

 u x 25x 1 751 1 1( ) . .= - +00

 u (x ) .00008x .0012x +12 2 2= - -2
2

The individual attribute utility functions, u1 and u2, have been assessed 
in such a way that

 u (7  u (3 1  u (1 4 5 and u ( 1.1 1 2 200 0 00 0 0 0) , ) , . ) , )= = = =

These worst and best values for X1 (700 and 300, respectively) and for X2 
(104.5 and 0, respectively) were determined by running the simulation 
model for multiple replications for the various policies and determining 
the worst and best values from the respective outputs. Note also that the 
utility function for X1 is linear, implying that the manager is risk neutral 
over cost; the function for X2 is concave, implying that the manager is 
risk averse over shortages.

Thirty replications were run for each policy. The 99% paired-t confi-
dence intervals for the difference in the expected utilities for each pair of 
policies are given as follows:

Policy 1–Policy 2: (−.196, −.167)
Policy 1–Policy 3: (−.193, −.169)
Policy 1–Policy 4: (−.162, −.139)
Policy 2–Policy 3: (−.00555, .00658)
Policy 2–Policy 4: (.0257, .0372)
Policy 3–Policy 4: (.0279, .034)

Note that, for example, Policy 1-Policy 2 refers to the 99% confidence 
interval for the expected utility of Policy 1 minus the expected utility of 
Policy 2. The overall confidence level is at least (1 – 6 * (.01)) * 100% = 94% 
from the Bonferroni inequality.

The difference in the policies for any pair of policies, except for 
Policies 2 and 3, is statistically significant. This can be seen by determin-
ing which of the confidence intervals contains 0. In particular, each of 
Policy 2 and Policy 3 is significantly better than Policy 1 and Policy 4. 
Policy 4 is significantly better than Policy 1.

Since the difference between Policies 2 and 3 is not significant, one, or 
more than one, of the following actions can be taken:

 1. The number of replications can be increased for the simulations 
of Policies 2 and 3. (Keep in mind that for a paired-t confidence 
interval, the number of replications must be the same for each 
alternative.)

 2. The significance levels associated with the individual confi-
dence levels could have been altered.
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 3. A variance reduction technique such as common random num-
bers (Banks et al., 2005, pp. 438–446) could be applied to reduce 
the width of the paired-t confidence interval.

For example, both the 95% confidence interval and the 90% confidence 
interval for the Policy 2 expected utility minus the Policy 3 expected util-
ity were constructed, yielding the following results:

95% confidence interval (Policy 2–Policy 3): (−.00398, .00502)
90% confidence interval (Policy 2–Policy 3): (−.00322, .00426)

Even though the widths of the confidence intervals decreased in going 
from 99%, to 95%, to 90% (as they must) each interval still contained 
0. Keep in mind that the overall confidence of the simultaneous result 
decreases, from 94% to 90%, and then to 85%.

In addition, the number of replications associated with the simulations 
of Policies 2 and 3 was increased, to see if this would have an effect on 
the result. The paired-t confidence intervals for this experimentation 
(with 50 replications) were given by

99% confidence interval (Policy 2–Policy 3): (−.00418, .00577)
95% confidence interval (Policy 2–Policy 3): (−.00294, .00452)
90% confidence interval (Policy 2–Policy 3): (−.00232, .0039)

The differences are still not significant. So, at this point, the analyst 
should spend some time with the manager in looking at the outputs 
for the individual attributes in more detail. In particular, the estimates 
(resulting from 30 replications) of the expected values for X1 for Policies 
2 and 3 are $372.04 and $504.08, respectively, while the estimates of the 
expected values for X2 for Policies 2 and 3 are 32.49 and 5.702, respec-
tively. This indicates quite a large trade-off between these two policies, 
and as a result, the difference in preferences between these two policies 
is highly sensitive to the scaling constants of the utility function.

9.6.4 Ranking and Selection

The methods discussed to this point in Section 9.6 are probably applicable 
when only a very few alternatives (say 3 to 10) are under consideration. If 
there are more than 10, but less than, say, 100, alternatives, the analyst may 
want to use one of the methods of ranking and selection.

The various methods for ranking and selection can be divided into two 
categories: (1) subset selection (screening) and (2) identifying a best alterna-
tive. Both groups of methods often involve a “guarantee” (that the best alter-
native is contained within an identified subset that contains either multiple 
alternatives [category 1] or a single alternative [category 2]) according to a 
probability and possibly a bound on the performance measure.

First, we will provide some notation for the discussion of these procedures. 
Assume that we have k ≥ 2 alternatives to consider and that Xij represents the 
output of interest (i.e., a performance measure value such as utility) from the 
jth independent replication representing the ith alternative. Suppose that we 



392 Multiple Criteria Decision Analysis for Industrial Engineering

want to maximize this output value. (If the objective involves minimization, 
the modification is obvious.) Let X n)i(  be the sample mean and S ni

2( ) sample 
variance of the mean for the ith alternative from n replications. In addition, 
let θi be the true expected value and θ[i] be the ith largest expected value. 
The notation and associated definitions are shown in Table 9.17.

As an example, suppose that we have four alternatives under consideration 
and that we want to choose the alternative that yields the largest expected 
utility. The true expected utilities for alternatives one, two, three, and four 
are θ1 = .57, θ2 = .42, θ3 = .78, and θ4 = .67, respectively. This would mean that 
θ[1] = .78, θ[2] = .67, θ[3] = .57, and θ[4] = .42.

Subset selection, also called screening, means selecting a subset (say 10 out of 
100 in total) of the entire set of alternatives such that one is assured with some 
probability that the best alternative (within a range for the expected value of the 
performance measure) is contained within the subset. Typically, one wants to 
employ subset selection when there are “many” alternatives from which a few 
(up to say about 10) are to be selected for a more intense analysis, for example, 
involving the second category previously mentioned or all pairwise comparisons.

The concept of correct selection is important for both categories of ranking 
and selection methods. Correct selection as applied in subset selection basi-
cally means that the best alternative is contained in the selected subset under 
some bounds and conditions with at least some specific probability.

For example, Koenig and Law (1985) provide a subset selection procedure, 
also described in Law (2007, pp. 568–569), which defines correct selection as

… selecting a subset of size m from the set of k alternatives such that the 
subset will contain the alternative with mean θ[1] with probability 1 – α 
whenever θ[1] − θ[2] ≥ ε, where 1 ≤ m ≤ k–1, (1 – α) > m/k, and ε > 0.

The region of the performance measure space, [θ[2], θ[1]], is called the indiffer-
ence zone (IZ). Typically, α might be set at a value of .05 (to give a probability 

TABLE 9.17

Summary of Notation for Ranking and Selection Methodologies

Notation Definition 

k Number of alternatives under consideration
Xij Output of interest from the jth independent replication of the 

simulation representing the ith alternative, for i = 1,…, k
X ni( ) The sample mean associated with n replications of the ith 

alternative =æ
è
ç

ö
ø
÷

=å X /nij
j

n

1

S ni
2( ) The sample variance (for the Xij’s) associated with n replications of 

the ith alternative = -( ) -
=å X X n) n 1)ij i
j

n
( ( .

1

2

θi The true expected value of Xij

θ[i] The ith largest θi
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of correct selection of .95), and ε might be set at .01 or .02 or even a slightly 
larger value if expected (scaled) utility is the performance measure.

One of the difficulties associated with using ranking and selection meth-
ods when expected utility is the performance measure has to do with deter-
mining the value of ε for the indifference zone. This value of the performance 
measure should have inherent meaning for the DM. Of course, measures 
such as expected waiting time, expected number of lost sales, and expected 
holding cost do have inherent meaning for the DM. Unfortunately, expected 
utility does not have such inherent meaning. In order to handle this dif-
ficulty, Butler et al. (2001) have developed a “utility exchange” method that 
allows the DM to specify an ε value for one of the attributes of a utility func-
tion and then exchange that for an ε value for expected utility.

The Koenig and Law procedure assumes that the Xij values are normally 
distributed and independent; the independence assumption implies that the 
common random numbers approach to variance reduction is not allowed. 
The normal distribution assumption is typically not a difficulty. The steps of 
the procedure are as follows:

 1. The DM selects values for α and ε. When the performance measure 
is expected utility, the choice of a value for ε can be problematic, as 
discussed earlier.

 2. Make n0 ≥ 2 replications of each alternative simulation and compute 
values for the first-stage sample means, X ni

( )( )1
0  and sample vari-

ances, S ni
2( )0  from the n0 replications for i = 1,…, k.

 3. Compute the total number of replications, Ni, for the ith alternative 
for i = 1,…, k, from the following formula:

 
N  max n h S n /i i= + éê ùú{ }0

2 2
01, ( ) e

 where ⌈x⌉ refers to the smallest integer greater than or equal to x and 
h is a constant that can be obtained from Table 10.12 in Law (2007) or 
from Koenig and Law (1985). Note that the total number of replica-
tions will depend upon the alternative.

 4. Make (Ni – n0) additional replications for i = 1,…, k, in order to obtain 
the second-stage sample means: X N ni i

( )( )2
0- .

 5. Compute a weighted sum of the two sample means for each alterna-
tive, where the weights are as given by a formula from Law (2007, 
p. 564).

 6. Select the m alternatives associated with the best m weighted sums 
as computed in Step 5.

A Bonferroni approach to subset selection, which guarantees with a probabil-
ity of 1 − α that the system with a performance measure value of θ[1] is in the 
subset and also allows for the use of common random numbers, is described 
in Banks et al. (2005, p. 457). This procedure is due to Nelson et al. (2001). 
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In addition to allowing the use of common random numbers, the approach 
has the advantages of not requiring the use of (1) a table of constant val-
ues (e.g., h in the Koenig and Law approach) or (2) the weights required for 
the weighted sum of the two sample means for each alternative. As with 
the Koenig and Law approach, however, the data from the replications are 
required to be normally distributed. Finally, the procedure does not result 
in a specific number of alternatives in the selected subset. The steps of this 
Bonferroni approach to screening are as follows:

 1. Select values for α, typically .05 and n0, the initial number of replica-
tions for each alternative. Typically, n0 might be set to 5 or 10.

 2. Make n0 independent replications for each alternative.
 3. Compute the sample mean for alternative i, X ni( )0 , for i = 1,…, k, and 

for all i ≠ j, calculate the sample variance of the difference:

 
S

n
X X X n X (nij

2
ir jr i j=

-
- - -( )( )å1

10
0 0

2
( ) ) .

r=1

n0

 4. Retain system i in the selected subset if X n X (n t /S ni j ij( ) )0 0 0³ - ( )
for all j ≠ i, where t = t

k
n

a
-

-
1

10,
.

Note that this procedure, unlike that of Koenig and Law, does not have an 
indifference zone associated with it—in effect, ε = 0.

The second category of ranking and selection methods, involving the iden-
tification of a best alternative, is typically used to address situations with 
only a “few” alternatives (say, less than or equal to 20). Chau et al. (2014) note 
that there are three categories of these methods: indifference zone methods, 
value of information procedures, and optimal computing budget allocation 
methods. In this section, we will focus on the most popular category, the 
indifference zone (IZ) methods. 

Two of the earliest popular procedures for identifying a best alternative 
were developed by Dudewicz and Dalal (D & D, 1975) and Rinott (1978), 
respectively. Both the D & D and Rinott methods assume that the Xij values 
are normally distributed, with (perhaps) unknown and unequal (for differ-
ent alternatives) variances. As mentioned earlier, the normal distribution 
assumption is generally not a problem for simulation model output, espe-
cially since typically the performance measure value associated with a single 
replication is obtained over many observations (e.g., average customer wait-
ing time). The allowance for unequal variances for the different respective 
alternatives also fits the usual situation for simulation model output.

In addition, both of the D & D and Rinott methods assume that the Xij val-
ues are generated independently, which precludes the use of common ran-
dom numbers as a variance reduction technique for increasing the accuracy 
of the estimates, thereby reducing the number of replications required to 
differentiate between the alternatives.
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Law (2007, p. 565) notes that the D & D procedure typically requires fewer 
replications than the Rinott procedure, but this is at the expense of being 
more complicated from a computational standpoint. Specifically, the D & D 
procedure requires a weighted sum of the sample means computed from the 
two sets of replications where the weights arise from a relatively complicated 
formula. The D & D procedure is much like the Koenig and Law approach for 
subset selection described earlier, except the identified subset is of size one. 
Nelson et al. (2001) note that the indifference zone procedures like Rinott’s 
are based on a “worst-case” analysis in which all the alternatives except the 
best are assumed to be tied for second, exactly ε away from the best; this can 
result in much (unneeded) computational effort.

The two-stage Rinott procedure is described as follows:

 1. Identify a practically significant difference, ε, and a probability of 
correct selection, 1 – α.

 2. Make n0 replications for each alternative, in order to obtain Xij for 
i = 1,…, k and j = 1,…, n0.

 3. Compute the first-stage sample means and sample variances:

 

X n X /ni ij

j

n
( )( )1

0 0

1

0

=
=
å

 and

 
S n XX n / n 1) for i 1, k.i iij

2
0

1
0

2
( ) ( ) ( , ,( )= -( ) - =å

j=1

n0

…

 4. Compute the total sample size needed for alternative i as 

N max n gS /i i= éê ùú{ }0 0
2, ( ( ) )n e  where ⌈x⌉ is the smallest integer greater 

than or equal to x, and g is a constant that solves the “Rinott integral.”
 5. Make (Ni – n0) additional replications for alternative i for i = 1,…, k, 

and select the alternative with the largest overall sample mean.

Nelson and Matejcik (1995) developed a ranking and selection procedure that 
allows for the use of common random numbers as a variance reduction tech-
nique as long as the covariance matrix associated with the random variables 
X1j, X2j,…, Xkj satisfies a condition called sphericity (see Law, 2007, p. 565). This 
two-stage Bonferroni procedure allows for comparisons of all alternatives 
with the best and is described in Banks et al. (2005, pp. 454–458):

 1. Identify a practically significant difference, ε, and a probability of 
correct selection, 1 – α.

 2. Make n0 replications for each alternative, in order to obtain Xi,j for i = 
1,…, k and j = 1,…, n0.
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 3. Calculate the sample mean for alternative i, X n for i =1, ki( ), ,0 … , and 
for all i ≠ j, calculate the sample variance of the difference:

 
S

n
X X X n X nij ir jr i j

2

0
0 0

1

21
1
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-

- -
=

å( ( ( ) ( ))) ,
r

n0

 And let Ŝ2 = the largest of the Sij
2’s.

 4. Calculate the number of replications to make for each alternative for 
the second stage of the procedure:

 N max S /n t= { }0
2 2, ˆ2 e , where ⌈x⌉ refers to the largest integer less than x.

 5. Make N – n0 additional replications for each alternative and calculate 
the overall sample mean for each alternative: X Ni( ) for i = 1,…, k.

 6. Select the alternative with the largest sample mean as the best.

If i* denotes the best alternative, then if X N X N 0 i( ) ( )- + £i* e  for any i ≠ i*, then 
alternative i is inferior to the best alternative. But if X N  X N 0 i( ) ( )- + >i* e  for 
any i ≠ i*, then alternative i is statistically indistinguishable from i*, and in 
fact, alternative i might be the best alternative.

There is much research and many different perspectives on ranking and 
selection that have not been covered in this section of the book. For example, 
Sullivan and Wilson (1989) developed a two-stage restricted subset selection 
procedure that requires independent replications and results in a random-
size subset, but with at most m alternatives. Chen and Kelton (2005) devel-
oped a sequential approach to ranking and selection that employed their 
enhanced two-stage selection procedure (Chen and Kelton, 2000), which 
accounts for the differences in the sample means (as well as the variances of 
the samples) in determining the sample sizes.

Finally, Mattila and Virtanen (2015) addressed the use of expected utility 
in ranking and selection in which incomplete preference information was 
available from the DM; the incomplete preference information arose from 
linear constraints placed on the weights of the utility function.

Example 9.5: Selecting a Subset of Policies for an (s, S) Inventory 
System Using the Bonferroni Approach to Screening

Consider Example 9.4, but with the four additional policies to examine. 
Specifically, we are now considering the following policies:

 1. Policy 1: s = 30, S = 60
 2. Policy 2: s = 30, S = 120
 3. Policy 3: s = 100, S = 250 
 4. Policy 4: s = 150, S = 250
 5. Policy 5: s = 50, S = 100
 6. Policy 6: s = 50, S = 150
 7. Policy 7: s = 120, S = 200
 8. Policy 8: s = 120, S = 300



397Use of Simulation for Decision Models

Now, in order to use the Bonferroni approach to screening, the Xij out-
puts should be normally distributed. This was tested with the output 
for the first policy and was shown to be approximately true for 30 data 
points obtained from 30 independent replications.

We set α = .05 and n0, the number of replications for each of the eight 
alternative systems, to 5. The results for the five replications made over 
each of the eight alternatives, along with the sample expected utility 
values, are shown in Table 9.18. (Because of the closeness of several of 
the numerical values in this problem, the numbers shown in the various 
tables for this example are carried out to several decimal places.)

The sample variance values associated with the differences from the poli-
cies are shown in Table 9.19. Note, for example, that S12

2 , the sample variance 
associated with the difference between Policy 1 and Policy 2, is given by

 

( ( )) (( . . ) . )) . . ) .1 5 1 0/ ( 6745 83 4 ( 1917  (( 6681 8688 ( 192- * - - - + - - - 117

( 6588 8545 ( 1917  565.

2

2

))

( . . ) . )) .+ + - - - =� 000

The “−.1917” figure in the this calculation is the difference in the sample 
means between Policies 1 and 2 (.6611 − .8528). Note also that, by defi-
nition, S Sij ji

2 2= ; hence, only the upper right-hand portion of the matrix 
needs to be shown.

TABLE 9.18

Utility Values from Five Independent Replications of Eight Inventory Policies

Replication 
Number 

Policy 1 
Output 

Policy 2 
Output 

Policy 3 
Output 

Policy 4 
Output 

Policy 5 
Output 

Policy 6 
Output 

Policy 7 
Output 

Policy 8 
Output 

1 .6745 .8304 .8524 .8157 .8650 .8739 .8564 .7979

2 .6681 .8688 .8556 .8243 .8747 .8777 .8674 .7979

3 .6690 .8547 .8488 .8158 .8673 .8758 .8567 .8032

4 .6349 .8557 .8478 .8139 .8563 .8707 .8581 .8116

5 .6588 .8545 .8466 .8029 .8574 .8870 .8687 .8019

Sample expected 
utility

.6611 .8528 .8502 .8145 .8642 .8770 .8615 .8025

TABLE 9.19

Sample Variances, Sij
2 , Associated with Differences in Policies

i/j 1 2 3 4 5 6 7 8 

1 0.000565 0.000196 0.000236 0.0001373 0.000235508 0.00027871 0.000439843

2 0.000196 0.000196 0.0001897 0.00019243 0.000129028 0.000196592

3 2.37E−05 2.2165E−05 0.000062597 0.000045677 7.2973E−05

4 2.0047E−05 0.00015165 0.000113343 0.000114112

5 0.000103627 8.3657E−05 0.000147588

6 1.5058E−05 9.5867E−05

7 8.9458E−05

8
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The value for t (= t.05/7,4 = t.00714285,4) for this analysis is 4.151. The values 
for X n t( /S nj ij( ) )0 0-  for i, j = 1,…, 8 and i ≠ j are shown in Table 9.20.

As an example of an entry in Table 9.20, X n t /S n5 0 25 0( ) - ( ) is the 
entry given in the second row, fifth column of the matrix: .83857193. 
The computation (with some round off) for this value is given by 
.8642 4 151 / 8642 256 8386.- = - =. * . . ..0 0001897 5 0

 

In order to determine whether or not alternative i is in the selected 
subset, we need to see if X n X n t /S ni j ij( ) ( )0 0 0³ - ( ) for j = 1,…, 8 and 
i ≠ j. For example, to determine whether alternative 1 is in the selected 
subset, we would see if .6611 ( ( ))= X ni 0  is greater than or equal to each 
of the numbers in the first row of the matrix given in Table 9.20: 0.80868, 
0.824274, 0.786031, 0.84238805, 0.848531436, 0.822527116, and 0.763567116, 
which clearly it is not. Proceeding with this comparison for each of the 
sample means with each respective row of the matrix, we determine that 
alternatives 2, 5, and 6, that is, the (s, S) policies of (30, 120), (50,100), and 
(50, 150), are in the selected subset.

What is perhaps surprising about this conclusion is that Policy 2 (with 
a sample expected utility of .8528) is in the selected subset, while Policy 7 
(with a larger sample expected utility of .8615) is not. This can be at least 
partially explained by looking at the values for the sample variances of 
the differences between Policy 2 and Policy 6 (= 0.00019243) and between 
Policy 7 and Policy 6 (= 1.5058E−05 = .000015058). The former is about 
13 times the size of the latter, making the value for X n t /S n6 0 76 0( ) - ( ) 
larger than X n t /S n6 0 26 0( ) - ( ); this results in Policy 2 being included in 
the set, while Policy 7 is not. In effect, the sample variance values indicate 
that Policy 2 is closer to Policy 6 in performance than Policy 7, and Policy 6 
has by far (relatively speaking) the largest sample expected utility.

As with Example 9.4, it is clear the differences in expected utilities 
for the various policies are fairly small, indicating that the ranking of 
policies will be highly sensitive to the values for the scaling constants 
of the utility function. In addition, this example points out that it may 
be desirable, when employing the ranking methodologies for a situation 
involving expected utility as a performance measure, to scale the func-
tion from 0 to 100, rather than from 0 to 1.

TABLE 9.20

Values for X n t
n

j
ij( )0

0

-
S

 for i ≠ j

i/j 1 2 3 4 5 6 7 8 

1 0.80868 0.824274 0.786031 0.84238805 0.848531436 0.830468399 0.763567116

2 0.61692 0.824241 0.788516 0.83857193 0.851268406 0.840373247 0.776471409

3 0.635094 0.826821 0.805478 0.8554002 0.862332615 0.848913675 0.786641985

4 0.632571 0.826816 0.841198 0.85582825 0.854159331 0.841696444 0.782669513

5 0.639308 0.827252 0.8415 0.806208 0.858122507 0.844480735 0.779947575

6 0.632571 0.827068 0.835553 0.791659 0.84524251 0.85425637 0.784323833

7 0.630068 0.831733 0.837694 0.794756 0.84716074 0.86981637 0.784941908

8 0.622127 0.826791 0.834382 0.79469 0.84158757 0.858843833 0.843901908
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Example 9.6: Using the Two-Stage Bonferroni Approach 
to Select the Best Policy for an (s, S) Inventory System

Let’s apply the two-stage Bonferroni approach to see if we can find a 
“best” alternative for our inventory system. Let ε be .01, and let’s start 
with all eight alternative policies given for Example 9.5, so k = 8; we will 
also employ our initial 5 replications, so n0 = 5. In viewing Table 9.19, the 
largest Sij

2 is S 565 so S 56512
2 2000 000= =. , .ˆ . Hence, the number of replica-

tions to make for the second stage is given by
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By making 93 additional replications for each policy (or just making 98 
replications total), we obtain the following sample means for the eight 
alternatives:

 

X X X X X1 2 3 4 598 67 98 8523 98 8500 98 8197 98( ) . , ( ) . , ( ) . , ( ) . , ( ) .= = = = = 88627

98 8808 98 8619 98 80666 7 8

,

( ) . , ( ) . , ( ) . .X X X= = =

The largest sample mean is given by Policy 6 with X6 98 8808( ) .= . Since 
none of the other policies have a sample mean within .01 (= ε) of X6 98( ), 
we can declare that each of the other policies is inferior to Policy 6, with 
values of 50 and 150 for s and S, respectively.

Example 9.7: Scheduling and Resource 
Allocation for a Medical Clinic

(This example is derived from the PhD dissertation of Sun, 2015.)
An ambulatory internal medical clinic, located in the downtown of a 

metropolitan area, serves as a teaching clinic for a local medical school. 
As a teaching clinic, it serves low-income patients with major medical 
issues at a much reduced rate from what would normally be paid for 
medical services. Mainly because of the long wait times experienced by 
the clinic’s patients, the management was interested in analyzing alter-
native policies for resource assignment and scheduling.

The clinic addresses different medical issues at different time periods of 
the week (e.g., cardiovascular issues on Tuesday mornings, pulmonary on 
Wednesday afternoons). This study addressed the period of Tuesday morn-
ing, one of the busiest periods for the clinic. The clinic’s personnel during 
this period included 2 receptionists, 5 nurses, 12 resident doctors (which 
included 4 first-year residents, 5 second-year residents, and 3 third-year 
residents), and four attending physicians. First-year residents, as compared 
to second-year and third-year residents, required greater supervision from 
an attending physician and longer amounts of time to treat patients.

In addition, the clinic had 15 exam rooms, 5 triage areas, and a waiting 
room.

The process of treating the patients generally followed the sequence 
of activities: check-in at receptionist, nurse triage examination, wait, 
examination by a resident, consultation between resident and attending 
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physician, possible examination by attending physician, and wait in 
waiting room for reports and lab results.

The management of the clinic was interested in investigating new poli-
cies with respect to (1) the interarrival times of patients, (2) the more flex-
ible use of examination rooms, and (3) the number of patients assigned 
to first-, second-, and third-year residents. More specifically, the clinic’s 
management wanted to investigate:

 1. Allowing mean interarrival times of 4, 5, 6, and 7 minutes
 2. Using the current approach in which third-year residents were 

assigned two exam rooms each and other residents were allowed 
one exam room each versus allowing any resident to use any exam 
room available, that is, first come, first served (denoted as exam 
rooms preassigned and exam rooms not preassigned, respectively)

 3. Having the current approach of each resident being assigned 
the same number of patients, versus allowing the third-year 
residents to have more patients than the second-year residents, 
and the second-year residents being assigned more patients 
than the first-year residents (denoted as original resident allo-
cation and modified resident allocation, respectively)

Varying the interarrival times would allow the clinic to see more/
fewer patients. Allowing flexible use of the exam rooms would allow 
for increased efficiency, at the expense of the current privilege allowed 
third-year residents. Initial data collection indicated that third-year resi-
dents were able to complete tasks faster than second-year residents and 
that second-year residents were able to complete tasks faster than first-
year residents, hence, the investigation of the third pair of subpolicies.

There were four objectives of interest to the clinic’s management, as 
measured by the following four attributes:

X1: Expected waiting time of patients
X2: Staff utilization
X3: Exam room utilization
X4: Amount of overtime required to see all patients

The fourth attribute was used because typically the clinic continued 
to operate past the Tuesday morning time frame until all patients were 
seen. Overtime was a common occurrence at the clinic for its Tuesday 
morning schedule. An additive utility function was employed to repre-
sent preferences over these four attributes:

 
u(x x x x w u x1 2 3 4 i i i

i

, , , ) ( ),=
=

å
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where

 w 4 w 3 w 2 and w 1.1 2 3 4= = = =. , . , . , .

Such an additive function while probably not an exact representation of 
the preference structure of the clinic’s management was thought to be 
good enough to rank the alternatives, listed later.
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The individual attribute utility functions were given by

 u (x A B exp (C xi i i i i i) )= -

where Ai, Bi, and Ci were constant set so that the functions would have 
the appropriate minimum (0) and maximum (1) values and risk nature 
to represent the situation.

The best and worst values for the attributes are shown in Table 9.21.
The simulation model developed for the clinic was a complex one due 

to the required interaction among the resources (e.g., among residents, 
attending physicians, and examination rooms). The utility exchange 
method mentioned previously (Butler et al., 2001) was used to estimate a 
meaningful indifference zone for expected utility. Specifically, an indiffer-
ence between 30 and 37 minutes in waiting time resulted in an ε value of 
.09 for the expected utility measure. This indifference zone was employed 
with the Dudewicz and Dalal (1975) ranking and selection scheme. 

The various alternatives considered involved combinations of the 
three types of subpolicies mentioned previously, as shown in Table 9.22. 
The parameters used for the D & D method, in addition to ε = .09, were 
α = .05, k = 12 (since there were 12 alternatives to consider), and n0 = 10 

TABLE 9.21

Best and Worst Values for Attributes

Attribute Best Value Worst Value 

X1, expected waiting time in minutes 0 70
X2, staff utilization 1 0
X3, exam room utilization 1 0
X4, overtime in minutes 0 120

TABLE 9.22

Examined Alternatives in the Ambulatory Internal Medical Clinic Example

Alternative 
Mean Interarrival 
Time in Minutes Exam Room Assignment Resident Allocation 

1 4 Preassigned Original
2 4 Not preassigned Original
3 4 Preassigned Modified
4 4 Not preassigned Modified
5 5 Preassigned Original
6 5 Not preassigned Original
7 5 Preassigned Modified
8 5 Not preassigned Modified
9 6 Preassigned Original

10 6 Not preassigned Original
11 6 Preassigned Modified
12 6 Not preassigned Modified
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(since initially 10 replications were made for each alternative). This gave 
an initial set of estimates for the expected utility values as shown in 
Table 9.23.

For each alternative, the expected utility estimates for the initial set 
of 10 replications, the number of additional replications required, the 
expected utility estimates for the second set of replications, the weights 
for each set of replications, and the weighted sum of the expected utili-
ties are given in Table 9.23. The reader will note that the weights and 
expected utility estimates are carried out to two decimal places only. 
Also, the Ni values are dependent on the sample variances for the initial 
set of replications, among other quantities, which are not shown in the 
table.

Alternative 7, with the subpolicies of 5-minute interarrival times, pre-
assigned exam rooms, and a modified resident allocation, gives the high-
est weighted expected utility and is therefore denoted as the best policy.

9.7 Comparing Many Alternatives

In Sections 9.5 and 9.6, which discuss the comparison of two alternatives or 
a few alternatives, every alternative in the feasible set could be simulated 
at least twice (i.e., at least two replications). There are many situations in 
which there are, in effect, a very large number, or even an infinite number of 

TABLE 9.23

Quantities for the Dudewicz and Dalal Ranking and Selection Procedure Used for 
the Ambulatory Internal Medicine Clinic Example

Alternative 
Number 

Initial 
Expected 

Utility 
Estimates 

Ni – n0, 
Number of 
Additional 

Replications 

Second 
Set of 

Expected 
Utility 

Estimates 

Weights 
for Initial 
Expected 

Utility 
Estimates 

Weights 
for Second 

Set of 
Utility 

Estimates 

Weighted 
Sum of 

Expected 
Utilities 

1 0.53 271 0.59 0.04 0.96 0.59
2 0.55 189 0.60 0.05 0.95 0.59
3 0.78 17 0.79 0.37 0.63 0.79
4 0.81 17 0.81 0.37 0.63 0.81
5 0.75 10 0.76 0.51 0.49 0.76
6 0.76 10 0.72 0.49 0.51 0.74
7 0.86 38 0.85 0.21 0.79 0.86
8 0.86 38 0.83 0.21 0.79 0.84
9 0.68 26 0.69 0.28 0.72 0.69

10 0.68 25 0.69 0.29 0.71 0.68
11 0.77 11 0.79 0.48 0.52 0.78
12 0.77 11 0.76 0.48 0.52 0.77
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alternatives. These situations can occur when one has either a combination 
of a number of integer/discrete control variables and/or continuous control 
variables to consider. Examples of these situations include the following:

 1. Determining the number of staff personnel to assign to various 
shifts and staff categories of a service system such as an emergency 
department of a hospital, a call center, or a fast-food restaurant. 
Objectives in this case could be divided into two categories: those 
related to the cost of operating the system (e.g., staff person-hours) 
and those relating to customer service (e.g., average wait time for 
customers or fraction of customers who wait longer than a threshold 
value).

 2. Determining the values for s and S for an (s, S) inventory policy. 
For example, if s can range from 20 to 50 and S can range from 70 
to 150, there would be 31 * 81 = 2511 different policies to evaluate. 
Again, objectives could be divided into two categories: those related 
to internal operating cost (holding costs plus ordering costs) and 
those related to customer service (back orders or lost sales). If the 
(s, S) policies related to an entire distribution system with multiple 
branches, the number of control variables would be multiplied by 
the number of branch offices. If there were 10 branches, each with 
2511 different policies to evaluate, the number of alternatives would 
not be 10 * 2511, but 251110, or approximately 9.965 * 1033.

 3. Determining the number of resources of various types to have 
in a manufacturing system. Such resources could include assem-
bly machines, drills, lathes, and AGVs. If there were N types of 
resources and ni number of units of resource possible for i = 1,…, N, 
then the number of different policies/alternatives to examine 
would be ni

i

N

=Õ 1
.

 4. Determining the routes for a set of delivery trucks. Each route would 
consist of a number of stops; in addition to determining the number 
of trucks needed, the stops would have to be sequenced into routes, 
and the routes assigned to the trucks. The sequencing of the stops to 
form the routes would affect the delivery/pickup times. Objectives 
would relate to service (e.g., tardiness/earliness of delivery) as well 
as cost for operating the system (e.g., as measured by the number of 
trucks needed and distance traveled).

There are numerous additional examples that could be mentioned, some of 
a very specific nature and some more general in nature. But the basic idea is 
the same: design and/or operation of complex systems requires the determi-
nation of values for numerous control variables, some continuous in nature 
and some discrete. Each combination of values results in a policy/alternative, 
and all combinations result in a number too large to investigate explicitly 
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with a simulation, when a simulation model is desired as a representation 
of the system.

The type of problem addressed in this section is difficult for several reasons:

 1. A closed-form relationship (an explicit function) does not exist relat-
ing the values for the control variables to the attribute values. (This 
is one reason why a simulation model is being used.)

 2. The outputs (i.e., the attribute values) are random in nature. One can 
never be sure of the exact values for the attributes.

 3. Multiple objectives mean that trade-offs must be made between the 
attribute values.

The typical optimization approach used for these problems is a metaheuris-
tic or a combination of metaheuristics. As with heuristics in general, meta-
heuristics do not guarantee an optimal solution but typically will give a 
very good solution to a problem. These metaheuristics are designed so that 
a closed-form representation of the relationship between the control variable 
values and the attribute values is not required. In addition, many of them are 
designed to avoid getting “trapped” at a local optimal solution.

Examples of metaheuristics include simulated annealing (Kirkpatrick et al., 
1983), tabu search (Glover, 1986), variable neighborhood search (Mladenović 
and Hansen, 1997), scatter search (Marti et  al., 2006), genetic algorithms 
(Holland, 1975), and particle swarm optimization (Kennedy and Eberhart, 
2001), among others. See Gendreau and Potvin (2010) for an overview of vari-
ous metaheuristics.

These metaheuristic algorithms are embedded in software packages that are 
interfaced with various simulation software packages. Examples of these opti-
mization packages include OptQuest, Witness Optimizer™ (Lanner Group, 
Inc., 2005), SimRunner2™, AutoStat™, and Extend Optimizer™. Another pack-
age, which might be considered more of a tool for sensitivity analysis, is Palisade 
software’s TopRank™, which is meant to be used with their @Risk™ software.

OptQuest is a product of OptTek Systems Incorporated (http://opttek.com/
OptQuest) and was designed by Fred Glover. It has been interfaced with many 
different simulation software packages including Arena, Simio™, Flexsim™, 
and ProModel™, among others. OptQuest employs a combination of scatter 
search, tabu search, and artificial neural networks to seek an optimal solution 
for a criterion model. Its use requires the specification of control variables, 
responses, constraints on functions of the responses (if needed), and an objec-
tive that is specified as either of the minimization or of the maximization type. 
Each control variable requires a specification of a minimum and a maximum 
value, as well as being defined as continuous, discrete, or integer in nature.

Eskandari et al. (2011) did a comparative analysis of Witness Optimizer and 
OptQuest and found their performances to be similar. In most cases, the choice 
of a particular optimizer will be dictated by the simulation software being used.

http://opttek.com/OptQuest
http://opttek.com/OptQuest
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The user is given the option of stopping the search process of OptQuest 
(1) by specifying a fixed number of alternative simulations or (2) by specify-
ing that the process stop after a particular number of alternatives have been 
simulated with no improvement. The user can also employ a combination of 
these methods.

Many researchers (e.g., see Nelson et al., 2001) have suggested that the user 
of one of these optimization packages apply a ranking and selection proce-
dure to the top few alternatives (say top 20) found through the optimization 
process. Such an approach, which involves a more in-depth analysis of the 
remaining individual alternatives than the optimization process, could very 
well result in an alternative, other than the top-ranked optimization alterna-
tive, being ranked first.

Example 9.8: Selecting a Best Construction Contract Bid

Let’s consider a modified version of Example 7.1. Suppose that additional 
information has led A1 to revise its estimate of the probability for a com-
peting bid of .6. If there is at least one competing bid, A1 estimates that 
the lowest competing bid will have an uncertain value, corresponding 
to a random variate with a uniform distribution, with a minimum value 
of $11 and a maximum value of $14 million. The cost of construction 
has also been revised to be estimated as a random variable, distributed 
according to a triangular distribution with parameters as $10 million, 
$11 million, and $15 million. A1 wants to determine what their optimal 
bid should be, within the range of $11–$14 million. Input data for the 
problem are summarized in Table 9.24.

A1 wants to consider two attributes in their decision concerning the 
amount to bid, if a bid is made:

 X1: Probability of winning the contract

 X2: Net profit

One reason why A1 wants to consider the probability of winning the 
contract as a separate attribute is that there is some prestige associated 
with the outcome of winning the contract—as a result, this increased 
prestige may very well put A1 in line for additional business.

As an example of these attributes, let’s suppose that A1 bids $12 million 
for the contract. If they win the contract, they will make a profit of 

TABLE 9.24

Parameters for a Bid Decision Problem

Parameters Value 

Probability of a competing bid .6
Cost of construction TRIA (10, 11, 15) million dollars
Lowest competing bid, if competing bids occurs UNIF (11, 14) million dollars
Cost of preparing bid $50,000
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$12,000,000–$50,000 – cost of construction, which can be anywhere 
between $10 and $15 million. If they do not win the contract, they will 
have a loss of $50,000, the cost of preparing the proposal.

A multiplicative utility function representing A1’s preferences over X1 
and X2 has been developed:

 u(x  x 1u (x 8u (x 1u (x u x1 2 1 1 2 2 1 1 2 2, ) . ) . ) . ) ( ),= + +

where

 u (x x1 1 1) ,=

and

 u (x ) .0011x .0064x .0602x .3741.2 2 2
3

2
2

2= + + +

Both of the individual attribute utility functions are scaled from 0 to 1 
and increasing in the attribute, as they should. The function for X1, the 
probability of winning the contract, is linear, so it is risk neutral; the 
function for X2, the profit, is concave for negative profit and convex for 
positive profit.

Now, the value for X1 could be estimated by the simulation model. 
However, this is not needed since the probability of A1 winning the con-
tract is a straightforward deterministic calculation. Specifically, if B is 
the bid by A1 in millions of dollars (remember B is between $11 million 
and $14 million), and X1(B) denotes the probability of A1 winning the 
contract at a bid of B, then
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So, if A1 bids $12 million, their probability of winning the contract is 
(2/3) * .6 + 1 * .4 = .8.

Now, A1 may or may not actually win the contract, but the probability 
of them winning is just a deterministic function of their bid.

This calculation for X1 was included in the Monte Carlo simulation, 
which also calculated values for X2 and utility for each replication of the 
model. The OptQuest optimization software was interfaced with the 
model in order to determine the bid that would maximize expected utility. 
The optimization was set up to simulate 100 different design points, with 
30 replications each. The best bid value found was $12,613,850, which gave 
a probability for a successful bid of .6772 and an estimate for expected 
profit of $248,800. The estimate for expected utility with this bid was .4125. 
It should be noted that the $248,800 is only the estimate for expected profit. 
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With a probability of .3228, A1 will not get the contract and will therefore 
be out of the $50,000 for preparing the proposal. Even if A1 receives the 
contract, they may very well have a construction cost that is more than 
their bid of $12,613,850. This points out the importance of understanding 
the outputs associated with a simulation of a decision situation.

In some cases with two attributes, a DM may prefer to constrain 
one attribute, while optimizing the expected utility of the other. This 
approach was tried here; specifically, the expected utility for profit (X2) 
was optimized, while the value for X1 was constrained. Normally, con-
straining the value of an attribute, which is output from a simulation 
model, is problematic, since typically the attribute value is not determin-
istic. In this case though, as shown earlier, the value for X1 is a determin-
istic function of the bid.

Specifically, the following optimization models were solved for the 
problem:

Find the value of the bid, which maximizes the expected utility of 
expected profit, subject to the probability of receiving the con-
tract being greater than or equal to each of the following values: 
.5, .7, .8, .9, and 1.

In effect, we solved five different optimization problems. The results are 
shown in Table 9.25.

As one would expect, as the constraint on the probability of a success-
ful bid becomes tighter, the expected profit for the optimal bid value 
decreases. Also, a simulation is actually not needed to project these 
results (see Exercise 9.11).

Example 9.9: Optimization of s and S in an (s, S) Inventory 
Policy Using Expected Utility as a Criterion

Consider Example 9.6 involving the choice of an (s, S) inventory policy 
from a small set of policies, using expected utility as the criterion. Now 
suppose that we want to find the best values for s and S within some 
range of integer values. In particular, using the same simulation model 
as was used in Example 9.6 and the OptQuest optimization software, we 
specify the control variables as s and S, with both being integer valued. 

TABLE 9.25

Estimates of Optimal Bids with Various Constraints on 
the Probability of a Successful Bid

Constraint on the Probability 
of a Successful Bid 

Estimates of an Optimal Bid 
and of Expected Profit 

≥.5 $13.5 million, $440,800
≥.7 $12.5 million, $172,900
≥.8 $12 million, −$161,737
≥.9 $11.5 million, −$589,522
≥1 $11 million, –$1,107,500
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The ranges for these control variables were set at 10–200 for s and 60–500 
for S. In addition, a constraint, S – s ≥ 30, was added to the model in order 
to prevent the optimization from searching solutions, which did not make 
sense, such as those with s > S. The objective was specified as “maximize 
utility.” (By default, the actual objective is to maximize expected utility.)

For the optimization run, the number of simulations was set at 100, 
with 10 replications per simulation. Because of the low value for variance 
in the output, this number of replications seemed sufficient.

The optimal solution found was s = 90 and S = 136, with an estimate 
of expected utility of .901906. This compares to an estimate of expected 
utility of .8808 (after 98 replications) for the best solution (s = 50, S = 150) 
found in Example 9.6, where we were selecting from only a few policies. 
A more detailed comparison of these two policies is shown in Table 9.26.

The reader will note that the half-widths for the expected utility confi-
dence intervals in Table 9.26 are only carried out to two decimal places—
that is, these half-widths are not actually 0, but they are greater than .00.

The results in Table 9.26 show that the policy found by OptQuest with 
s = 90 and S = 136 gives a markedly better value for average unit-days of 
shortage, but a slightly worse value for average ordering plus holding cost.

Example 9.10: Staffing Optimization at an Emergency Call Center

Let’s return to the emergency (911) call center referred to in Example 
8.3. For this system, the problem was to determine the number of call 
takers to assign to weekly shifts at an emergency call center of a metro-
politan area. Data relating to the number of calls by type (e.g., requesting 
assistance from police, fire, etc.) and time of week (day and hour of the 
day) were collected. Data were also collected on the activities of the call 
takers and dispatchers of the call center. A simulation model represent-
ing a typical week’s operation was constructed. Among other quantities, 
inputs to the system included weekly shift schedules and the number of 
call takers assigned to these shifts. One of the shift schedules examined 
was the following:

 1. Shift 1: Monday through Wednesday, 12 midnight to 12 noon; 
Thursday, 12 midnight to 4 a.m.

 2. Shift 2: Monday through Wednesday, 12 noon to 12 midnight; 
Thursday, 4 p.m. to 8 p.m.

 3. Shift 3: Friday through Sunday, 12 midnight to 12 noon; 
Thursday, 4 a.m. to 8 a.m.

TABLE 9.26

95% Confidence Intervals (with 10 Replications) for Two Inventory Policies

Policy 

95% CI for 
Average Unit-Days 

of Shortage 

95% CI for 
Average Ordering 
plus Holding Cost 

95% CI for 
Expected Utility 

s = 50, S = 150 22.4831 ± .70 395.43 ± 2.21 .8793 ± .00
s = 90, S = 136 12.7161 ± .47 406. ± 1.39 .9033 ± .00



409Use of Simulation for Decision Models

 4. Shift 4: Friday through Sunday, 12 noon to 12 midnight; 
Thursday, 8 p.m. to midnight

 5. Shift 5 (overtime shift): Thursday, 8 a.m. to 4 p.m.

Note that every hour of the week was covered by these various shifts, 
as was required for the system. In addition, note that for any particular 
shift, the time periods are distributed in a way that allows for adequate 
recuperation between work periods. The problem then was to determine 
the number of call takers to assign to each of these shifts.

Two basic objectives were of interest to the center’s management. The 
first one had to do with answering as many of the calls as possible within 
12 seconds of the call being placed. Since there were on average about 
25,000 calls per week to the call center, and the variability of calls arriv-
ing during one period of the week as compared to another was high, it 
was impossible to answer every call through the week within 12 seconds.

The second objective had to do with the internal cost of operating the 
system. This was represented as the number of person-hours assigned 
during the week. So, for example, if 10 persons were assigned to each 
of the five shifts listed earlier, this would represent 10 * (40 + 40 + 40 + 
40 + 8) = 1680 person-hours assigned.

Instead of combining these two objectives into a utility/value function, 
the system’s management was interested in optimizing the first objec-
tive, subject to a constraint on the second objective. This was accom-
plished through the use of the following optimization model:

Minimize fraction of incoming calls exceeding a 12-second ring 
time, subject to number of call taker weekly hours ≤1200, 1400, 
or 1600 hours.

The control variables employed for this optimization were the numbers 
(restricted to integer values) of call takers assigned to each of the five 
shifts listed earlier.

The OptQuest software package, interfaced with the simulation model, 
was employed to solve the optimization problem, with the first-ranked 
solutions in each case as shown in Table 9.27.

The results allowed the management to choose a staffing policy with 
an implicit trade-off between the two objectives related to service and 
internal system cost.

TABLE 9.27

Results of an Optimization of Call Taker Assignments for Emergency Call Center

Constraint 
on Call 
Taker 
Hours 

Number 
of Call 
Taker 

Hours in 
Solution 

Fraction 
of Calls 

Exceeding 
12 Second 
Ring Time 

No. of 
Call 

Takers 
Assigned 
to Shift 1 

No. of 
Call 

Takers 
Assigned 
to Shift 2 

No. of 
Call 

Takers 
Assigned 
to Shift 3 

No. of 
Call 

Takers 
Assigned 
to Shift 4 

No. of 
Call 

Takers 
Assigned 
to Shift 5 

≤1200 1176 0.238 7 10 7 4 7

≤1400 1344 0.152 8 8 8 8 8

≤1600 1584 0.048 9 10 8 11 8
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Example 9.11: Optimization for the Lead Poison Testing Problem

Let’s reconsider Example 6.4, involving testing children for lead poison-
ing. In that example, there were two tests: an imperfect urine test and a 
“perfect” blood test. In this example, let’s consider the strategy where we 
apply the urine test to a set of randomly selected children from the popula-
tion, followed by the blood test for those children who test positive on the 
urine test. The data for the problem are reproduced in Table 9.28.

The basic problem here is to determine the number of urine tests to 
give, followed by the requisite blood tests for those who test positive 
on the urine test. Following Example 6.4, we want to consider the four 
attributes of

X1 = The cost for administering the tests for lead poisoning in 
thousands of dollars

X2 = The number of children definitely identified as having lead 
poisoning

X3 = The number of children incorrectly identified as having lead 
poisoning through the urine test (but later correctly identified 
as not having lead poisoning through the blood test)

X4 = The number of children who are incorrectly identified as not 
having lead poisoning through the urine test (but actually do 
have lead poisoning)

Given the strategy of a specified number of urine tests followed by the 
requisite blood tests, the values for these attributes will be uncertain.

There are at least two approaches for modeling this problem. One 
approach would be to develop an influence diagram, with the decision 
node of “Number of Urine Tests to Administer.” The influence diagram 
would also contain various outcome/consequence nodes and chance 
event nodes corresponding to the number of urine-tested children with 
lead poisoning, number of urine-tested children without lead poison-
ing, number of children with lead poisoning who test positive on the 
urine test, total cost for testing, and so on. The values for many of the 
nodes would be determined through the use of random variate genera-
tion. For example, the number of urine-tested children with lead poison-
ing would be the value generated from either a hypergeometric random 
variable or a binomial random variable if an approximation is used.

TABLE 9.28

Input Data for Lead Poison Testing Problem

Problem Parameter Value 

Sensitivity of urine test 0.9
Specificity of urine test 0.85
Cost of urine test $10
Sensitivity of blood test 1
Specificity of blood test 1
Cost of blood test $100
Prior probability of lead poisoning 0.1
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A second approach would be to employ a Monte Carlo simula-
tion in which the entities would represent children going through 
the testing process. This approach would represent the appropriate 
hypergeometric/binomial distributions only implicitly through the 
sampling process. That is, the number of entities generated would be the 
number of children to be urine tested. These would be probabilistically 
routed (e.g., through the use of a Decide module if the Arena simula-
tion software package is being employed), to group those children being 
tested as having or not having lead poisoning. These two groups would 
each be further segmented into those testing positive and those testing 
negative on the urine test, according to the sensitivity and specificity 
of the urine test. Appropriate variable values would be collected by the 
model. This was the approach used in modeling the problem for this 
example. With this approach, we were implicitly modeling the binomial 
distribution with the simulation model.

A more accurate, but also more complex, model could have been built 
by implicitly representing the hypergeometric distribution. This could 
have been accomplished by tracking the values of the number of children 
in the population with lead poisoning, and without lead poisoning, as 
the urine testing was progressing; then the probability associated with 
the next child tested having lead poisoning could have been changed 
after each test. Given the relatively small size of the sample however, as 
compared to the size of the population, modeling the process as a bino-
mial distribution was appropriate.

The OptQuest optimization software was used to optimize on the 
number of urine tests to give for the problem. In particular, a constrained 
optimization was performed:

 Maximize X2, subject to X 4  X 8  X 21 3 4£ £ £, , .

In words, we want to maximize the number of children correctly identi-
fied with lead poisoning, subject to spending at most $4000 on testing 
and having at most eight children incorrectly identified (temporarily 
until they receive the blood test) as having lead poisoning when they 
really do not and at most two children incorrectly identified as not hav-
ing lead poisoning when they do.

The optimization was set up so that the number of urine tests to give 
was constrained to be between 50 and 150, inclusive. Since the optimiza-
tion was also set up to perform 100 simulations (i.e., design points) with 
30 replications at each point, in effect, we were performing a complete 
enumeration of all of the design points.

Another thing to note about this problem is that we are actually using 
estimates of the expected values of our attributes in our optimization model. 
However, the number of replications resulted in sufficiently small confi-
dence intervals for our output.

Upon solving this problem, we obtained the following solution:

Give 58 urine tests followed by the requisite blood tests, resulting 
in estimates of X2 = 5.733, X1 = 1.94 (thousands of dollars), X3 = 
7.866, and X4 = .9.
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In other words, giving 58 urine tests, we could expect to identify 5.733 
children with lead poisoning at a cost of $1940; we would also expect to 
temporarily misidentify 7.866 children as having lead poisoning when 
they do not and also misidentify .9 child as not having lead poison-
ing when he or she does. Again, remember that these are estimates of 
expected values.

Looking at the results, it appears that our only “close to binding” 
constraint is the one on X3. By relaxing this constraint and leaving the 
others as they are, we could expect to obtain improved results for our 
objective. Hence, two other optimization problems, each involving a 
modification of the constraint on X3, were solved. The results are shown 
in Table 9.29.

As an example, in interpreting Table 9.29, the third optimization 
model, with the constraint on X3 of X3 ≤ 14, resulted in 103 urine tests to 
give, with expected values of 10.233 children correctly identified with 
lead poisoning, at a cost of $3450, 14 children temporarily misidentified 
as having lead poisoning when they do not, and 1.03 child misidentified 
as not having lead poisoning when they do.

This approach of optimizing one attribute while varying the con-
straints on the other attributes is similar to using the STEP method 
(STEM) with a simulation model (Mollaghasemi and Evans, 1994).

9.8 Final Thoughts

Much of the methodology discussed in this chapter has been covered in 
other sources, many of which have been cited here. The reader is referred 
to those sources, and others, such as Fu (2014) and Hong and Nelson (2006).

There are also several other areas not discussed in this chapter that can be 
useful for optimization via simulation. One of these is the area of metamodel-
ing, in which the relationship between the input variables and the output of a 
simulation is replaced by a simpler, closed-form, model than the simulation. 
Examples of these approaches are regression analysis, kriging, and stochas-
tic kriging. Zakerifar et al. (2011) provide an example of kriging in multiple 
objective simulation optimization.

TABLE 9.29

Results for Three Optimization Problems

Model # 
X1 Constraint 
and X1 Value 

X3 Constraint 
and X3 Value 

X4 Constraint 
and X4 Value 

No. of 
Urine Tests X*

2  

1 ≤4, 1.94 ≤8, 7.87 ≤2, .9 58 5.733
2 ≤4, 2.74 ≤11, 10.86 ≤2, 1.03 82 8.33
3 ≤4, 3.45 ≤14, 14 ≤2, 1.03 103 10.233
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Material Review Questions

9.1 What is a simulation?
9.2 What is the difference between a discrete event simulation and a con-

tinuous simulation?
9.3 Simulation models used to evaluate influence diagrams and decision 

trees are typically “static” in nature (true or false).
9.4 What is a key aspect of a Monte Carlo simulation?
9.5 Methods to generate random variates are typically programmed into 

simulation software packages (true or false).
9.6 What is the most popular method for generating random variates?
9.7 Different probability distributions might employ different methods 

for the generation of random variates associated with that distribution 
(true or false).

9.8 The choice of a method to generate random variates for a particular distri-
bution function is dependent upon which three performance measures?

9.9 Outputs from simulaion models are typically estimates of something 
(true or false).

9.10 Give two examples of time-persistent variables from a simulation model.
9.11 Replications of a simulation model representing a particular alterna-

tive are typically independent in nature (true or false).
9.12 The sample mean of an output, obtained from averaging over n replica-

tions of a simulation model, is itself a random variable (true or false).
9.13 If Xi is an output from the ith independent replication of a simulation 

model, and S2(n) is the estimate of the variance of the Xi’s as given by 
(9.6), then the expected value of S2(n) will remain constant as n increases 
(true or false).

9.14 The value of Var X n)� (éë ùû will usually increase or decrease (choose one) 
as n increases.

9.15 If one computes 1000 confidence intervals at the 95% confidence inter-
val from experimentation with a simulation model, about how many of 
these confidence intervals will contain the variable of interest?

9.16 For the same set of output data generated by independent replications 
of a simulation model, the 90% confidence interval will be smaller or 
larger (choose one) than a 95% confidence interval.

9.17 For values of n ≥ 30, the value for tn−1, 1−α/2 approximates the value of 
z1−α/2 (true or false).

9.18 What is the main benefit of a variance reduction technique?
9.19 How would you implement the variance reduction technique of com-

mon random numbers in a simulation model?
9.20 If the value of 0 is contained in the paired-t confidence interval for the 

difference of two alternatives, what can you say about the difference 
between these alternatives?
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9.21 For what reason would one use a two-sample t-test?
9.22 Shortening the duration of one of the activities of a project will always 

shorten the project duration (true or false).
9.23 The Bonferroni inequality provides a bound on the overall confidence 

associated with a group of confidence intervals (true or false).
9.24 In performing an all-pairwise comparisons approach for several alter-

natives, what three actions can be taken if the difference between two 
alternatives is not statistically significant?

9.25 In what general situation would one want to use subset selection (or 
screening) as opposed to a method for finding the best alternative in a 
group of alternatives?

9.26 What is the indifference zone in a ranking and selection method?
9.27 What is the difficulty associated with using ranking and selection 

methods when the performance measure used is expected utility?
9.28 Which of the following approaches for ranking and selection allow for 

the use of common random numbers as a variance reduction technique: 
Koenig and Law subset selection procedure, Bonferroni approach 
to screening due to Nelson et al., Dudewicz and Dalal approach for 
identifying a best alternative, Rinott approach for identifying a best 
alternative, and Nelson and Matejcik procedure for identifying a best 
alternative.

9.29 The Dudewicz and Dalal procedure for finding a best alternative typi-
cally requires more replications of the alternative simulations than the 
Rinott procedure (true or false).

9.30 Procedures like Rinott’s for ranking and selection are based on a 
“worst-case analysis” in terms of the alternatives under consideration 
(true or false).

9.31 Describe an example of a situation in which a simulation model is 
used for a design problem for which an optimization procedure is also 
required.

Exercises

9.1 A simulation model for a project has been constructed. The model 
allows the representation of various policies for reducing the durations 
of various respective tasks of the project. The main output of interest is 
the project duration. Twenty independent replications for a particular 
policy have been run, with the following project durations (in weeks) 
for each replication:
62.5, 64.3, 60.8, 52.3, 56.7, 56.1, 83.7, 69.1, 78.5, 78.2, 56.8, 77.2, 84.9, 55.9, 

67.1, 68.9, 62.7, 59.2, 58.9, 87.4.
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 a. From these data, calculate a 95% confidence interval for the prob-
ability that the project, under the simulated policy, will have a dura-
tion of longer than 65 weeks.

 b. Calculate 95% confidence intervals for the respective probabilities that 
the project will have a duration of longer than 70, 75, and 80 weeks.

 c. Calculate a 95% confidence interval for the expected project dura-
tion under the simulated policy. Use (9.10) for this calculation.

 d. Calculate a 90% confidence interval for the expected project dura-
tion under the simulated policy. Again, use (9.10) for this calculation.

9.2 Consider two alternatives for execution of a project. The alternatives 
have to do with the choice of a major subcontractor for the project. One 
of the subcontractors is less reliable than the other, but this subcontrac-
tor might actually provide better performance, at least with respect to 
project duration.

A simulation model for the project has been constructed, which 
allows for the representation of each of the alternatives. Five replica-
tions have been made of each alternative, with the following results for 
project duration (in weeks):

 Alternative 1: 67.8, 85.5, 59.2, 78.5, 61.2
Alternative 2: 75.5, 73.4, 81.5, 74.2, 73.2

The project manager’s utility function over project duration has 
been constructed. Utility function values for the replication val-
ues are shown in the following:

Project 
duration

59.2 61.2 67.8 73.2 73.4 74.2 75.5 78.5 81.5 85.5

Utility .9 .88 .8 .75 .7 .65 .6 .05 .02 .01

The utility function reflects the fact that the company has a deadline 
corresponding to a project duration of 76 weeks.

Compute a point estimate and a 90% confidence intervals for each 
alternative for project duration and expected utility based upon 
these output data. What conclusions can you reach?

9.3 Consider the Thief of Baghdad problem in Example 9.1. Compute the 
probability, without a simulation, of the thief requiring more than 
6 hours to achieve freedom. Now construct a simulation of the process. 
Estimate this probability with 100 replications of your model. Estimate 
the probability with 1,000 replications and then with 10,000 replica-
tions of your model.

9.4 A simulation model has been developed to study various scheduling 
policies in a job shop. The model has been run for five independent rep-
lications, with the following output for average job lateness in hours:
3.4, 2.9, 2.8, 3.1, 3.8.



416 Multiple Criteria Decision Analysis for Industrial Engineering

Using (9.10), compute a 95% confidence interval for expected lateness 
based on these data. Using the formula given in (9.16), estimate the total 
number of replications needed to reduce the half-width for the original 
confidence interval by 50%. Make the same estimate using the formula 
in (9.17).

9.5 Consider Example 9.3: Comparing NBA Series Patterns. Develop a 
Monte Carlo simulation for a 2–2–1–1–1 finals series. Consider the team 
with the home court advantage. Suppose that the probability that each 
team wins on their home court is equal to p. Hence, the probability 
that the visiting team wins is 1 – p. Using trial and error, determine 
an estimate for the value for p such that the team with the home court 
advantage has the same chance of winning the series (50%) as the other 
team. Set the number of replications for each experiment at 1000. Note 
that this value for p must be less than .5.

9.6 Consider various values for the probability that the team with the home 
court advantage in a 2–2–1–1–1 series wins the series as a function of the 
value for p, as defined in Exercise 9.5. More specifically, determine an 
estimate for the expected probability (and the 95% confidence intervals) 
that the home court advantage team wins the series for p equal to .4, .55, 
and .7. Determine estimates for the number of games in the series for the 
same probabilities (and the 95% confidence intervals). Use 1000 replica-
tions to determine your estimates and confidence intervals in each case.

9.7 Suppose that you are performing an analysis involving simulation for 
an inventory system. There are two performance measures of interest:

X1: Average cost per day associated with ordering and holding 
inventory

X2: Unit-days of shortage per day

You are analyzing a particular policy with your model, and with one 
set of replications, you have determined two 95% confidence intervals 
for the two performance measures:

X1: ($257, $290)
X2: (9.2, 16.7)

You are satisfied with the simultaneous confidence of your intervals (what 
is it?) and also (more than) satisfied with the half-width of the confidence 
interval for X1. However, you are not satisfied with the half-width of the 
confidence interval for X2 and would like to make it smaller. Without 
running additional replications of your model, what can you do?

9.8 Develop the simulation model described for Example 9.4, involving 
the (s, S) inventory policy. Suppose that the utility function is given by

 u(x x 7u (x 2u (x 1u (x u x1 2 1 1 2 2 1 1 2 2, ) . ) . ) . ) ( ),= + +

with the same individual attribute utility functions.
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Perform the same all-pairwise comparisons analysis as was done in 
Example 9.4, except with this new utility function.

9.9 Suppose you had an inventory with a single item. The system operates 
24 hours per day, 7 days per week. The inventory level was 25 items, at 
10 a.m. At 10 a.m., one demand order was placed for 35 items, and at 
11 a.m., another demand order was placed for 50 items. At 12 noon, a 
shipment of 500 items arrived to replenish the inventory. What was the 
unit-days of shortage over this period of 10 a.m. to 12 noon?

9.10 Consider Example 9.6. Perform the same analysis with an ε value of .02 
instead of .01. How many total replications are needed to identify the best 
policy for this new value of ε? Does the best policy identified change?

9.11 Consider Example 9.8, involving the optimal bid to make for a contract. 
Determine, analytically (i.e., without a simulation), the maximum bid 
that A1 should make if they want the probability of their bid being suc-
cessful to be equal to 1, given that the probability of a competing bid is 
.5. Determine the maximum bid that A1 should make for various val-
ues of X and Y, where X is the minimum probability of their bid being 
successful and Y is the probability of a competing bid, for X = .5, .8, and 
1. and Y = .5, .8, and .9.

9.12 Consider Example 9.9. Using the simulation you developed for 
Exercise 9.8 and an appropriate optimization package, determine opti-
mal values for s and S using the following utility function:

 u(x  x 72u (x 18u (x 1u (x u x1 2 1 1 2 2 1 1 2 2, ) . ) . ) . ) ( ).= + +

Discuss how the values found for s and S relate to the values found in 
Example 9.9, within the context of trading off between the attributes X1 
and X2.

9.13 Consider Example 9.10. Suppose that the manager of the emer-
gency call center had a multiattribute value function over the two 
attributes:

X1 = Fraction of incoming calls exceeding a 12-second ring time
X2 = Number of call taker weekly hours

This multiattribute value function is given by

 v(x x 7v (x 3v x1 2 1 1 2 2, ) . ) . ( ),= +

with

 v (x ) 12.298x 1.0645x 1.06021 1 1
2

1= - - +

and

 v (x  = .0017x + 2.7.2 2 2) -



418 Multiple Criteria Decision Analysis for Industrial Engineering

Treating the relationship between the solutions (number of call takers 
assigned to the various shifts) found and the values for X1 and X2 as 
deterministic, rank the three solutions given in the example by com-
puting their respective values using this value function.

9.14 Build the simulation model corresponding to Example 9.11, the lead 
poison testing problem. Use the approach described in the example in 
which entities are used to represent the tested children. Find the opti-
mal solutions for the three criterion models given in the problem for 
three varying values of the sensitivity and specificity of the urine test:

 a. Sensitivity = .85, specificity = .8
 b. Sensitivity = .95, specificity = .9
 c. Sensitivity = .98, specificity = .95

Discuss the intuitive sense of the results.
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Index

A

Acceptable quality level (AQL), 58
Achievement function, 166, 179–180

definition, 160
interactive and metagoal 

programming, 188
lexicographic minimization, 182
weight determination, deviational 

variables, 170–173, 175–176
Additive independence (AI), 248
AHP, see Analytic hierarchy process
Allais Paradox, 235–236
Analytic hierarchy process (AHP), 72, 146

advantage, 117
criticisms, 134–135
Expert Choice™, 117
extension, 135
individual judgments and 

priorities, 135
vs. MAVT, 134
outranking methods, 136
ratio scale priorities, 134
for resource allocation, 127–134
Saaty, Thomas L., 117
steps, 118–127

Analytic network process (ANP), 135
Anchoring and adjusting heuristic, 

346–347
Anderson–Darling test, 337
Arena simulation model, 358, 371, 384, 411

continuous empirical distribution 
function, 333

paired-t confidence interval, 373–376
Thief of Baghdad problem, 365

Availability heuristic, 346
Average outgoing quality (AOQ), 59

B

Batch module, 375
Bayes’ theorem

decision trees, 277–278, 297
probability, 210–214

Binomial distribution, 206–208, 334, 411
Bonferroni approach, 393–394, 396–398
Bonferroni inequality, 386, 390
Breakthrough Thinking, 19, 25

betterment timeline principle, 29
limited information collection 

principle, 28–29
people design principle, 29
Purpose Design Approach, 26
purposes principle, 27
systems principle, 28
uniqueness principle, 26–27

Brightman’s alternative worldview 
method, 38

C

Causality, 200
Chance event, 199
Chi-square test, 338–341
Concordance index, 138–139
Conditional independence, 200–201
Conditional probabilities, 199, 347

Bayes’ theorem, 210–211, 213
decision trees, 274–275, 279, 282, 297
influence diagram, 292, 297
sensitivity and specificity, medical 

test, 63, 257
Confidence intervals

actual mean value, 360
all pairwise comparisons, 387
Bonferroni inequality, 386
expected utility, 408
half-width, 360
large-sample confidence interval, 361
notation, 362–363
paired-t confidence intervals, 

372–385, 387
particular outcome probability, 361
specified accuracy, 369–370

Continuous decision variables, 16, 
153–154, 156

Continuous random variables, 197–198, 
205, 272
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cumulative distribution 
function, 202

decision trees/influence 
diagrams, 306

discrete random variable, 342
distribution function, 335
empirical distribution function, 

330, 334
expected value, 204
probability density function, 202

Create module, 374
Cumulative distribution function, 

202, 344

D

Decision maker (DM), 6–7
AHP

advantage, 117
criticisms, 134–135
Expert Choice™, 117
extension, 135
individual judgments and 

priorities, 135
vs. MAVT, 134
ratio scale priorities, 134
for resource allocation, 127–134
Saaty, Thomas L., 117
steps, 118–127

extensions, hybrid approaches, and 
comparisons, 144–147

interaction, 187–188
lexicographic ordering, 81–82
MAV functions

applications, 84
assessment, 94–112
independence conditions, 87–94
indifference curve, 85
linear individual attribute 

functions, 83
marginal rate of substitution, 

85–87
operational definition, 83
strategic equivalence, 84–85

no preference information
deterministic dominance, 76
dominance graph, outcomes, 

77–78
efficient frontier, 77

ideal, superior, and negative 
ideal, 75–76

set of nondominated 
alternatives, 76–78

stochastic dominance, 76
notation, 72–73
outranking methods

applications, 136
degree of dominance, 136
ELECTRE, 136–144
European/French approach, 136
PROMETHEE, 136
Roy, Bernard, 136

preference information types, 80–81
preferences over payoffs, 304
preferences over uncertainty/risk

decision effect, 217–218
decision making under risk, 218
decision making under 

uncertainty, 218–221
decision situation with single 

attribute, 218–219
mappings, 217–218
MAU functions, 236–263
single attribute utility functions, 

230–236
preference structures, 80

articulation, 154
lexicographic goal programs, 167, 

169–170
lexicographic redundancy, 169
over multiple objectives, 157
Pareto inefficiency, 169–170
weighted goal programs, 170

restrictions, 190
scales of measurement, 79–80
TOPSIS, 112–117
utility exchange, 393
workforce scheduling, 14
zero-one decision variable, 153

Decision making, 40; see also 
Decision maker

applications, industrial engineering
project management and 

control, 12
quality control, 13
supply chain design and 

operation, 13–14
workforce scheduling, 14
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decision situations, 3–4
decision variables, 2
elements/agents

alternative solutions, 6
analyst, 6
constraints, 7
decision maker, 6
decision tree representation, 10–11
evaluation model, 7–8
performance measures/

attributes, 6–7
ranking/optimization model, 8–9
stakeholder, 6
state of nature, 7

individual and organizations, 1–2
mappings types, 217–218
medical, 62–64
operability, 54
process, 4–5
taxonomy, 14–16

Decision models, probabilistic inputs
biases and heuristics

anchoring and adjusting 
heuristic, 347

availability heuristic, 346
motivational bias, 347
representativeness heuristic, 

346–347
data availability

anomalies/outliers, 326–329
data collection, 325–326
data directly as input, 318
data selection, 319–325
empirical distribution, 318–319, 

330–333
theoretical distribution, 319, 

334–341
data unavailability

continuous distribution, 344–346
discrete distribution, 342–344

random variates, 317
Decision programming language 

(DPL™), 271
Decision situations

accounting for risk, 222–223
attributes

applications, 55–56
categorization, 41
characteristics, 55

completeness, 54
decomposability, 54
engineering economics, 56–57
location and layout design, 57
lowest-level objectives, 53
medical decision making and 

health care management, 62–64
natural/constructed attributes, 

41–43
nonproxy/proxy attributes, 

41, 43–44
nonredundancy, 54
operability, 54
project management, 59–62
quality management, 57–59
scale, 50
small size, 54–55

characteristics, 3–4
governmental, 70–71
individuals, 71
industrial, 70
influence diagram, 291
objective, 13

definition, 40
devices, 47
fundamental/high-level 

objectives, 44
hierarchy/network, 44–52
lower-level objective, 44

parameters, 296
performance measures, 13
simulation model, 356, 369, 372
with single attribute, 218–219
types of, 69

Decision trees, 7
applications, 271–272
confidence interval, 361
cumulative risk profiles, 288–290
decision nodes, 272
dominance, 289–290
DPL™, 271
EMV, 273
evaluation, 273–277
expected utility, 304–306
input distributions, 317
nodes and branches with no 

cycles, 272
outcome nodes, 272

conditional probability, 273
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infinite number of outcomes, 
306–312

partition, 273
predictor

definition, 278
imperfect predictor, 279, 281–283
perfect predictor, 279–280
quality, 279
values, 283–284

probability calculation, Bayes’ 
theorem, 277–278

representation, 10–11
sensitivity analysis

algebraic approach, 302–304
brute force procedure, 302
categories, 295
vs. linear programs, 294
one-way sensitivity analysis, 

295–301
two-way sensitivity analysis, 

301–303
static simulation models, 353
strategies and risk profiles, 284–287

Degree of outranking, 139, 143
Deterministic dominance, 76, 289–290
Direct costs, 59–60
Discordance index, 138
Discrete random variables, 197–198, 205

cumulative distribution function, 202
discrete distribution function, 342
empirical distribution, 330
outcome nodes and chance event 

nodes, 306
probability distribution function, 201

Dispose module, 375
Distribution function, decision model

anomalies/outliers, 326–329
continuous distribution, 344–346
data collection, 325–326
data selection

dependent samples, 320
independent samples, 320–325
qualitative input, 319
quantitative input, 320

discrete distribution, 342–344
empirical distribution, 318–319, 

330–333
theoretical distribution, 319, 334–341

DM, see Decision maker

Dominance graph, outcomes, 77–78
Dudewicz and Dalal (D & D) method, 

394–395

E

Efficient frontier, 77
ELECTRE III method

concordance index, 138
degree of outranking, 139
discordance index, 138
job selection problem, 139–144
minimum procedure, 139
thresholds, 137–138
weights, 138

Elimination and choice expressing 
reality (ELECTRE), 136, 146

Empirical continuous distribution, 344
Empirical discrete distribution, 

331, 343
Empirical distribution, 202–204, 318–319, 

330–333, 339
Expected monetary value (EMV), 273, 

275–277, 280, 282–283, 302–303
Expected value of an imperfect 

predictor (EVOIP), 281–283
Expected value of a perfect predictor 

(EVOPP), 279–280
Expected value of perfect information 

(EVPI), 279
Expected value with an imperfect 

predictor (EVWIP), 281–283
Expected value with a perfect predictor 

(EVWPP), 279–280
Expected value with available 

information (EVWAI), 279–283
Exponential distribution, 208–210

F

Forecasts, 199

G

Gamma distribution, 210
Goal programming (GP)

history, 157
integer decision variables and 

nonlinear functions
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distribution center location and 
transportation planning, 
180–187

supplier selection, 176–180
interactive and metagoal 

programming, 185–188
lexicographic goal programs

DM’s preference structures, 167, 
169–170

general formulation, 158
lexicographic minimization, 159
negative and positive deviational 

variables, 158–159
simple product mix problem, 

161–166
minmax goal programs, 158
notation, 160–161
weighted goal programs, 158

achievement function, 160, 170
DM’s preference structures, 170
general formulation, 159
minimization of deviation, 160
minimization of 

overachievement, 160
minimization of 

underachievement, 160
simple product mix problem, 

166–169
weights, deviational variables

implicit individual attribute value 
function, 172–173

MAV function, 172, 174–176
nonzero values, 171
percentage normalization, 171, 175
preemptive goal program, 175
worst and best values, 172–173

H

Hypergeometric distribution, 13, 
206–207, 306, 319, 342, 344, 355

Hypothesis testing, 337–340

I

Ideal, outcome space, 75–76
Imperfect predictor, 303

cost, 281–283, 296–299, 302
definition, 274–275, 279

sensitivity graph, 299
values, 284

Independent events, 200
Indifference thresholds, 137, 

139–140, 144
Indifference zone (IZ), 392–395
Indirect costs, 12, 60
Influence diagrams, 8, 200

applications, 271–272
chance event nodes

complementary probabilities, 292
conditional probabilities, 292
infinite number of outcomes, 

306–312
random variable, 291
relevance arcs, 291–292
unconditional probabilities, 292

communication tool, 291
confidence interval, 361
decision nodes, 291–294
decision tree conversion, 294–295
directed network, 291
discrete chance node, 342
dynamic decision situation, 291
evaluation/criterion model, 291
expected utility, 304–306
input distributions, 317
outcome/consequence nodes, 292

constant value, 291
infinite number of outcomes, 

306–312
Precision Tree™, 271, 293
sensitivity analysis

algebraic approach, 302–304
brute force procedure, 302
categories, 295
vs. linear programs, 294
one-way sensitivity analysis, 295
two-way sensitivity analysis, 295

static simulation models, 353
Integer decision variables, 2, 153–154, 

156, 176, 189
Interactive programming, 185–188
Interval scales, 79, 112

J

Joint probabilities, 200, 236
AI, 248
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conditional probabilities, 210, 213
marginal probabilities, 213
UI, 242

K

Kolmogorov–Smirnov (K–S) test, 337, 
339, 341

L

Large-sample confidence interval, 361
Lexicographic goal programs

Big P method, 183
DM’s preference structures, 167, 

169–170
general formulation, 158
lexicographic minimization, 159
negative and positive deviational 

variables, 158–159
simple product mix problem, 

161–166
Lexicographic ordering, 72, 81–82, 167
Lexicographic redundancy, 169–170
Likelihood function, 335–337
Lot tolerance percent defective 

(LTPD), 58

M

Marginal probabilities, 213, 248, 274, 
278, 293

MAU functions, see Multiattribute 
utility functions

MAV function, see Multiattribute value 
function

MAVT, see Multiattribute value theory
Mean–variance optimization, 223
m-Erlang distribution, 210
Metagoal programming, 188
Metaheuristics, 404
Metamodeling, 412
Minmax goal programs, 158
Modeling preferences over uncertainty/

risk
decision effect, 217–218
decision making under risk, 218 

(see also Multiattribute utility 
functions)

decision making under uncertainty
definition, 218
maximax approach, 220
maximin approach, 219–220
minimax regret approach, 

220–221
decision situation with single 

attribute, 218–219
mappings, 217–218
MAU functions

acceptance sampling problem, 
237–241

applications, 237
independence conditions and 

form, 241–263
single attribute utility functions

accounting for risk, 222–223
Allais Paradox, 235–236
assessment, 224–227, 229–230
axioms, 234–235
caveats, 228
expected payoff as criterion, 

221–222
risk attitude, 227–228
standard functional forms, 

230–234
Monte Carlo simulation, 353, 383, 406

lead poison testing problem 
optimization, 411–412

multiple trial–type models, 356
paired-t confidence interval, 373
random variates generation, 355

Motivational bias, 346–347
Multiattribute utility (MAU) functions, 

16, 354, 371
acceptance sampling problem, 

237–241
applications, 237
independence conditions and form

acceptance sampling, 250–257
additive independence, 248
assessment, 248–250
medical diagnosis decision, 

257–263
multilinear form, 242–243
multiplicative form, 243–247
mutually utility 

independent, 243
utility independent, 241–242
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Multiattribute value (MAV) function, 15, 
170, 241, 250

AHP, 117, 135
applications, 84
assessment

best and worst values, 95
hypothetical outcomes, 111–112
individual attribute value 

functions, 94
informal steps, 95–96
interpolation, 112
midvalue splitting technique, 

96–99
question and answer sessions, 94
ranking pairs of outcomes, 111
scaling constants, 94
scaling constants (weights), 

99–103
SMART, 103–111

goal programming, 172, 174–176
independence conditions

three or more attributes, 92–94
two attributes, 87–92

indifference curve, 85
linear individual attribute 

functions, 83
marginal rate of substitution, 85–87
operational definition, 83
strategic equivalence, 84–85

Multiattribute value theory (MAVT), 
134–135, 146

Multiple criteria discrete alternative 
problems, 69

Multiple objective optimization, 16
classification scheme, 154–155
decision variables, 153–154
formulation of problem, 156
goal programming

basic concepts, 157–167
DM’s preference structures, 

167–170
integer decision variables and 

nonlinear functions, 176–187
interactive and metagoal 

programming, 185–188
weights, deviational variables, 

170–176
prior articulation of 

preferences, 188

single-objective mathematical 
programming, 156

Step method, 189–190
Mutually utility independent (MUI), 243

N

Negative ideal, 75–76, 112, 114, 116
Nominal scales, 79
Normal distribution, 208–209, 319, 

334–335, 360, 369, 393–394
Normal random variable, 360

O

One-way sensitivity analysis
baseline, minimum, and maximum 

values, 297
decision tree with second imperfect 

predictor, 296
parameters, 296–297
sensitivity graph, 299–300
spider graph, 300–301
tornado diagram, 297–299

Operating characteristic (OC) curve, 58
OptQuest, 404–405
Ordinal scales, 79–80
Outranking methods

applications, 136
degree of dominance, 136
ELECTRE, 136–144
European/French approach, 136
PROMETHEE, 136
Roy, Bernard, 136

P

Paired-t confidence intervals, 
372–385, 387

Pareto inefficiency, 169–170
Pareto optimal set, 77
Pearson–Tukey approximation, 307
Percentage normalization, 171, 175
Perfect predictor, 279–280, 283–284
Poisson distribution, 207–210, 336
Poisson random variable, 207–208
Positive ideal, 112, 114, 116
Precedence arc, 293
Precision Tree™, 271, 293, 301–303
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Preference ranking organization 
method for the enrichment of 
evaluations (PROMETHEE), 
136, 146–147

Probability density function, 202
Probability distribution function

binomial distribution, 206–207
characteristics, 209–210
continuous random variables, 205
discrete random variables, 201, 205
empirical, 203
exponential distribution, 209
hypergeometric distribution, 206–207
normal distribution, 208–209
Poisson distribution, 207–208
triangular distribution, 209
uniform distribution, 209

Probability theory, 15
Bayes’ theorem, 210–214
causality, 200
conditional independence, 200–201
conditional probability, 199
events/experiments, 196
forecasts, 199
independent events, 200
influence diagram, 200
joint probability, 200
outcomes, 196
partition, 196
probability, 197
probability functions

cumulative distribution 
function, 202

empirical distributions, 202–203
expected value/mean, 204
location, scale, and shape 

parameters, 205
minimum and maximum values, 

204–205
probability density function, 202
probability distribution function, 

201, 205–210
standard deviation, 204
terminology and notation, 202
theoretical distribution, 202
variance, 204

random variable, 197–199
sample space, 196
uncertain quantities/parameters, 195

Problem structuring, 15, 144
AHP, 135
applications, 19–21
attributes

applications, 55–56
categorization, 41
characteristics, 55
completeness, 54
decomposability, 54
engineering economics, 56–57
location and layout design, 57
lowest-level objectives, 53
medical decision making and 

health care management, 62–64
natural/constructed attributes, 

41–43
nonproxy/proxy attributes, 41, 

43–44
nonredundancy, 54
operability, 54
project management, 59–62
quality management, 57–59
scale, 50
small size, 54–55

Breakthrough Thinking, 25
betterment timeline 

principle, 29
limited information collection 

principle, 28–29
people design principle, 29
Purpose Design Approach, 26
purposes principle, 27
systems principle, 28
uniqueness principle, 26–27

Brightman’s alternative worldview 
method, 38

cause-and-effect diagrams, 38
cognitive mapping, 37
concept of problem, 22
constraint, 40–41
constraint-free thinking, 25
convergent thinking, 25
criterion, 38
decision analysis process, 146
dimensional analysis, 38
divergent thinking, 25
DMs and stakeholders, 25
five Ws and H technique, 38
goal, 40
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ill-structured problems, 22–23
examples, 24
features, 25

Kepner and Tregoe method, 37
mind-mapping, 38
mission/vision statements, 39–40
objective

definition, 40
devices, 47
fundamental/high-level 

objectives, 44
hierarchy/network, 44–52
lower-level objective, 44

operational definition, 24
positive, negative, and unknown 

gaps, 22
semistructured problems, 22
Smith framework, 38
state of affairs, 22
SWOT analysis, 38
system of problems, 24
values, 39
well-structured problems, 22, 24
WWS method, 25

decision opportunity, 32
initial problem statement, 30
lowest-level problem statement, 

33–34
network, 33–36
partial problem network, 32
question–answer sequence, 31
SAN principle, 33
set of nodes, 29

Process modules, 374–375
Project duration

Bonferroni inequality, 386
direct/indirect costs, 60
objectives/performance measures, 12
resource-constrained scheduling 

problems, 60–61

R

Random variable, 197–199
Bernoulli, 359
binomial distribution, 206, 214
chance event node, 291
covariance matrix, 395
expected value, 204, 221, 223, 240

exponential distribution, 209
hypergeometric distribution, 13, 214, 

319, 342
minimum and maximum values, 

204–205
Monte Carlo simulation, 353
normal distribution, 209
parameters, 205
Poisson distribution, 207–208
quantiles, 205
sample mean, 319
standard deviation, 204
uniform distribution, 209
variance, 204

Ranking and selection, 354
identifying best alternative, 391

Dudewicz and Dalal method, 
394–395

inventory system, 399
two-stage Bonferroni procedure, 

395–396
two-stage Rinott procedure, 395

incomplete preference 
information, 396

notation, 391–392
scheduling and resource allocation, 

medical clinic, 399–402
subset selection (screening), 391

Bonferroni approach, 393–394
correct selection, 392
indifference zone, 392–395
policies selection, inventory 

system, 396–398
two-stage restricted subset 

selection, 396
utility exchange, 393

Ratio scale priorities, 134
Ratio scales, 79–80
Record modules, 375
Relevance arcs, 291–293
Representativeness heuristic, 

346–347
Resource-constrained project 

scheduling, 59–62
Risk attitude, 227–228
Risk averse, 228, 231, 233
Risk neutral, 228, 231, 304, 343–344
Risk premium (RP), 227–228
Risk prone, 228
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S

Sample space, 196–198, 210, 273
Screening, see Subset selection
Sensitivity graph, 299–300
Separate modules, 374
Sequence arcs, 291–292
Set of nondominated alternatives, 76–78
Simple multiattribute rating technique 

(SMART)
Edwards, 104, 111
importance weights, 104–105
nondominated outcomes scores, 

105–106
scaled MAV function, 104
swing weights, 106–111
10 steps, 104
unnormalized weights, 105

Simulation, decision model
categorization, 354
continuous simulation, 353
discrete event simulation, 353
dynamic simulation models, 353
few alternatives comparison

all pairwise comparisons, 387–391
Bonferroni inequality, 386
categories, 386
comparison to a standard, 387
expected utility, 386
explicit evaluation, 385
ranking and selection, 354, 391–402

many alternatives comparison
best construction contract bid 

selection, 407
infinite number of alternatives, 

402–403
(s, S) inventory policy 

optimization, 407–408
lead poison testing problem 

optimization, 410–412
metaheuristic algorithms, 404
numerous control variables, 

values for, 403
optimization packages, 404–405
OptQuest, 404–405
staffing optimization, emergency 

call center, 408–409
Witness Optimizer, 404

metamodeling, 412

output characterization and analysis, 
single alternative

confidence interval, 360–362, 
369–370

discrete outcome, 356
mean values, 356
notation, 362–364
proportion/probability, 356
replications, 357–360
sample means, 356–359
sample proportion, 358, 361
sample value, 357
sample variance, 357
singular continuous outcome, 356
Thief of Baghdad problem, 362, 

365–369
random variates generation, 355
static simulation models, 353
two alternatives comparison

input/control variables, 372
multiattribute utility/value 

function, 371
paired-t confidence intervals, 

372–385
variance reduction techniques, 

370–371
Single attribute utility functions, 16

accounting for risk, 222–223
Allais Paradox, 235–236
assessment

certainty equivalence response 
mode, 229–230

certainty equivalent, 224–226
consistency checks, 226
expected utility, 227
graph, 225–226
linear interpolation, 226
scaled utility function, 224, 227

axioms, 234–235
caveats, 228
expected payoff as criterion, 221–222
risk attitude, 227–228
standard functional forms, 230–234

SMART, see Simple multiattribute rating 
technique

Solution-after-next (SAN) principle, 
26–27, 29, 33

Spider graph, 300–301
Stochastic dominance, 76, 289–290
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Strategy region plot, 302–303
Strengths, weaknesses, 

opportunities, and threats 
(SWOT) analysis, 38

Strong preference thresholds, 137, 140, 
142, 144

Structure arcs, 293
Sturges’s rule, 328–329
Subset selection, 391

Bonferroni approach, 393–394
correct selection, 392
indifference zone, 392–395
policies selection, inventory 

system, 396–398
two-stage restricted subset 

selection, 396
utility exchange, 393

Superior alternative, 75

T

Technique for Order Preference by 
Similarity to Ideal Solution 
(TOPSIS), 72, 76, 112–117, 146

Theoretical distribution, 202, 318–319
Anderson–Darling test, 337
binomial distribution, 206–207, 334
characteristics, 209–210
chi-square test, 338–341
continuous random variables, 205
discrete random variables, 201, 205
exponential distribution, 209
gamma distributions, 334
goodness of fit procedure, 337
hypergeometric distribution, 206–207
hypothesis testing, 337–340
K–S test, 337, 339, 341
maximum likelihood estimation, 

335–337
normal distribution, 208–209, 334–335
particular discrete distribution, 334
Poisson distribution, 207–208, 336
square error, 337
symmetric distribution, 335
triangular distribution, 209
uniform distribution, 209, 334–335
Weibull distributions, 334

Time–cost trade-off problem, 59
Timing arcs, 293–294

TOPSIS, see Technique for Order 
Preference by Similarity to 
Ideal Solution

Tornado diagram, 297–301
Total quality management (TQM), 57–58
Triangular distribution, 209, 341
Two-sample t-test, 373
Two-stage Bonferroni procedure, 

395–396, 399
Two-stage Rinott procedure, 395
Two-way sensitivity analysis, 301–303

U

Uniform distribution, 209, 337
Utility independent (UI), 241–242

V

Value arcs, 293
Variable modules, 375
Veto thresholds, 137–138, 140, 142
VIKOR method, 146

W

Weibull distributions, 210, 334
Weighted goal programs, 158

achievement function, 160, 170
DM’s preference structures, 170
general formulation, 159
minimization of deviation, 160
minimization of overachievement, 160
minimization of 

underachievement, 160
simple product mix problem, 166–169

Why–What’s Stopping (WWS) 
method, 25

decision opportunity, 32
initial problem statement, 30
lowest-level problem statement, 33–34
network, 33–36
partial problem network, 32
question–answer sequence, 31
SAN principle, 33
set of nodes, 29

Witness Optimizer, 404
WWS method, see Why–What’s 

Stopping (WWS) method
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